ADwin

FFT (Fast Fourier Transform) Library

for ADwin Systems with ADSP processor (T9, T10)
Version 4.01

January 2004

Important hint :
e For the reason of correct working of this library, it is neccessary to have at least ADbasic Version
3.20.01 or newer.

FFT eng.doc

Table of contents

S P 3
N 0 - ' 5
I o= |- 6
N o - 8
I 0 Y = - |- 9
o T 10
o S o~ 1 o 10
o o= 1 o] 11
o= 1 o) 1

FFT eng.doc 2

FFT

Syntax: return value = FFT(real, img, result real, result img,
help arrayl, help array2, number)

parameter: type: size : description :

real: float array number real part of the original data

img: float array number imaginary part of the original data

result real: floatarray number*4 real part of the Fourier transformed data

result img: floatarray number*4 imaginary part of the Fourier transformed data

help arrayl: floatarray number*4 (memory for internal calculations)

help array2: float array number*4 (memory for internal calculations)

number: long number of points for the FFT (must be a
multiple of the number 2)

return value: void (no return value)

Does a Fast Fourier Transform for a complex dataarray.

e The result of the FFT is not scaled onto the size of the components of the original data. If a scaling
is necessary, there has to be called in addition the function FFT_scale() .

e Though the transformed data are stored in arrays of the size number*4 , the valid data are located
in the array- elements 1 to number/2. (The other elements are used for internal calculations).

e Scaling (normalization) of the frequency- axis :
If the original data was made up of a sampled signal with the total sampling time of “T_total“, it is
possible to scale the frequency- axis by :
The first element of the transformed data- arrays corresponds to the frequency 0 Hz.
The last valid element (at position number/2) corresponds to the frequency

f=(number/2—-1)/T_total

The i -th element corresponds to the frequency = (i—1)/T_total
(Remark : The factor (i— 1) is caused by the fact, that arrays are starting always with element 1,
not with element 0).
In the example below the element 1024 corresponds to a frequency of (1024 —1) /0.1 s = 10230
Hz.

e For the reason of getting correct results, the frequency components of the original data should be
within the following range : fmin = samplingfrequency / number

fmax = samplingfrequency / 2 (because ,Aliasing“)

Example (for ADwin- GOLD or L16) :

Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_demo.bas

Description :
If a sine-wave signal of 1000 Hz is connected to the analog input 1, there will be found a maximum

each at DATA_3[101] and DATA_4[101] .

Hint:

e If number will not be modified on multiple calls of FFT() , the needed CPU- time can be reduced by
using the functions FFT _init() and FFT_calc() instead of FFT{() .

FFT eng.doc 3

Hint to all functions of the FFT- library :

e Declaring the arrays in the internal memory (“DM_LOCAL®) reduces the amount of the needed
CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).

e ltis necessary, that the FFT- library functions are called either in a low priority process or in the
FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT eng.doc 4

FFT_mag

Syntax: return value = FFT mag(real, img, result mag, number2) |

parameter: type: size : description :

real: float array number real part of the original data

img: float array number imaginary part of the original data

result mag: floatarray number2 result : magnitude of the complex data
number?2: long number of the data elements to be converted
return value: void (no return value)

Converts a complex dataarray into an array, which contains the magnitudes of the complex elements.

e The rrzlagnitude of each element is calculated with the formula : result_mag[i] = SQRT(real[i]* +
img[i]’)

e Because the result of the function FFT() is a complex spectrum, this function FFT_mag() is an
alternative way of displaying the result of the FFT() as a magnitude function (optionally together
with the phase function FFT_phase()) .

e |If this function is applied to the result of the function FFT() , number2 should be =
number_FFT_points /2.

Example (for ADwin- GOLD and L16) :

Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_mag_demo.bas

Description :
If a sine-wave signal of 1500 Hz is connected to the analog input 1, there will be found a maximum at
DATA_5[151].

Hint to all functions of the FFT- library :

e Declaring the arrays in the internal memory (“DM_LOCAL") reduces the amount of the needed
CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).

e |tis necessary, that the FFT- library functions are called either in a low priority process or in the
FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT eng.doc 5

FFT scale

Syntax: return value = FFT scale(unscaled, result scaled, number2) |

parameter: type: size : description :

unscaled: float array number2 (unscaled) data

result scaled: floatarray number2 result: scaled data

number?2: long number of the data elements to be scaled
(must be = number_FFT_points / 2)

return value: void (no return value)

Scales the result of a FFT, because the function FFT() does not scale to the size of the components of
the original data.
e This function is based on the formula :
Fori<>1: result_scaled[i] = unscaled[i]/ number2
Fori=1 : result_scaled[1] = unscaled[1] / (number2 * 2)
e number2 must be = number_ FFT_points /2 .
e This function does NOT scale (normalize) the frequency- axis of the spectrums (please see the
comments to the function FFTY()).

Example (for all ADwin- systems with T9 or T10 processor) :

Sampile file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo.bas

Description :
The program generates internally a frequency of 60 Hz with the amplitude 0.7 (unitless). Onto this

frequency another frequency of 30 Hz with the amplitude 1.0 and a constant offset of 1.5 is overlayed.
After calling the functions FFT(), FFT_mag() and FFT_scale() we get the following spectrum :

DATA_6[7] =1 (60 Hz)
DATA_6[4] =0.7 (30 Hz)
DATA 6[1] =1.5 (constant offset)

DATA_6[all other elements] =0

Remark : All amplitudes of the shown frequencies correspond exactly to the sizes of the components
of the original data.

FFT eng.doc 6

ﬁ Taraph =10

Optiang... Taols Lnzoom Update FY Timer ondaff FS ?

B =l sl & HEEE =lolF 2] 2] 4] 2|

| — data_6[1.101] |
T T T
R A T P R B R T A T i s)
1 1 1
1 1 1
1 1 1
__ I________I_______I________
1 1 1
1 1 1
——————— o M M e, M, M e M MRl R RS
1 1 1
1 1 1
_______ | B A S R DR A AR A R
1 1 1
1 1
e e i e e e i
1 1 1
1 1 1
1 1 1
e | et e S e e e e T e st o
1 1 1
1 1 1
—————— l= = = = = B B
1 1 1
1 1 1
— ; —_—
7 & g 10

Hint to all functions of the FFT- library :

e Declaring the arrays in the internal memory (“DM_LOCAL®) reduces the amount of the needed
CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).

e ltis necessary, that the FFT- library functions are called either in a low priority process or in the
FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT eng.doc 7

FFT phase

Syntax: return value = FFT phase(real, img, result phase, number2)

parameter: type: size : description :

real: float array number2 real part of the complex data

img: float array number2 imaginary part of the complex data

result phase: float array number2 result : phase of the complex data
number?2: long number of the data elements to be converted
return value: void (no return value)

Converts a complex dataarray into an array, which contains the phase of the complex elements.

The phase of each element is calculated with the formula :

If realli]>=0: result_phase[i] = ARCTAN(img][i] / real[i])

If reallij< O: result_phase[i] = ARCTAN(imgl[i] / real[i]) + PI

(A detailled listing of this formula can be found in the file : math.inc)

Because the result of the function FFT() is a complex spectrum, this function FFT_phase() is an
alternative way of displaying the result of the FFT() as a phase function (optionally together with
the magnitude function FFT_mag()) .
If this function is applied to the result of the function FFT() , number2 should be =
number_FFT_points / 2 .

Example (for all ADwin- systems with T9 or T10 processor) :

Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_phase_demo.bas

Description :
This program generates internally two frequencies with 30 Hz. The second frequency has a phase

displacement of Pl /2 . Both signals are sampled synchronously. After calling the functions FFT(),
FFT_mag(), FFT scale() and FFT_phase() separately for each signal, we get spectrums with the
following characteristics :

DATA 6[4] =1 (30 Hz)
DATA_6[all other elements] =0

DATA_7[4] =-0.018410 (phase = ca. 0)
DATA_26[4] =1 (30 Hz)
DATA_26[all other elements] =0

DATA_27[4] =1.552389 (phase = ca. PI/ 2)

Remark : The phase of all other elements is NOT defined (i.e. is probably not 0).

Hint to all functions of the FFT- library :

Declaring the arrays in the internal memory (“DM_LOCAL") reduces the amount of the needed
CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).

It is necessary, that the FFT- library functions are called either in a low priority process or in the
FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT eng.doc 8

FFT_mag _scale

Syntax: return value = FFT mag scale(real, img, result m s, number2) |

parameter: type: size : description :

real: float array number real part of the original data

img: float array number imaginary part of the original data

result m s: floatarray number2 result : scaled magnitude of the complex data
number?2: long number of the data elements to be converted
return value: void (no return value)

This function is a combination out of FFT_mag() and FFT_scale() and therefore a little bit faster than
calling those two functions.

Example (for all ADwin- systems with T9 or T10 processor) :

Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT eng.doc 9

FFT init

Syntax: return value = FFT init(help arrayl, help array2, number) |

parameter: type: size : description :

help arrayl: floatarray number*4 (memory for internal calculations)

help array2: floatarray number*4 (memory for internal calculations)

number: long number of points for the FFT (must be a
multiple of the number 2)

return value: void (no return value)

Only necessary and reasonable together with a succeeding call of FFT_calc() or FFT_calc_DM(), etc.
The function FFT() consists of the two functions FFT _init() and FFT_calc().

FFT _init() is reasonable, if the Fast Fourier Transform has to be performed several times. Then

FFT _init() has to be called just for one time.

But, the parameter number has to have the same value on all calls of FFT _init() and FFT_calc().

Example (for all ADwin- systems with T9 or T10 processor) :

Sampile file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT calc

Syntax: return value = FFT calc(real, img, result real, result img,
help arrayl, help array2, number)

parameter: type: size : description :

real: float array number real part of the original data

img: float array number imaginary part of the original data

result real: floatarray number*4 real part of the Fourier transformed data

result img: floatarray number*4 imaginary part of the Fourier transformed data

help arrayl: floatarray number*4 (memory for internal calculations)

help array2: float array number*4 (memory for internal calculations)

number: long number of points for the FFT (must be a
multiple of the number 2)

return value: void (no return value)

Only reasonable together with a preceeding call of FFT_init().

The function FFT() consists of the two functions FFT _init() and FFT_calc().

FFT calc() is reasonable, if the Fast Fourier Transform has to be performed several times. Then
FFT_init() has to be called just for one time.

Example (for all ADwin- systems with T9 or T10 processor) :

Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT eng.doc 10

FFT calc_DM

Syntax: return value = FFT calc DM(real, img, result real, result img,
help arrayl, help array2, number)

parameter: type: size : description :

real: float array number real part of the original data

img: float array number imaginary part of the original data

result real: floatarray number*4 real part of the Fourier transformed data

result img: floatarray number*4 imaginary part of the Fourier transformed data

help arrayl: floatarray number*4 (memory for internal calculations)

help array2: float array number*4 (memory for internal calculations)

number: long number of points for the FFT (must be a
multiple of the number 2)

return value: void (no return value)

Only reasonable together with a preceeding call of FFT _init().

The function FFT() consists of the two functions FFT _init() and FFT_calc().

FFT calc() DM is a special version of FFT _calc(), which is optimized for the T10 processor. It can be
used also for the T9 processor, but there will be no optimization effect with the T9.

FFT calc() DM may only be used, if the arrays are declared in the internal memory (“DM_LOCAL").
The needed CPU- time is ca. 11 ms at a 1024 point FFT for the T10 processor, compared to ca. 14 ms
with FFT_calc() (Remark: BOTH time measurements done with arrays in DM_LOCAL).

Example (for all ADwin- systems with T9 or T10 processor) :

Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT calc DX

Syntax: return value = FFT calc DX (real, img, result real, result img,
help arrayl, help array2, number)

parameter: type: size : description :

real: float array number real part of the original data

img: float array number imaginary part of the original data

result real: floatarray number*4 real part of the Fourier transformed data

result img: floatarray number*4 imaginary part of the Fourier transformed data

help arrayl: float array number*4 (memory for internal calculations)

help array2: floatarray number*4 (memory for internal calculations)

number: long number of points for the FFT (must be a
multiple of the number 2)

return value: void (no return value)

Only reasonable together with a preceeding call of FFT_init().

The function FFT() consists of the two functions FFT_init() and FFT_calc().

FFT _calc_DX() is a special version of FFT_calc(), which is optimized for the T10 processor. It can be
used also for the T9 processor, but there will be no optimization effect with the T9. FFT_calc_DX()
may only be used, if the arrays are declared in the external memory (‘“DRAM_EXTERNY) (= default).
The needed CPU- time is ca. 49 ms at a 2048 point FFT for the T10 processor, compared to ca. 53 ms
with FFT _calc() (Remark: BOTH time measurements done with arrays in DRAM_EXTERN).

Example (for all ADwin- systems with T9 or T10 processor) :

Sampile file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt_DX.bas

FFT eng.doc 11

