
FFT_eng.doc 1

ADwin
FFT (Fast Fourier Transform) Library

for ADwin Systems with ADSP processor (T9, T10)

Version 4.01

January 2004

Important hint :
• For the reason of correct working of this library, it is neccessary to have at least ADbasic Version

3.20.01 or newer.

FFT_eng.doc 2

Table of contents

FFT... 3
FFT_mag.. 5
FFT_scale .. 6
FFT_phase... 8
FFT_mag_scale... 9
FFT_init.. 10
FFT_calc .. 10
FFT_calc_DM .. 11
FFT_calc_DX ... 11

FFT_eng.doc 3

FFT
Syntax: return_value = FFT(real, img, result_real, result_img,
 help_array1, help_array2, number)

parameter: type: size : description :
real: float array number real part of the original data
img: float array number imaginary part of the original data
result_real: float array number*4 real part of the Fourier transformed data
result_img: float array number*4 imaginary part of the Fourier transformed data
help_array1: float array number*4 (memory for internal calculations)
help_array2: float array number*4 (memory for internal calculations)
number: long number of points for the FFT (must be a

multiple of the number 2)
return_value: void (no return value)

Does a Fast Fourier Transform for a complex dataarray.
• The result of the FFT is not scaled onto the size of the components of the original data. If a scaling

is necessary, there has to be called in addition the function FFT_scale() .
• Though the transformed data are stored in arrays of the size number*4 , the valid data are located

in the array- elements 1 to number/2. (The other elements are used for internal calculations).
• Scaling (normalization) of the frequency- axis :

If the original data was made up of a sampled signal with the total sampling time of “T_total“ , it is
possible to scale the frequency- axis by :
The first element of the transformed data- arrays corresponds to the frequency 0 Hz.
The last valid element (at position number/2) corresponds to the frequency
 f = (number / 2 – 1) / T_total
The i -th element corresponds to the frequency = (i – 1) / T_total
(Remark : The factor (i – 1) is caused by the fact, that arrays are starting always with element 1,
not with element 0).
In the example below the element 1024 corresponds to a frequency of (1024 – 1) / 0.1 s = 10230
Hz.

• For the reason of getting correct results, the frequency components of the original data should be
within the following range : fmin = samplingfrequency / number
 fmax = samplingfrequency / 2 (because „Aliasing“)

Example (for ADwin- GOLD or L16) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_demo.bas

Description :
If a sine-wave signal of 1000 Hz is connected to the analog input 1, there will be found a maximum
each at DATA_3[101] and DATA_4[101] .

Hint:
• If number will not be modified on multiple calls of FFT() , the needed CPU- time can be reduced by

using the functions FFT_init() and FFT_calc() instead of FFT() .

FFT_eng.doc 4

Hint to all functions of the FFT- library :
• Declaring the arrays in the internal memory (“DM_LOCAL“) reduces the amount of the needed

CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).
• It is necessary, that the FFT- library functions are called either in a low priority process or in the

FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT_eng.doc 5

FFT_mag
Syntax: return_value = FFT_mag(real, img, result_mag, number2)

parameter: type: size : description :
real: float array number real part of the original data
img: float array number imaginary part of the original data
result_mag: float array number2 result : magnitude of the complex data
number2: long number of the data elements to be converted
return_value: void (no return value)

Converts a complex dataarray into an array, which contains the magnitudes of the complex elements.
• The magnitude of each element is calculated with the formula : result_mag[i] = SQRT(real[i]2 +

img[i]2)
• Because the result of the function FFT() is a complex spectrum, this function FFT_mag() is an

alternative way of displaying the result of the FFT() as a magnitude function (optionally together
with the phase function FFT_phase()) .

• If this function is applied to the result of the function FFT() , number2 should be =
number_FFT_points / 2 .

Example (for ADwin- GOLD and L16) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_mag_demo.bas

Description :
If a sine-wave signal of 1500 Hz is connected to the analog input 1, there will be found a maximum at
DATA_5[151] .

Hint to all functions of the FFT- library :
• Declaring the arrays in the internal memory (“DM_LOCAL“) reduces the amount of the needed

CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).
• It is necessary, that the FFT- library functions are called either in a low priority process or in the

FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT_eng.doc 6

 FFT_scale
Syntax: return_value = FFT_scale(unscaled, result_scaled, number2)

parameter: type: size : description :
unscaled: float array number2 (unscaled) data
result_scaled: float array number2 result: scaled data
number2: long number of the data elements to be scaled

(must be = number_FFT_points / 2)
return_value: void (no return value)

Scales the result of a FFT, because the function FFT() does not scale to the size of the components of
the original data.
• This function is based on the formula :

For i <> 1 : result_scaled[i] = unscaled[i] / number2
For i = 1 : result_scaled[1] = unscaled[1] / (number2 * 2)

• number2 must be = number_FFT_points / 2 .
• This function does NOT scale (normalize) the frequency- axis of the spectrums (please see the

comments to the function FFT()).

Example (for all ADwin- systems with T9 or T10 processor) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo.bas

Description :
The program generates internally a frequency of 60 Hz with the amplitude 0.7 (unitless). Onto this
frequency another frequency of 30 Hz with the amplitude 1.0 and a constant offset of 1.5 is overlayed.
After calling the functions FFT(), FFT_mag() and FFT_scale() we get the following spectrum :

DATA_6[7] = 1 (60 Hz)
DATA_6[4] = 0.7 (30 Hz)
DATA_6[1] = 1.5 (constant offset)
DATA_6[all other elements] = 0

Remark : All amplitudes of the shown frequencies correspond exactly to the sizes of the components
of the original data.

FFT_eng.doc 7

Hint to all functions of the FFT- library :
• Declaring the arrays in the internal memory (“DM_LOCAL“) reduces the amount of the needed

CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).
• It is necessary, that the FFT- library functions are called either in a low priority process or in the

FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT_eng.doc 8

FFT_phase
Syntax: return_value = FFT_phase(real, img, result_phase, number2)

parameter: type: size : description :
real: float array number2 real part of the complex data
img: float array number2 imaginary part of the complex data
result_phase: float array number2 result : phase of the complex data
number2: long number of the data elements to be converted
return_value: void (no return value)

Converts a complex dataarray into an array, which contains the phase of the complex elements.
• The phase of each element is calculated with the formula :

If real[i] >= 0 : result_phase[i] = ARCTAN(img[i] / real[i])
If real[i] < 0 : result_phase[i] = ARCTAN(img[i] / real[i]) + PI

(A detailled listing of this formula can be found in the file : math.inc)
• Because the result of the function FFT() is a complex spectrum, this function FFT_phase() is an

alternative way of displaying the result of the FFT() as a phase function (optionally together with
the magnitude function FFT_mag()) .

• If this function is applied to the result of the function FFT() , number2 should be =
number_FFT_points / 2 .

Example (for all ADwin- systems with T9 or T10 processor) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_phase_demo.bas

Description :
This program generates internally two frequencies with 30 Hz. The second frequency has a phase
displacement of PI / 2 . Both signals are sampled synchronously. After calling the functions FFT(),
FFT_mag(), FFT_scale() and FFT_phase() separately for each signal, we get spectrums with the
following characteristics :

DATA_6[4] = 1 (30 Hz)
DATA_6[all other elements] = 0
DATA_7[4] = -0.018410 (phase = ca. 0)

DATA_26[4] = 1 (30 Hz)
DATA_26[all other elements] = 0
DATA_27[4] = 1.552389 (phase = ca. PI / 2)

Remark : The phase of all other elements is NOT defined (i.e. is probably not 0).

Hint to all functions of the FFT- library :
• Declaring the arrays in the internal memory (“DM_LOCAL“) reduces the amount of the needed

CPU- time (ca. 23 ms compared to ca. 35 ms at a 1024 point FFT for T9 processor).
• It is necessary, that the FFT- library functions are called either in a low priority process or in the

FINISH section or in the LOWINIT section (FINISH and LOWINIT sections are also executed with
low priority). Otherwise the FFT would interrupt / block the communication to the ADBasic system
for a too long time, causing an error.

FFT_eng.doc 9

FFT_mag_scale
Syntax: return_value = FFT_mag_scale(real, img, result_m_s, number2)

parameter: type: size : description :
real: float array number real part of the original data
img: float array number imaginary part of the original data
result_m_s: float array number2 result : scaled magnitude of the complex data
number2: long number of the data elements to be converted
return_value: void (no return value)

This function is a combination out of FFT_mag() and FFT_scale() and therefore a little bit faster than
calling those two functions.

Example (for all ADwin- systems with T9 or T10 processor) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT_eng.doc 10

FFT_init
Syntax: return_value = FFT_init(help_array1, help_array2, number)

parameter: type: size : description :
help_array1: float array number*4 (memory for internal calculations)
help_array2: float array number*4 (memory for internal calculations)
number: long number of points for the FFT (must be a

multiple of the number 2)
return_value: void (no return value)

Only necessary and reasonable together with a succeeding call of FFT_calc() or FFT_calc_DM(), etc.
The function FFT() consists of the two functions FFT_init() and FFT_calc().
FFT_init() is reasonable, if the Fast Fourier Transform has to be performed several times. Then
FFT_init() has to be called just for one time.
But, the parameter number has to have the same value on all calls of FFT_init() and FFT_calc().

Example (for all ADwin- systems with T9 or T10 processor) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT_calc
Syntax: return_value = FFT_calc(real, img, result_real, result_img,
 help_array1, help_array2, number)

parameter: type: size : description :
real: float array number real part of the original data
img: float array number imaginary part of the original data
result_real: float array number*4 real part of the Fourier transformed data
result_img: float array number*4 imaginary part of the Fourier transformed data
help_array1: float array number*4 (memory for internal calculations)
help_array2: float array number*4 (memory for internal calculations)
number: long number of points for the FFT (must be a

multiple of the number 2)
return_value: void (no return value)

Only reasonable together with a preceeding call of FFT_init().
The function FFT() consists of the two functions FFT_init() and FFT_calc().
FFT_calc() is reasonable, if the Fast Fourier Transform has to be performed several times. Then
FFT_init() has to be called just for one time.

Example (for all ADwin- systems with T9 or T10 processor) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT_eng.doc 11

FFT_calc_DM
Syntax: return_value = FFT_calc_DM(real, img, result_real, result_img,
 help_array1, help_array2, number)

parameter: type: size : description :
real: float array number real part of the original data
img: float array number imaginary part of the original data
result_real: float array number*4 real part of the Fourier transformed data
result_img: float array number*4 imaginary part of the Fourier transformed data
help_array1: float array number*4 (memory for internal calculations)
help_array2: float array number*4 (memory for internal calculations)
number: long number of points for the FFT (must be a

multiple of the number 2)
return_value: void (no return value)

Only reasonable together with a preceeding call of FFT_init().
The function FFT() consists of the two functions FFT_init() and FFT_calc().
FFT_calc()_DM is a special version of FFT_calc(), which is optimized for the T10 processor. It can be
used also for the T9 processor, but there will be no optimization effect with the T9.
FFT_calc()_DM may only be used, if the arrays are declared in the internal memory (“DM_LOCAL“).
The needed CPU- time is ca. 11 ms at a 1024 point FFT for the T10 processor, compared to ca. 14 ms
with FFT_calc() (Remark: BOTH time measurements done with arrays in DM_LOCAL).

Example (for all ADwin- systems with T9 or T10 processor) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt.bas

FFT_calc_DX
Syntax: return_value = FFT_calc_DX(real, img, result_real, result_img,
 help_array1, help_array2, number)

parameter: type: size : description :
real: float array number real part of the original data
img: float array number imaginary part of the original data
result_real: float array number*4 real part of the Fourier transformed data
result_img: float array number*4 imaginary part of the Fourier transformed data
help_array1: float array number*4 (memory for internal calculations)
help_array2: float array number*4 (memory for internal calculations)
number: long number of points for the FFT (must be a

multiple of the number 2)
return_value: void (no return value)

Only reasonable together with a preceeding call of FFT_init().
The function FFT() consists of the two functions FFT_init() and FFT_calc().
FFT_calc_DX() is a special version of FFT_calc(), which is optimized for the T10 processor. It can be
used also for the T9 processor, but there will be no optimization effect with the T9. FFT_calc_DX()
may only be used, if the arrays are declared in the external memory (“DRAM_EXTERN“) (= default).
The needed CPU- time is ca. 49 ms at a 2048 point FFT for the T10 processor, compared to ca. 53 ms
with FFT_calc() (Remark: BOTH time measurements done with arrays in DRAM_EXTERN).

Example (for all ADwin- systems with T9 or T10 processor) :
Sample file :
C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo_opt_DX.bas

