
ADbasic
Real-Time Development Tool for

ADwin Systems

ADbasic Version 4.20

April 2006

License Key: .

ADwin - the fastest real-time systems under Windows

II ADbasic 4.20, Manual April 2006

ADwin

Table of contents

ADbasic 4.20, Manual April 2006 III

ADwin
Table of contents

 Table of contents. III

 Preface . 1

 Conventions . 3

1 Introduction . 5

2 Development Environment . 7
2.1 Basic Steps. 7
2.1.1 Start the Development Environment 7
2.1.2 Load the ADwin Operating System 7
2.1.3 Basic Elements of the Development Environment 8

2.2 Working with Source Codes and Projects. 10
2.2.1 Structured Display of Source Code 10
2.2.2 Context Menu in the Source Code Window 12
2.2.3 Managing Projects . 13

2.3 Menus and Dialog Boxes . 13
2.3.1 File Menu . 14
2.3.2 Edit Menu . 15
2.3.3 View Menu . 15
2.3.4 Build Menu . 15
2.3.5 Options Menu . 17
Compiler Options Dialog Window 17
Process Options Dialog Window 19
Settings Dialog Window. 21

2.3.6 Debug Menu . 25
Enable Timing Analyzer Option 25
Show timing information Menu Item 25
Trace Setup ...… Menu Item. 28
Show Trace Menu Item . 29
Debug mode Option . 30
Show Debug Window Option . 32

2.3.7 Tools Menu . 32
2.3.8 Window Menu . 33
2.3.9 Help Menu . 33
2.3.10 Project Window . 34
2.3.11 The Parameter Window . 35

Table of contents

IV ADbasic 4.20, Manual April 2006

ADwin
2.3.12 The Process Window . 36
2.3.13 Info window . 37
2.3.14 Status Bar . 38

2.4 ADtools . 38

3 Programming Processes . 41
3.1 Program Design . 41
3.1.1 The Program Sections . 43
3.1.2 Other Program Parts . 43

3.2 Variables and Arrays . 44
3.2.1 Overview . 44
3.2.2 Data Structures . 45
3.2.3 Data Types . 46
3.2.4 Entering Numerical Values . 47
3.2.5 Global Variables (Parameters) . 47
3.2.6 Global Arrays . 48
3.2.7 System Variables . 50
3.2.8 Local Variables and Arrays . 50

3.3 Variables and Arrays – Details. 51
3.3.1 Variables and Arrays in the Data Memory 51
3.3.2 Memory Areas . 52
3.3.3 2-dimensional Arrays . 53
3.3.4 The Data Structure FIFO . 54
3.3.5 Strings . 56

Normal Assignment. 57
Character Assignment with the Escape Sequence. 58
String Assignments that are NOT Recommended 59

3.4 Expressions . 59
3.4.1 Evaluation of Operators . 59
3.4.2 Type Conversion . 61

3.5 Decision structures, Loops and Modules 62
3.5.1 Subroutine and Function Macros 63
3.5.2 Include-Files . 64
3.5.3 Libraries . 64

4 Optimizing Processes . 67
4.1 Measuring the Processing Time . 67
4.2 Useful Information . 68
4.2.1 Accessing Hardware Addresses 68
4.2.2 Constants instead of Variables . 68

Table of contents

ADbasic 4.20, Manual April 2006 V

ADwin
4.2.3 Faster Measurement Function . 69
4.2.4 Setting Waiting Times Exactly . 69
4.2.5 Using Waiting Times . 71
4.2.6 Optimization with Processor T11 73

4.3 Debugging and Analysis . 73
4.3.1 Finding Run-time Errors (Debug Mode) 74
4.3.2 Check the Timing Characteristics (Timing Mode) 74

Checking Number and Priority of Processes 75
Optimal Timing Characteristics of Processes 76

4.3.3 Track the Process Flow (Trace Mode) 77

5 Processes in the ADwin Operating System. 81
5.1 Process Management . 82
5.1.1 Types of Processes . 82
5.1.2 Processes with High-Priority . 83
5.1.3 Processes with Low-Priority . 83
5.1.4 Communication Process . 84

5.2 Time Characteristics of Processes 84
5.2.1 Processdelay . 84
5.2.2 Precise Timing of Process Cycles 86
5.2.3 Low-Priority Processes with T11 86
5.2.4 Workload of the ADwin System 88
5.2.5 Different Operating Modes in the Operating System . . . 88

5.3 Communication . 89
5.3.1 Data Exchange between Processes 89
5.3.2 Communication between Computer and ADwin System 90
5.3.3 The Device Number . 91
5.3.4 Communication with Development Environments 91

Table of contents

VI ADbasic 4.20, Manual April 2006

ADwin
6 Instruction Reference . 93

6.1 Instruction Syntax . 93
6.2 Instructions for L16, Gold, Pro . 94
6.3 ADwin-Gold and ADwin-light-16. 225
6.4 ADwin-light-16 DIO1/2 / ADwin-Gold CO1. 255
6.5 ADwin-Gold-CAN . 317
6.6 ADwin-light-16 Rev. B . 359
6.7 FFT Library . 367

7 How to Solve Problems? . 385

 Appendicies . A-1
A.1 Short-Cuts in ADbasic . A-1
A.2 ASCII-Character Set . A-2
A.3 Baud rates for the CAN Bus . A-3
A.4 License Agreement . A-8
A.5 Command Line Calling . A-11
A.6 Obsolete Program Parts . A-16
A.7 Index . A-23
A.8 Instructions for ADwin-Gold systems. A-39
A.9 Instructions for ADwin-light-16 systems. A-43
A.10 Instructions for ADwin-Pro systems. A-47
A.11 Instructions in this manual . A-49

Preface

ADbasic 4.20, Manual April 2006

ADwin

1

Dear Reader,

ADbasic 4 is the programming tool for your ADwin system that allows you to
create special measurement, open-loop, or closed-loop control application.
The purpose of this manual is to: introduce you to the basics of programming
real-time processes for the ADwin system; and act as a reference manual for
the ADbasic 4 programming language.

These are new features of ADbasic 4:
New, more clearly-structured user interface, the new project management of
source codes and an online-help. Debug functions are a new means for easy
trouble shooting.
But most of all the compiler now supports the T10 and T11 processors.

A new section has been added to the manual. The instruction reference now
contains commands for the ADwin-Gold and ADwin-light-16 systems which
are available when using special include files.
For the ADwin-Pro systems, only the instructions in chapter 6.2 apply. All other
instructions are described in the "ADwin-Pro System Description, Program-
ming in ADbasic" manual.

Chapters 1 and 3 are recommended for first-time users of ADbasic in order to
get easily into the subject. This manual assumes that the user has some pro-
gramming experience with Basic or any other language. An introduction to the
programming of ADwin systems and example programs can be found in our
"ADbasic Tutorial and Programming Examples" manual.

Chapter 2 describes the new development environment and is recommended
for all users.

If you would like to provide us with suggestions on how to improve our docu-
mentation, don’t hesitate to contact us. Your inputs will be greatly appreciated
and will help us provide a system which everyone can easily understand and
operate.

We wish you great success upon programming your ADwin systems.

For further questions, please, call our support hot-line (see address in the
manual’s cover page).

Preface

Preface

ADbasic 4.20, Manual April 2006

ADwin

2

Conventions

ADbasic 4.20, Manual April 2006

ADwin

3

Conventions
In this manual the following typographical conventions and icons are used:
This "attention" icon is located next to paragraphs with important information
for correct function and error-free operation.
A note provides topics of interest and advice for an efficient operation.
The "information" icon refers to additional information in the manual or other
sources (documentation, data sheets, literature etc.).
The light bulb icon denotes examples showing practicable solutions.
The Courier font-type is used for text displayed on screen, e.g in windows
or menus, or input via the keyboard. The names of menus and submenus are
shown similarly: Menu submenu.
File names and path names are additionally emphasized as follows
<path\xx.ext>.
Source code elements such as INSTRUCTIONS, variables, comments and
any other text are displayed in the same way as the default settings of the
development environment editor.
Key names are set in square brackets and in small capitals such as [RETURN]
or [CTRL].
The bits of a data word (here 16-bit) are numbered through as follows:

Numbers not indicated in decimal notation have an identifying letter added,
e.g. for the number 17:

– Hexadecimal notation: 11h

– Binary notation: 10001b

Bit no. 15 14 13 … 01 00

Value of the bit 215 214 213 … 21=2 20=1

Name MSB - - - - LSB

Conventions

ADbasic 4.20, Manual April 2006

ADwin

4

Introduction

ADbasic 4.20, Manual April 2006

ADwin

5

1 Introduction
The ADwin system is responsible for all time-critical tasks in fast dynamic test
stands and industrial production facilities. For this task, the ADwin system is
programmed with the ADbasic development tool.
To hit the target of an immediate and efficient start of programming, we first of
all would like to shortly explain the concept of the ADwin system.
All ADwin systems have a central processing unit (CPU), which executes all
time-critical tasks such as: measurement data acquisition, open-loop and clo-
sed-loop control or online processing of measurement data in real-time. Ana-
log and digital inputs and outputs as well as add-ons like counters and bus
systems are connected to the test stand. Ethernet or USB set up the commu-
nication with a computer.
The processor of the ADwin system is programmed with the real-time
development tool ADbasic, which enables easy construction of time-critical
real-time processes. ADbasic is an integrated development environment
under Windows with capabilities of online debugging. The familiar BASIC
command syntax has been expanded with more functions which are used for
accessing the inputs and outputs, controlling real-time processes, and prepa-
ring the data exchange with the computer. chapter 3 explains the design of
ADbasic programs.
An ADbasic with only a few lines can:

– Acquire measurement parameters up to sampling rates of 800kHz

– Develop fast digital controllers with sampling rates of up to 400kHz

– Simultaneously generate and measure analog signals, e.g. for dyna-
mic measurement of a test stand characteristic

the running of processes in the operating system.
Source code generated using the extended BASIC syntax of the ADbasic
environment programs the hardware of your ADwin system enabling the
implementation of tasks into processes. chapter 3 describes how to build pro-
grams.
Executable binary code, generated from the source code using the integrated
compiler, is transferred to the ADwin system and tested. ADbasic is also a tool
which aids in process monitoring, error detection, and program optimization
(see chapter 2).
ADbasic is no longer needed once the real-time processes are running pro-
perly.
A user interface running on the computer transfers the generated binary code

Introduction

ADbasic 4.20, Manual April 2006

ADwin

6

to the system, starts, controls and stops the processes, and controls and moni-
tors the processes and process data of the ADwin system.
Although the ADwin system operates independently of the computer, global
variables and arrays are accessed through the user interface, without delaying
time-critical processes.
A clear separation between real-time processes in the ADwin system and the
user interface on the computer guarantees a high operating reliability and a
good timing.
Under Windows, a DLL or ActiveX-interface enable access to the ADwin
system from several programs simultaneously.
Based on this, drivers for .NET as well as for many development environments
are available which help in creating a user interface, e.g. Delphi, Visual-Basic,
C#.NET, Visual-C++. Optionally, measurement packages such as TestPoint,
LabVIEW, Diadem, HP-VEE, Intouch and Matlab can be used.
Finally, there are also drivers for the platforms Linux and Java.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

7

2 Development Environment
Processes for the ADwin systems are quickly and easily programmed with the
ADbasic development environment. The ADbasic compiler works with an
enlarged BASIC syntax and generates binary files, which may be executed
and transferred to the ADwin system even without the development environ-
ment.

2.1 Basic Steps

2.1.1 Start the Development Environment
The ADbasic development environment is started by selecting Programs
ADwin ADbasic 4 from the Windows start menu.
The environment will appear with the Windows-specific elements such as win-
dows, menu bar and tool bar.
The ADwin system and processor are set in the menu Options\Compiler.
The development environment saves the settings so that upon a new start of
ADbasic they will not need to be entered again, unless a different ADwin
device is used.

2.1.2 Load the ADwin Operating System
The ADwin operating system is loaded to your ADwin system by clicking
(= boot).
The booting process must be repeated each time the ADwin system is powe-
red up, after a power failure, or when the computer recognizes a communica-
tion error which has interrupted the communciation with the system.
The contents of the program and data memories on the ADwin system will be
lost and all global parameters set to the value 0 when the operating system is
booted.
An appropriate operating system for each processor type is needed and can
be found in the corresponding file ADwin*.btl, (* stands for the processor
type). The development environment uses the information from the Options
\ Compiler menu setting to determine which of the files to use during the
boot process.
The files ADwin*.btl are saved during installation in the directory
<C:\ADwin> (standard installation).

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

8

2.1.3 Basic Elements of the Development Environment
The development environment consists of several bars and windows (see
fig. 1); The dimensions of the windows may be individually adjusted.
Context-sensitive help for an element of the development environment (win-
dow, icon, menu option), is available when the button is clicked prior to
clicking the desired element.

Fig. 1 – Elements of the ADbasic development environment

The instructions for the development environment can be found in:

– The tool bar (see fig. 2)

– The context menus of the windows (right mouse button)

– The menu bar (the definition of the instruction appears at the left side
of the status bar when a menu instruction is marked).

Source code
status bar

Project window

Tool bar

Title bar

Parameter
window

Menu bar

Info window

Status bar

Source code window
(editor)

Processdelay DeviceNo

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

9

Fig. 2 – The tool bar

An instruction is selected when a menu field is clicked with the left mouse but-
ton, or when the keys [ALT] + [FIRST LETTER] of the corresponding menu, are
pressed. Some instructions have short-cuts (see Appendix A.1), which are
displayed in the menus.
Each process is edited in its own source code windows. Several windows may
be opened at the same time; the sizes of the windows can be individually adju-
sted. More information about the relevant source code window is displayed at
various other locations:

– The title bar shows the names of the open source code window.

– The source code status bar displays the process options that have
been set.
A right-click on the bar opens the Process Options Dialog Window.

– The global parameters used in the sorce code project are highlighted
in the parameter window (s. chapter 2.3.11, page 35) by clicking .

– The info window displays the compiler’s error messages (highlighted in
red) and warnings (see chapter 2.3.13 "Info window").

The name of an open project and the corresponding source code files are
shown in the project window, otherwise it is empty if no project is open.
Some parameters of the ADwin system are continuously updated and dis-
played (only when communication has been established by the computer with
the system):

– The Processdelay (process cycle time) for the process number of the
active open source code window, displayed at the right side of the tool-
bar.

New file Save file

Open
existing file

Start
process

Stop
process

Compile

Print file

Context
sensitive

help

Update
system

information

Boot
ADwin system

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

10

– The values of the global variables in the parameter window; a change
to one of these values will immediately be transferred to the ADwin
system.

– Memory usage information, which appears in the status bar (see
chapter 2.3.14).

Information about running processes are shown in separate windows:

– Process timing: Timing window (page 25)

– Run-time errors: Debug window (page 30)

– Process flow: Trace window (page 29)

2.2 Working with Source Codes and Projects
A separate source code window must be opened for each process (using
File New).
The editor and the compiler do not bother about upper or lower case letters.
However, in the examples throughout this manual - for the purpose of better
differentiation - upper case letters are used for instructions and global vari-
ables and lower case letters for local variables and remarks.
For help with an ADbasic instruction, highlight the instruction in the source
code and press [F1] to open the online help window with the appropriate infor-
mation.
Numerical values may be entered in hexadecimal, binary and exponential
notation, as well as in decimal (see also chapter 3.2.4).

2.2.1 Structured Display of Source Code
Once a command line is written, the editor will automatically change the color
of the instruction words, variable names and array names, while indenting the
lines to give a clear structure. This aids in finding text positions, which is useful
in longer source codes.
The editor divides the character strings you have entered, into the following
syntax categories:

– Standard: General program text

– Comment: Notes and comments

– KEYWORD: ADbasic instructions

– EXTERNAL KEYWORD: Instructions from include and library files

– Identifier: Names of variables and arrays

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

11

The color design and the indention may be changed or completely deactiva-
ted. Select the Syntax Color Sheet or the Editor Sheet from the Opti-
ons Settings dialog box.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

12

2.2.2 Context Menu in the Source Code Window
Various help functions are available from the context menu by right-clicking in
the source code window (see below).

Fig. 3 – Context menu for the source code window

Once the cursor has been set to the specified program line, or the lines them-
selves have been highlighted, the following instructions of the context menu
can be used:

– Comment Block inserts a comment character at the beginning of each
line making those lines ineffective.

– Indent shifts the lines one tab stop to the right, while Outdent shifts
the lines one tab stop to the left, allowing the source code to become
more clearly-structured.

– Mark Control block highlights the text of a control structure.
Unmark Control block removes the highlighting of a control struc-
ture that has already been marked The recognized control structures
are as follows:

• DO … UNTIL
• FOR … TO … {STEP} … NEXT
• IF … THEN … {ELSE} … ENDIF
• SELECTCASE

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

13

– Enable Trace enables the lines for the Trace Mode, marking them
with a question mark "?" (see also chapter 4.3.3 on page 77).
Disable Trace disables the lines again and removes the question
marks.

2.2.3 Managing Projects
One project can manage many process source codes, for instance an appli-
cation with several processes. Only one project can be open at a time.
A project allows the user to:

– Include/remove source code files in an open project

– Open all included source code files simultaneously with the saved win-
dows settings

– View all global variables used in the project (see chapter 2.3.11 on
page 35)

– Save previously used window settings
Some of these project-related capabilites can be accessed via context menu
by right-clicking in the project window (see "Project Window", page 34). All
other project instructions can be found in the menu File.
Please take into account that opening a project will cause other open source
code texts to be closed. If there are unsaved files you are prompted to save
these files before closing them.

2.3 Menus and Dialog Boxes
The menu bar contains these menus:

– File: Manage files and projects (page 14)

– Edit: Edit source codes (page 15)

– View: Show windows and bars (page 15)

– Build: Tool for generating executable programs (page 15)

– Options: Program settings (page 17)

– Debug: Tools for error detection (page 25)

– Tools: Various help functions (page 32)

– Window: Arrange source code windows (page 33)

– Help: Help, version and license information (page 33)

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

14

2.3.1 File Menu

The File menu contains instructions for
managing files and projects.
Files can be opened, saved, or new source
code windows can be created. Although
multiple source code windows may be open
simultaneously, no more than ten proces-
ses may be loaded to the ADwin system at
the same time.
The Open all Includes menu option
opens all files included in the open source
code using the #INCLUDE instruction.
Projects can also be opened, saved and
created in the same way as files with the
exception that no more than one project
can be open at the same time. More
instructions are available in the project win-
dow (see chapter 2.3.10).
The print functions can also be found in the
menu.
Under Recent Files and Recent Pro-
jects a list of previously opened files and
projects is displayed.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

15

2.3.2 Edit Menu

2.3.3 View Menu

With Restore Default Layout, the default layout, which was active at the
initial starting of the ADbasic program, can be restored with a single mouse-
click.

2.3.4 Build Menu

The menu Edit contains the edit functions, in
accordance with the standard Windows conventi-
ons.
Moreover the menu offers functions for searching
and replacing (Find and Replace).
Unforeseen errors may occur when inserting cha-
racters or program lines from other programs with
"Cut and Paste" into the source code, and there-
fore is not recommended.

In the View menu you may open or
close

– the process window

– the toolbar.
You find further information about the
process window in chapter 2.3.12 on
page 36, about the toolbar see fig. 2.

With the Build menu, the active source code can
be compiled into

– a process using Compile

– a binary file using Make Bin File

– a library using Make Lib File

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

16

Compile is the most comprehensive instruction: It compiles the source code,
transfers the generated binary file as process to the ADwin system and
starts the process.

The process is only started automatically if the Autostart option, in
the Options\Compiler menu, is set to Yes. Otherwise, the process
can be started with the button in the toolbar or process window.

If the compiler detects errors or critical sequences in the source code,
the appropriate line is marked red.

While compiling, sometimes the message "Wait for stop" appears:

The message "Wait for stop" appears, if a process on the ADwin sy-
stem must be stopped to be able to load the compiled process. You
may stop loading the compiled process with CANCEL; you start a new
try to compile and load the pocess with "Compile".

Make Bin File is only available for licensed ADbasic users. It compiles the
active source code into a binary file and saves it automatically. The file is
stored in the directory of the source code file, but with the extension
<.Txn>. The x denotes the processor type and n the process number
(see Options Menu, Process Options Dialog Window).

A binary file with the extension <*.TA3> can be transferred to an
ADwin system equipped with a T10 processor, which administers it as
Process 3. Binary files can be transferred to the ADwin system from
development environments such as C or Visual Basic (see
chapter 5.3.4 on page 91).

Make Lib File is also available for licensed ADbasic users only. It compiles
the active source code into a binary file and automatically saves it as
library file. The library is stored in the same directory and with the same
name as the source code file, but with the file extension .LIx. (where x
denotes the processor type.)
Afterwards the library can be included into other source codes that use
their functions and subroutines (see chapter 3.5.1 on page 63).

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

17

2.3.5 Options Menu

Compiler Options Dialog Window
The parameters in this dialog window are used in every source code compi-
lation. In particular they provide information about the ADwin system on which
the compiled source codes are to be executed as process.
To compile source codes for different ADwin systems, the parameters need to
be set for each system in the dialog window.

Fig. 4 – The Compiler Options Dialog Window

In the Options menu a number of options can be
set which will have an immediate effect. For each
menu item a dialog window opens where the set-
tings are entered.

•

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

18

– System, Processor: Select the settings, which correspond to the
ADwin system.

The abbreviation used under Processor for the processor types cor-
responds to the following full names:

Fig. 5 – Processor Names

– Memory: This setting is not applicable for the ADwin-Gold, ADwin-light-
16 and ADwin-Pro systems as from T9 processors and therefore is not
displayed.

For the old transputer systems, read the information in your hardware
manual.

– Device No.: Select the device number with which the ADwin system
can be accessed. The device number is set using the program
<ADconfig.exe>. The default setting is 150 Hex.

With the NONE setting, source code can be compiled for the configured
ADwin hardware, if it is not connected to the computer.

– Load standard processes: This setting is only available for the
ADwin-Gold, ADwin-light-16 systems.

The default setting Yes loads the standard processes 11, 12 and 15
(see chapter 5.1.1) into the ADwin system during the boot process.
Selecting No suppresses the loading of processes 11 and 12.

– Autostart: Selecting Yes causes the binary file, generated and
transferred to the ADwin system during compilaton, to be immediately
started. Selecting No requires the process to be started by clicking the
button in the toolbar or in the process window.

– Remember Device No.: The setting Yes saves the last used Device
No. (see above) on closing ADbasic; the next start-up will automatically
use the saved number. The setting No makes ADbasic start up with the
device number NONE.

Abbreviation T11 T10 T9 T8 T5 T4 T2

Full name ADSP
TS101S

ADSP
21160

ADSP
21062 T805 T450 T400 T225

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

19

Process Options Dialog Window
This dialog window contains the compiler options for the currently opened
source code window; the properties of the process which is to be compiled
from the opened source code and transferred to the ADwin system.
Each process must be configured separately by opening the Process Opti-
ons Dialog Window for each source code window, unless using the default
settings. To quickly open this window do a right-click on the source code’s sta-
tus bar.
Depending on the processor type set in the Compiler Options dialog win-
dow, for T9, T10 or T11 processors, the dialog window shown in fig. 6 is ope-
ned. The dialog window for the T4, T5 or T8 processors differs slightly and is
described in the Appendix A-5.1.

Fig. 6 – The Process Options Dialog Window

– Process: The number under which the transferred process should be
started on one ADwin system, an individual number must be allocated
for each process.

– Eventsource: The event signal that initiates the EVENT: section of
the process.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

20

Timer refers to the internal counter as the event signal whose rate is
determined by the PROCESSDELAY system variable.

External indicates that the event signal is a signal at the event input
of the ADwin system, for instance a sensor impulse. Such a process
will always run with high priority. However the Priority option should
be set to High anyway.

How you can use an external event input in an ADwin-Pro system, is
explained in the ADwin-Pro software documentation under the instruc-
tion EVENTENABLE.

– Priority: The priority of the process. For more information see
chapter 5.1.1 "Types of Processes".

Level (-10…+10) defines the priority within processes with low priori-
ty, so that a process with a higher Level can interrupt those with a lo-
wer level, but not vice versa. A higher number represents a higher
level.

– Optimize: This optimization, which may be used optionally, can
reduce the execution time of the process by up to 20 percent. A higher
setting under Level will lead to shorter execution times.

Under certain circumstances, a process causing unexpected compiler
or run-time errors can be solved by setting a lower optimization level.

– Initial Processdelay: The initial Processdelay (cycle time) with
which the process is to be started.

– Version: An integer value for differentiating between several versions
of a process.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

21

Settings Dialog Window
The Settings Dialog Window has several sheets, which are activated with
the tags in the upper corner.

Editor Sheet

Fig. 7 – The Settings Dialog Window: Editor Sheet

Tabsize indicates the size of the tab stop. Automatic indentation is activated
under the Syntax Color Sheet.
The Extended default names option, when set, automatically saves the file
of any new source code in the format <ADbYYMMDD_nn.bas>, where YYMMDD
is the current date and nn is a two-digit counter number, (nn is set to zero at
each change of the system date).
This option helps in allocating an individual file name, when using numerous
newly generated source codes.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

22

Syntax Color Sheet

Fig. 8 – The Settings Dialog Window: Syntax Color Sheet

The Syntax Color sheet offers the settings for the text colors and emphasis
of the source code window. (see chapter 2.2.1 "Structured Display of Source
Code" on page 10).
For each of the categories any color (Change Color) and the font styles Bold
or Italic can be set.
The structured display of the source code Syntax Color and Autoindent
enabled, is the default setting. The automatic indentation uses the settings
in the Editor Sheet as tab stop size.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

23

Language Sheet

Fig. 9 – The Settings Dialog Window: Language Sheet

The language in which the error messages of the compiler should be dis-
played. Options are either Deutsch (german) or English.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

24

Directory Sheet

Fig. 10 – The Settings Dialog Window: Directory sheet

The Directory sheet contains the directories in which the operating system and
the compiler search for ADbasic files:

– BTL-Directory: The directory in which the development environ-
ment searches for the system files <*.btl>, which are transferred to
the ADwin system during the boot process (see chapter 2.1.2).

– Include-Directory: The directory in which the compiler searches
for include files <*.inc>, which can be included into the source code
using #INCLUDE instruction (without path).

– Lib-Directory: The directory in which the compiler searches for
library files <*.lib>, which can be included into the source code
using IMPORT instruction (without path).

Please note: the path name must always end with a backslash (\).
It is recommend that the default directories are not to be changed. To include
library and include files from other directories, indicate the correct and full path
name in the include instruction.

C:\ADwin\ADbasic\Inc\

C:\ADwin\ADbasic\Lib\

C:\ADwin\

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

25

2.3.6 Debug Menu

Enable Timing Analyzer Option
When the Enable Timing Analyzer option is activated, additional informa-
tion about the timing characteristics of this process are available after compi-
ling a source code. (For display of information see the Show timing
information Menu Item). This option needs approximately 60 clock cycles
(when using a T9, T10 or T11 processor) per event and process additionally
and therefore slightly affects the timing characteristics. We recommend that
the option should only be activated to compile one or only some processes
and should then be deactivated again. These option settings of the processes
are not saved when quitting ADbasic.

Show timing information Menu Item
The Show timing information menu item opens the Timing Informa-
tion window (with activated Enable Timing Analyzer Option only). For
each of the processes 1…10 the window shows 7 parameters, which describe
the timing characteristics of the processes since the moment it has been star-
ted. More detailed information can be found in chapter 4.3.2 "Check the
Timing Characteristics (Timing Mode)".
The parameters can only be used with high-priority processes. In an externally
controlled process the values in the lines 4-6 are not useful and are displayed
as 0 (zero).

The Debug menu offers settings which help in fin-
ding run-time or symantic errors. Please note that
all settings will only be active after the next compi-
lation.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

26

Fig. 11 – The "Timing information" Window

All duration values are counted in clock cycles of 25ns. Length describes the
time a process cycle needs (section EVENT:); this processing time can also
be determined as described in chapter 4.1 "Measuring the Processing Time".
Latency is the time between an event signal (external or generated by inter-
nal timer) and the start of the process cycle, shown in the picture below for the
time-controlled Process 1.

The parameters in the window have the following meaning:

– min. Length: The minimum time measured for a process cycle

– max. Length: The maximum time measured for a process cycle

– ∅ Length: Average time of a process cycle, calculated as mean value
from the last 1000 length values.

This parameter shows with min. Length and max. Length how long
and regular the processing time is for a process cycle. Varying proces-
sing times will arise e.g. when large quantities of data are only evalua-
ted after a longer time period or if conditions (IF, CASE) contain
program sections with very different processing times (loops).

Prozess 2

Prozess 1

Process 1 delay

Latency > 0Latency = 0

LengthLength

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

27

– max. Latency: The maximum measured latency of a process cycle;
only available for timer-controlled processes.

A latency emerges from the occurrence of an event signal while a high-
priority process is running. This happens when the processing time of
a process cycle exceeds its Processdelay. With 2 or more high-priority
processes every now and then process cycles do start time-delayed,
except their processdelays are integer multiples of each other.

The sum of all delays should always average 0; this corresponds to
keeping an average frequency. Moreover, the parameter is important
for processes whose process cycles must run at a precisely pre-de-
fined period in time.

– max. (Latency+Length): The maximum sum of the latency and the
processing time of a process cycle; only available for timer-controlled
processes.

To get optimal timing characteristics, this parameter value should be
lower than the value of the Processdelay; if you can fulfill this condition,
the process does not cause latencies for its process cycles (but nev-
ertheless can do for other process cycles).

– count (Length > Delay): A value indicating how often the proces-
sing time of a process cycle has exceeded the Processdelay; only
available for time-controlled processes. This value should preferably
be zero.

The higher the value, the more frequently the process has caused a la-
tency for its own process cycles (and perhaps for other processes too).
The operating system is continously trying to make up this delay. The
amount of exceeded values gives no information about the loss of
event signals.

– Critical timings: describes how often a condition is fulfilled, which
could signify a lost event signal. The value should definitely be zero.

This parameter has a different meaning depending on the type and
amount of processes (see chapter 5.2.5 "Different Operating Modes in
the Operating System", page 88).

Event signals can be lost under the following circumstances:
• in a single time-controlled high-priority process

(also in combination with the externally controlled process)
• in the externally controlled process (also in combination with one or

more time-controlled processes).

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

28

In several time-controlled processes event signals cannot be lost; the
following condition will nevertheless be counted. Here the parameter
must be interpreted as a poor timing characteristic, which should be im-
proved in any case.

Loosing event signals means that (since the last start of the process)
fewer process cycles have been executed than event signals occurred,
probably the amount fewer which is indicated. Lost event signals can-
not be compensated by the operating system.

A loss of an event signal is equated to the fulfilment of the condition:
• in time-controlled processes:

max. latency+length > 2 × Processdelay
• in externally controlled processes:

When processing the section EVENT: has just been finished, a new
external event signal is already waiting. Any more event signals
having arrived during this processing time will be lost.

Sometimes it happens that, despite a true condition, no event is lost.
Thus, you play it safe reducing the amount of true conditions as far as
possible.

Trace Setup ...… Menu Item

Enter the size of the global array (in LONG values) under Length so that on
the one hand the size of the array is large enough for the trace information and
on the other hand the ADwin system has enough remaining memory for your
process variables.
With the DM_Local option active the values of the global array are stored in
the local memory instead of in the external (see "Memory Areas"). The pro-
cessor accesses data in the smaller (!) local memory essentially faster.

The Trace Setup … menu item opens a con-
figuration window for the trace mode. For more
information about the usage of the trace mode
see chapter 4.3.3 on page 77.
The trace mode will become active when using
the Enabled option.
The input field DataNo indicates in which global
array the process information is stored. Do not
change the setting 239 (for DATA_239) if you
need information about a single process only.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

29

Show Trace Menu Item
The Show trace menu item opens the ADbasic Trace Window (only when
the trace mode is enabled).
The trace window displays the process information left to the source code
lines activated for trace mode. The most important information in the window
is:

The displayed information are stored during run-time into a global array (nor-
mally DATA_239, see Enable Timing Analyzer Option). The development
environment then copies the array contents to the PC and displays them.
Depending on the array size only few or many process cycles (events) can be
stored.
When using the New Values icon in the header line, the current process
information are stored into the global array and then transferred to the PC. The
previous process information are then lost.
For a later comparison the process information can either be stored or the
current screen content can be printed .

Variable value
as result of an
assignment
with "="

Set the value of the
count variable for
the highlighted loop

Number of the
shown process
cycle (Event)

Source code of
macros, may be
hidden

Result of the conditional expression

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

30

Debug mode Option
The Debug mode option, when activated, includes additional security queries
into the process during the compilation of a source code (see also
chapter 4.3.1 on page 74).
Activation of this option increases program execution time as well as the
demand for memory. As a rule this increase has a dimension of approximately
20%, whereas greater values are also possible. Therefore, this option should
only be used during program development.

Fig. 12 – The Debug Errors Window

The window Debug Errors opens when a run-time error occurs in the ADwin
system. The window can be reopened by clicking the Show_Debug_Window
menu option after it is closed.
The operating system corrects run-time errors in a way to obtain a stable state
of operation; this may cause unexpected program results. Certain run-time
errors on Pro II modules will stop the process.
The following table shows which errors are displayed and which corrections
are made.
1
Run-time error Correction

Division by zero The result of a float division is repla-
ced by +3.40282E+38, the result of
a long div is ion is replaced by
+2147483647.

SQRT from negative number The square root’s result is replaced
by the value 0.

Fifo index is no fifo
Fifo number is not in the valid range
1…200

Instruction is not executed:
FIFO_CLEAR , FIFO_FULL ,
FIFO_EMPTY.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

31

For each process only one error is shown (in most cases the error which
occured last), even if the process has generated more run-time errors.
Please note: Using the MEMCPY instruction only the access to the destinatio-
narray will be controlled and corrected; an access to undeclared elements of
the source array will not be detected.

1. Valid for P2_BURST_INIT, P2_BURST_READ, P2_BURST_WRITE

Data index too large / <1
Array index too large / <1
Access to local or global array ele-
ments which are not declared, with
indices that are too large or too
small.

A too small element index (<1) is
replaced by 1, a too large element
index by the greatest dimensioned
element index.

Address of Pro II module is
>15 or <1

The process is stopped.

P2_BURST_xxx1: "startadr"
is not divisable by 4

The process is stopped.

P2_BURST_xxx1: Number of
values is not divisable by 4

The process is stopped.

P2_BURST_INIT: Number of
values is not divisable by 4 /
by 8

The process is stopped.

P2_BURST_READ_UNPACKED1:
Number of values is not divi-
sable by 8

The process is stopped.

P2_BURST_READ_UNPACKED2:
Number of values is not divi-
sable by 4

The process is stopped.

P2_BURST_READ_UNPACKED8:
Number of values is not divi-
sable by 2

The process is stopped.

P2_BURST_READ: Number of
values smaller than 1 / than 4

The process is stopped.

Run-time error Correction

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

32

Show Debug Window Option
Clicking the Show Debug Window option reopens the Debug Errors window
after it has been manually closed. The window opens automatically, the first
time, after a run-time error occurs in the ADwin system.
In either case, the Debug mode option must be activated.

2.3.7 Tools Menu

Clicking this option opens a dialog window requesting the data array index to
be cleared, e.g. 3 for DATA_3. After entering a value and clicking "OK", the
values in the data array will be lost.
The Clear Process menu option deletes a specified process from the
memory. Please note that a process can only be deleted when it is stopped.
The Connect menu option opens a dialog window for configuring the ADser-
ver program settings for setting up a network connection to the ADwin system.
A description can be found in the Appendix A.6.2.
Note: the ADserver program will no longer be updated, so it is recommended
that the ADwin TCPIPserver program be used instead. In this case no confi-
gurations must be made with the Connect menu option.
More information is available in the online help of ADwin TCPIPserver (run
Programs ADwin ADwinTCPIPserver from the Windows start menu).

The Tools menu option calls utility programs.
The Clear Data menu option clears the memory
of the ADwin system, which is used by a specified
DATA array. This is the opposite of the DIM instruc-
tion which allocates memory for an array.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

33

2.3.8 Window Menu

2.3.9 Help Menu

The License key is to be found on the cover sheet of this your ADbasic
manual.
ADbasic will operate in demo mode, if no License key has been entered. In
this mode the development environment only works for demonstration, test or
evaluation purposes.

From the Window menu it is possible to switch bet-
ween different source code windows and arrange
them on the monitor.
The Arrange Icons menu reorders minimized
source code windows which is useful after the
screen resolution has changed.
At the bottom of the menu, there is a list of open
source codes; by clicking one of these menu items
that source code will become the active window.
The active source code is checked; in the example
at right it is ADbasic3.bas.

The online help for ADbasic is accessible from the
Help Topics menu option. The online help is
also accessible using the button or the [F1]
key.
Clicking the About ADbasic menu option opens a
window that displays the version of the develop-
ment environment and the License key. The
license key can be entered or changed by pressing
the Change License button.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

34

2.3.10 Project Window
The project window shows an opened project and the source code files inclu-
ded within it.
In the project window the following actions may be executed:

– Open a source code file and make it the active source code:
• Double-click the file or
• Highlight the file (left mouse button) then select Open from the

context menu (right mouse button).

– Save a source code file:
Highlight the file and select Save from the context menu.

– Delete a source code file from the project:
Highlight the file then

• press the [DEL] key or
• select Remove from Project from the context menu.

– Hide the display of the included files:
Double-click on the project name; a [+] appears at left from the project
name.

The following actions are available from the context menu only:

– Include a source code file into the project:
Select Add to Project from the context menu.

– Include all open source code files into the project:
Select Add Open Files to Project from the context menu.

– Save all open source code files of the project:
Select Save All Files of Project from the context menu.

Fig. 13 – The Project Window with the Context Menu

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

35

2.3.11 The Parameter Window
The parameter window displays a table showing the values of the global para-
meters PAR_1…PAR_80 and FPAR_1…FPAR_80. With the scroll bar at right
you can scroll through the parameters.
When the communication between the computer and ADwin system is active
(icon in the toolbar), the fields in the table are enabled and appear with a
white background color, and display the values of the global parameters. The
values are continuously read out from the system. Fields are disabled and
appear with a grey background color when the communication is inactive (icon

).

Fig. 14 – The parameter window

A parameter’s value (PAR_1…PAR_80) can be displayed in hexadecimal
notation, too (see PAR_5 in fig. 14). Do a right mouse click on the number of
the variable (left of the table field) and enable / disable the option Hexadeci-
mal.
Clicking the button highlights the fields in the table that ar being used in
the active source code and project, using three colors. The colors have the fol-
lowing meaning:

– Green: The parameter is used in the active source
code only.

– Red: The parameter is used in the active source
code, and in another source code of the
project, too.

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

36

The highlighting feature is only available when the communication between
the computer and the ADwin system is set up. This feature uses saved source
codes only; therefore ADbasic requests saving the source code when it has
been changed.

2.3.12 The Process Window
The process window shows information about the processes 1...10 on the
ADwin system, when the communication between the computer and the
system is active (icon in the toolbar). Otherwise the fields are grey.

Fig. 15 – The Process Window

The status (Run or Stop) and process delay (process cycle time) are dis-
played for each of the processes 1 ... 10. The process delay for the active
source code is also displayed in the toolbar. The priority of a process can be
determined by the color of the process number, red = high priority, blue = low
priority. The time units and meaning of the process delay are explained in
chapter 5.2.1 "Processdelay", page 84.

– Blue: The parameter is used in an inactive source
code of the project, and not in the active
source code.

process
delay

red = high
priority

blue = low
priority

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

37

It is also possible to change the process delay in the process window; after a
value has been entered, it will automatically be transferred to the ADwin
system. Please note: the system will overload if process delay values are too
small.
A process can be stopped or restarted using the buttons and in the pro-
cess window. The buttons in the toolbar have the same functions but only con-
trol the process of the active source code window.

2.3.13 Info window
In the info window the compiler messages concerning the current source code
are displayed:

– Error messages (coloured red)

– Warnings

– Status message after compilation

The (successful) status message looks like this:
0 error(s), 0 warning(s)
Process compiled. Codesize: 836 Workspacesize: 8
Stacksize: 20 Byte

The values be used as hints about the required memory:

– Codesize: Size of the created binary file in bytes; the file will be stored
in the program memory (PM) as process.

– Workspacesize: Required memory size in bytes in the local data
memory (DM), being used for

• local variables and arrays
• internal purpose (2 × 4 byte)

Additional memory will be required in the data memory which be cal-
culated manually:

• Each global array requires about fourty byte in the local data
memory (internal purpose).

• Each element of a global array requires 4 byte (in the external data
memory; if the array be declared AT DM_LOCAL, the elements are
stored in the local data memory).

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

38

– Stacksize: Internal stack size, which is used for libraries.
The memory size required in the external data memory (DX) will not be dis-
played.

2.3.14 Status Bar
The status bar is located at the bottom of the ADbasic program window.

– Left side: Information about the last ADbasic action.

– Middle: The current CPU and memory usage of the ADwin system.
This information is displayed, if the communication between the com-
puter and ADwin system is active.

– Right: The current cursor position in the source code window (line and
column); further the keyboard settings CAPS LOCK, NUM LOCK and
SCROLL LOCK.

The displayed information about the CPU/memory usage:

2.4 ADtools
ADtools is a collection of simple utility programs, with which you can display
and change the global variables (Par, FPar) and arrays (Data) of ADwin
systems. These programs aid the development of processes for the ADwin
system by: displaying the status or values, changing them with practical tools,
displaying simple measurement sequences in a graph.
Start one of the ADtools by selecting Programs ADwin ADtools
<Toolname> in the Windows start menu. Open the configuration menu to sel-

– Busy: the processor workload in percent, calculated as:
CPU time / (CPU time + idle time).

– PM: free program memory in bytes.

– EM: free extra memory in bytes (T11 only).

– DM: free internal data memory in bytes.

– DX: free external data memory in bytes.

Last ADbasic
action

CPU and memory usage of the ADwin system Cursor position and
keyboard settings

Development Environment

ADbasic 4.20, Manual April 2006

ADwin

39

ect the style of display and the variables to be displayed, by clicking the right
mouse button.
Each ADtool is its own independent Windows program; each can be started
several times, allowing for comprehensive views of parameters of interest on
the computer monitor. Once an appropriate screen layout is selected, the
whole configuration may be saved and used later.
The following ADtools are available:

All further information about the help programs can be found in the online help,
in the program ADtools.exe.

TDigit Global variable and array values can be displayed and adjusted.

TGraph Global array contents can be displayed in a graph.

TButton Button control for booting the ADwin system, loading, starting or
stopping a process, or setting a parameter value.

TLed Displays the value of a variable by a simulated LED. The LED
can be off, on, blinking slowly or flickering rapidly depending on
the value. An audible alarm can also be set with this tool..

TMeter Global variable and array values can be viewed as an analog
dial.

TPoti Global variable and array values can be adjusted with a potenti-
ometer-style control.

TProcess Start/stop, adjust timing, and display information about the pro-
cesses loaded on the ADwin system.

TPar_FPar All or selected global variables can be displayed or entered.

TFifo Save FIFO array data into a file..

TBin Up to five PAR variables can be displayed in binary (as DIL
switch) and in hexadecimal notation, and adjusted.

ADtools Save and/or load a configuration to/from several ADtools.

ADbasic 4.20, Manual April 2006

ADwin

40

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

41

3 Programming Processes
This chapter provides information about how to build and structure an ADbasic
program and which variables can be used.

3.1 Program Design
An ADbasic program is an ASCII text file created with the editor of the develop-
ment environment, using an extended Basic syntax. The compiler translates
this source code into an executable process for a specific ADwin system.
The source code consists of any number of command lines; each containing
an instruction or assignment (exception see : Colon), with up to 255 (ASCII-)
characters in one line.
ADbasic accepts instructions and variable names in lower and upper case let-
ters (for more clarity all examples use upper case letters for instructions and
global variables).
A program consists of up to 4 sections, which take on different tasks when
executed on the ADwin system. fig. 16 outlines the ideal steps for an ADbasic
program.
Each program must at a minimum, have an EVENT:section.
Optionally functions and subroutines can be defined, as well as libraries and
"include"-files be included.

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

42

Fig. 16 – Design of an ADbasic program

LOWINIT:

Declarations:

INIT:

FINISH:

Macro Functions
and Subroutines

Macro Functions
and Subroutines

Macro Functions
and Subroutines

Library
Functions and
Subroutines

#DEFINE

#INCLUDE

IMPORT

<ADbasic.BAS>

<ADbasic.INC>

<ADbasic.LI?>

Macro Functions
and Subroutines

DIM

EVENT:

Program Design

ADbasic 4.20, Manual April 2006

ADwin

43

3.1.1 The Program Sections
Each of the 4 program sections start with the following terms, as described
below:

– LOWINIT: can only be used within high-priority processes.

When the process starts, this section is executed only once and is used
for initialization, for instance of variables or data I/O lines. It is always
executed prior to the execution of the INIT: section (if there is one)
and at low-priority, level 1.

This section is ideal for extensive initialization sequences, because it
can be interrupted, due to its low-priority.

– INIT: is similar to the LOWINIT: section, as it is executed only once
at the start of the process. However, it will be executed with the priority
that has been assigned for the process (menu item Options /
Process).

This section cannot be interrupted when configured as high-priority
and should therefore be rather short.

– EVENT: is the main program section, which is (characteristically) cal-
led in regular time intervals until it is stopped. This section is triggered
by a cyclic timer event or an external event, depending on the configu-
ration..

– FINISH: is executed only once after a process has been stopped; it
is, therefore, the counterpart to the initialization sections. This section
is always executed at low-priority, level 1.

The LOWINIT:, INIT: and FINISH: sections are optional, while the EVENT:
section is not and must be included in your program.

3.1.2 Other Program Parts

Symbolic definitions
The instruction #DEFINE defines symbolic names. Group all of these definiti-
ons at the beginning of the file and before the start of the 4 program sections.

Arrays and Local Variables
In an ADbasic program the local variables and all arrays must be declared
before they can be used. The global variables PAR_n and FPAR_n are already

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

44

pre-defined and do not need to be declared. Variables and arrays have no defi-
ned contents after being declared, therefore they should be initialized.
Within the process all variables and arrays are available in all program sec-
tions. The global variables and arrays may also be accessed from other pro-
cesses and from the computer, in order to exchange data between the
processes or between the process and the computer.

Macros
A macro function or subroutine call inserts the macro into the program text
where it is being used. However, the macro definition cannot be done within
the 4 program sections. (see fig. 16 on page 42).

Libraries
Libraries must be included before the program sections that use them. Library
functions and subroutines, when used more than once within a program,
require less memory than similar macro functions or subroutines described
above.

3.2 Variables and Arrays

3.2.1 Overview

Data structure Name Data type Notes

Global variables and arrays
Variable PAR_1…PAR_80 LONG Pre-defined,

(Scalar) FPAR_1…FPAR_80 FLOAT not declarable,

System variable PROCESSDELAY LONG memory area DM

PROZESSn_RUNNING LONG

One- or two-
dimensional
array (vector)

DATA_1[][]…
DATA_200[][]

LONG,
FLOAT,
STRING,
FIFO

Name "DATA_" not
changeable, only
declaration of array
number and dimen-
sion.

Local variables and arrays
Variable
(Scalar)

selectable LONG, FLOAT must be declared

One-dimensional
array (vector)

selectable LONG,FLOAT,
STRING

must be declared

Variables and Arrays

ADbasic 4.20, Manual April 2006

ADwin

45

Variables are normally stored in the internal memory DM and arrays in the
external memory DX (memory map, see chapter 3.3.1), if not determined
explicitely.
All data types have a length of 32-bit.

3.2.2 Data Structures
In ADbasic there are two main types of data structures:

The maximum number of variables and array size are limited only by the
memory size of the ADwin system.
The compiler differentiates variables (and arrays) which are

– global:

All processes as well as computer applications can access global vari-
ables, for instance to exchange data.

– local:

Local variables are available only in the process, function, or subrou-
tine where they have been declared.

Nearly all variables and arrays must be declared with the DIM instruction; this
determines the data type, as well as the necessary memory place, and allo-
cates it to the variable name. Global variables PAR_1 … PAR_80 and FPAR_1
… FPAR_80 are already pre-defined, for easier programming, and cannot be
declared.
The compiler recognizes the declaration of global arrays by the names
DATA_n, where "DATA_" is a fixed text and "n" is the array number (1...200)
specified.
After declaration, variables and array elements have an undefined value and
thus should be initialized with a useful value (e.g. zero). Exception: After

– variables (scalars)

Each variable can store one value only.

– arrays, one- or two-dimensional.

An array consists of any user-defined number of array el-
ements, each storing one value.

One-dimensional global arrays DATA_n may also be used
as FIFO (a ring buffer which works according to the prin-
ciple: First in, first out, see chapter 3.3.4 on page 54).

VAR

ARRAY

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

46

power-up of the ADwin system the global variables ar automatically initialized
with zero.

3.2.3 Data Types
The compiler processes the following data types:

– : 32-bit integer values with the ranges:

−2147483648 … +2147483647 (= −231 … +2-31-1).

– : Floating-point values with the ranges:

−3.402823 ⋅ 10+38 … −1.175494 ⋅ 10-38 (negative values, 32 bit)

+1.175494 ⋅ 10-38 … +3.402823 ⋅ 10+38 (positive values, 32 bit)

Note: The value range is not equivalent to the IEEE floating-point for-
mat.

The accuracy is 32 bit, or 40 bit since processor T11 (see below).

Since processor T11 accuracy is 40 bit (value range see below), which
is solely restricted to:

• Calculations inside of the ADwin system.
• Evaluation of constants by the compiler.

The 40 bit accuracy may not be used or displayed on the PC since data
will only be transmitted – for reasons of speed – as 32 bit values bet-
ween PC and ADwin system.

The value range for 40 bit floating-point values is:

−3.402823668 ⋅ 10+38 … −1.175494351 ⋅ 10-38 (negative values)

+1.175494351 ⋅ 10-38 … +3.402823669 ⋅ 10+38 (positive values)

– : ASCII character strings, in which each character is stored as
a single array element (for details see chapter 3.3.5 on page 56). A sin-
gle character corresponds to an integer 8-bit value in the range
0…255.

A data type must be indicated when declaring variables and arrays.
When integer and floating-point values are combined, a type conversion will
occur. Under certain circumstances this may cause calculation results discre-
pancies from expected results. More about this is found in chapter 3.4.2 on
page 61.
The next section illustrates, in which notation a numeral value can be entered.

LONG

FLOAT

STRING

Variables and Arrays

ADbasic 4.20, Manual April 2006

ADwin

47

3.2.4 Entering Numerical Values
You can use 4 different notations in order to enter numerical values. The fol-
lowing examples assign the (decimal) value 93 to a variable x.
For floating-point values the dot "." is used as decimal separator (English
notation).

1. Decimal notation:

Please note the difference: The number 93 has the LONG data type, while the
number 93.0 has the FLOAT data type. This is important when you use both
data types in one expression (see chapter 3.4.2).

2. Expontential notation:

Here 9.3E1 stands for 9.3 × 101, where "E" is followed by the expo-
nent to the basis of 10 (max. 2 decimal places).

3. Binary notation:

4. Hexadecimal notation (an h is added, only):

If the hexadecimal value begins with a letter (A-F), a leading zero (0)
must be added: Instead of "F6h" the value should be written "0F6h",
otherwise the compiler takes the value as the name of a local variable.

3.2.5 Global Variables (Parameters)
All running processes and the computer can access global variables and
arrays; therefore they are ideal for data exchange between the processes or
between the processes and the computer. 80 integer variables, 80 floating-
point variables as well as up to 200 arrays of the LONG or FLOAT data type are
available. All variables and array elements have a length of 32-bit.
The system variables, also globally available, are described on page 50.

x = 93 integer value or

x = 93.0 floating-point value

x = 93E0 integer value or

x = 9.3E1 floating-point value

x = 1011010b add b to tha value; only

x = 5Ah add h to tha value; only

LONG

FLOAT

LONG

FLOAT

LONG

LONG

LONG

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

48

The global variables can be used anywhere in a program without being decla-
red. Since the variables have an undefined value at program start they should
be initialized with a useful value (e.g. zero). Exception: After booting of the
ADwin system the global variables ar automatically initialized with zero.
The global variables are also termed parameters and have the names:

– PAR_1, PAR_2, …, PAR_80 with the LONG data type for 32-bit integer
values.

– FPAR_1, FPAR_2, …, FPAR_80 with the FLOAT data type for floating-
point values.

Example
PAR_5 = 700 'Parameter 5 contains the

'value 700.
PAR_72 = ADC(1) 'The voltage at the analog input 1

'is measured and stored into
'parameter 72.

Contrary to other variables, the global variables, PAR_n and FPAR_n, must not
be declared because they are pre-defined and are already known to the com-
piler.

3.2.6 Global Arrays
The global arrays enable the exchange of data between the processes on the
ADwin system or the computer (see also chapter 5.3.1 "Data Exchange bet-
ween Processes"). Up to 200 arrays of the LONG or FLOAT data type are
available.
Since size and data type are selectable, global arrays must be declared at the
beginning of a program and preferably be initialized, too. (Else the array ele-
ments have undefined values).
The compiler recognizes the declaration of global variables by their names
DATA_n, where "DATA_" is a fixed text and "n" is the array number (1...200).
The names for DATA arrays are:
DATA_1, DATA_2, …, DATA_200.

Other array numbers are not allowed. However, the declaration of non-
sequential array numbers is permissible, for instance DATA_5 without DATA_1
… DATA_4 is allowed. In your program the compiler differentiates the arrays
by their numbers.

Variables and Arrays

ADbasic 4.20, Manual April 2006

ADwin

49

Example
DIM DATA_5[20000] AS LONG
REM Declare the array 5 with 20000 elements of the type LONG.
DIM DATA_3[7][5] AS FLOAT
REM Declare the array 3 with 7×5 elements of the type FLOAT.

There is more information about 2-dimensional arrays in chapter 3.3.3 on
page 53.
The maximum size of the array depends on the memory size. For instance on
an ADwin system with 16MB memory an array of up to 4 million elements of
the LONG type may be declared.
After the array has been declared, each individual element can be accessed.
The first element of an array has the index 1.
Do not assign a value to the element 0 of an array, for instance with
DATA_1[0] = … .

Examples
'The value of the 200th element from array 5 is assigned
'to the global integer variable PAR_1.
PAR_1 = DATA_5[200]

'In this program line the 345th element from the array DATA_5
'gets the value 4000.
DATA_5[345] = 4000

'This instruction assigns the value 300.1 to the 1st element of
'the 2 dimensional array DATA_3.
DATA_3[1][1] = 300.1

A variable can be used as an index number of an array element:
'Here, too, as in the example above, the value 4000 is
'assigned to the 345th element of the array DATA_5.
number1 = 345
DATA_5[number1] = 4000

However, a variable cannot be used as number of an array. The following
instruction results in an error message of the ADbasic compiler:

num = 2
DATA_num[300] = 20 'WRONG !!
DATA_2[300] = 20 'CORRECT

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

50

The compiler determines DATA_num to be the name of a local array,
which (probably) has not been declared and therefore is not available.
Instead, use the notation DATA_2.

3.2.7 System Variables
In order to get information about the status of the ADwin system the following
system variables are available. These are global variables that can be acces-
sed by all processes and by the computer. More information can be found in
the description of the instructions.
PROZESSn_RUNNING

Returns the status of the process n (with n = 1…10): the process is run-
ning, just being stopped or already stopped (see page 185). The varia-
ble can only be read.

PROCESSDELAY

The nominal time interval, in which time-controlled processes are cal-
led by the counter, is the processdelay (cycle time). With the system
variable PROCESSDELAY you query and set this time, measured in
clock cycles of the counter (see chapter 5.2.1 on page 84).

You read and write into the variable PROCESSDELAY in the sections
INIT: and EVENT: only. But writing into the variable is only allowed
once per section, because otherwise the status of the ADwin system
may become instable.

Writing into this variable in the section EVENT: should just be made at
the beginning of this section, because changing the variable will have
an immediate effect on calling the next process cycle. Otherwise the
precise processing of the process cycles in a certain time interval can
become instable.

Please note that the workload of the processor is at least less than
90 percent, and must not exceed 100 percent.

3.2.8 Local Variables and Arrays
All local variables and arrays, needed for a process must be declared before
the start of the first section of the ADbasic program and preferably be initiali-
zed, too. (Else the variables have undefined values).
Variable names can consist of any alphanumeric characters (a-z, A-Z, or 0-9)
or an undersore ("_"). Special characters like german umlauts (Ä, Ö, Ü) are not

Variables and Arrays – Details

ADbasic 4.20, Manual April 2006

ADwin

51

allowed and there is no case sensitivity. The length of variable names is only
limited by the maximum line length (255 characters).
Individual variables (scalars) can be defined as either integer values (type
LONG) or floating-point values (type FLOAT), and each are 32 bits long.

Example
DIM value AS LONG 'Defines the variable 'value'

'with the data type LONG
DIM value1, value2 AS FLOAT 'Defines the variables value1

'and value2 with the data type FLOAT

Variables may also be declared as a one-dimensional array, allowing the user
to generate and/or process an array of variables. The number of elements to
dimension in an array is put into square brackets after the array name.

Example
DIM value[100] AS FLOAT'Defines an array with the length

'100, with the name 'value',
'and the data type FLOAT

The first element of an array has the index 1, in the example: value[1]. The
element index 0 must not be accessed at all.

3.3 Variables and Arrays – Details

3.3.1 Variables and Arrays in the Data Memory
The user can explicitly determine which memory area, internal or external, to
store arrays and local variables. This allocation is made, in the source code,
when the variable is declared using the DIM statement using the additions AT
DM_LOCAL or AT DRAM_EXTERN.
Without the use of these allocation statements, all variables are stored in the
internal memory (DM) and all arrays in the external memory (DX).
It is recommended that the internal memory be used for variables and (small)
arrays for fast access. The slower, external memory is more suitable for
arrays, due to its size.
The fig. 17 shows examples of declarations, in order to store variables and
arrays in the different memory areas.

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

52

Fig. 17 – Allocation of the Memory Area with Declarations

The global variables PAR_1…PAR_80 and FPAR_1…FPAR_80 are pre-defi-
ned in the internal memory (DM), therefore they cannot be re-declared in the
external memory (DX).

3.3.2 Memory Areas
The processor of the ADwin system uses its internal memory (SRAM) and an
external memory (SDRAM) for data storedaccording to the following structure:

– Program memory (PM):
The program memory occupies half of the internal SRAM and contains
the operating system and processes.

– Internal data memory (DM)
The internal data memory occupies half of the internal SRAM for stor-
ing the global and local variables (standard setting).

– External data memory (DX)
The external data memory covers the external SDRAM and stores the
global and local arrays (standard setting).

Data in the internal memory (DM) can be accessed faster than data in the
external memory (DX) by approximately a factor of five.
The memory size is an ordering option and cannot be upgraded:

– Size of internal SRAM: 256 kB or 512 kB

– Size of external SDRAM: 8, 16, 64 or 128MB

Variable /
Array

Memory Area Source Code Declaration

Local
Variable

Internal (DM) DIM var AS <VARTYPE>
or
DIM var AS … AT DM_LOCAL

External (DX) DIM var AS … AT DRAM_EXTERN

Array Internal (DM) DIM array[5] AS … AT DM_LOCAL

(global/ local) External (DX) DIM array[5] AS …
or
DIM array[5] AS … AT DRAM_EXTERN

Variables and Arrays – Details

ADbasic 4.20, Manual April 2006

ADwin

53

The size of the memory areas is the only limiting factor to the size of the pro-
cesses and the number of declared variables and arrays (indirectly to the size
of source files, too). In the status line of the development environment, the
amount of available memory, PM, DM and DX, is displayed in bytes.

3.3.3 2-dimensional Arrays
Global arrays DATA_n may be declared with 1 or 2 dimensions. The basic
array features are described in chapter 3.2.6 "Global Arrays".
2-dimensional notation may simplify a problem’s solution (compared to 1-
dimensional arrays). At the same time it will slow down data access and
require additional program memory.
The loss of access speed and the need of additional memory will increase with
each access to the 2-dimensional arrays by the program.
The following cases require to access the data of a 2-dimensional array as if
it were declared 1-dimensional:

– On the PC, if the data of a 2D-array is transferred to or from an ADwin
system.

The other way round, data of a 1D-array on the PC may be transferred
to an ADwin system, even though the destination array is declared 2-
dimensional in ADbasic.

– Inside of a library module (LIB_SUB, LIB_FUNCTION) which receives
a 2D-array as an argument.

With this kind of data access the order of data in the memory becomes impor-
tant. As an example a 2D-array shall be declared as

DIM DATA_1[3][2] AS FLOAT

The 3×2 array elements will be stored sequentially in the data memory. The
following table shows which element index be used for the 1D-access to the
example array.

array index 2D [1][1] [1][2] [2][1] [2][2] [3][1] [3][2]

array index 1D [1] [2] [3] [4] [5] [6]

memory address n n+1 n+2 n+3 n+4 n+5

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

54

Thus, an element DATA_1[3][1] used in the main program had to be accessed
e.g. in a library module as fifth element of the passed array:

REM use in main program
DATA_1[3][1] = 17
setpar1(DATA_1) 'sets PAR_1 = 17

REM use in library module
LIB_SUB setpar1(BYREF array[] AS LONG)
PAR_1 = array[5] 'corresponds to DATA_1[3][1]

LIB_ENDSUB

Please note: This kind of access is permissible only in the two cases men-
tioned above. In any other case the 2-dimensional notation is needed.
Generally, this is the mapping of 2D-elements to 1D-elements:

where S is the 2nd dimension of DATA_n in the declaration. In the example
above there is s=2.

3.3.4 The Data Structure FIFO
For applications requiring a large quantity of data to be transferred conti-
nously, it is recommended using a DATA_n global array with the FIFO data
structure: a "First In, First Out" ring buffer.
In a ring buffer data is handled in a special way; like a queue where data is
appended to the end of the queue and retrieved from the beginning of the
queue. Unlike a "normal" array, data in the array is not accessed by its element
number, but by the first or the last element of the array (via a data pointer).
Consequently, data elements are read out in the same order as they were writ-
ten into the array (= First In, First Out).
Only one-dimensional global arrays (DATA_n) can be declared as FIFO
arrays; possible data types are LONG or FLOAT.

Example
DIM DATA_5[1000] AS LONG AS FIFO

This instruction declares the global array with the number 5 as FIFO
ring buffer with 1000 elements of the type LONG.

Please note: A FIFO array cannot be accessed as "normal" array in the source
code
Since a FIFO array has a finite number of elements (which is declared), the
chain of used and unused array elements form a ring, the ring buffer. The data

DATA_n i[] j[] = ˆ DATA_n s i 1–() j+⋅[]

Variables and Arrays – Details

ADbasic 4.20, Manual April 2006

ADwin

55

pointers to the first and last used array element are managed automatically
when a new value is assigned to the array or when a value is read out.
After the declaration of a FIFO array the pointer should be initialized with the
FIFO_CLEAR instruction.
From the ring structure of the FIFO array it is possible for the head of the data
chain to "overtake" the data end. This can only occur when data is written
faster into the FIFO than it is being read out. Subsequently, the earlier stored
data will be overwritten and lost..
A certain FIFO array can be accessed by indicating its array name (with the
corresponding array number).

Example
DIM DATA_5[1000] AS LONG AS FIFO
DATA_5 = 95 'Writes the value 95 into the

'DATA_5 array which is declared as FIFO
PAR_7 = DATA_5 'Reads a value from the FIFO and

'stores it in the global variable
'PAR_7

To ensure that the FIFO is not full, the FIFO_EMPTY function should be used
before writing into it. Similarly, the FIFO_FULL function should be used to
check if there are values which have not yet been read, before reading from
the FIFO.

Example
DIM free,used,value1 AS LONG
DIM DATA_1[1000] AS LONG AS FIFO
REM Are there still elements which are not empty?
free = FIFO_EMPTY(1)
IF (free > 0) THEN
DATA_1 = value1

ENDIF
REM Are there still elements, which haven‘t been read?
used = FIFO_FULL(1)
IF (used > 0) THEN
PAR_7 = DATA_1

ENDIF

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

56

3.3.5 Strings
Control characters and texts from other process monitoring devices can be
transferred, converted and processed by the ADwin system e.g. via an RS-
232 interface.
The following instructions are available for string processing:

For most string instructions the library file <STRING.LI*> must be imported
(where * indicates the processor type: 9 for T9, A for T10, B for T11). The
library file is found in the library directory (default: <C:\ADwin\ADbasic\
LIB>) after the installation.
A string variable has a structure similar to an array, in which each array ele-
ment contains one character. The dimensioning of a string for 5 characters is
as follows:
IMPORT STRING.LI9
DIM text[5] AS STRING

This dimensioning reserves an array for the string in the memory, which is
structured as follows:

ASC Get ASCII number of a character

CHR Get character from an ASCII number

FLOTOSTR Convert a float value into a string

LNGTOSTR Convert a long value into a string

STRCOMP Compare 2 strings to be equal

STRLEFT Get leftbound substring from a string

STRLEN Get length of a string

STRMID Get substring from a string

STRRIGHT Get rightbound substring from a string

VALF Convert a string into a float value

VALI Convert a string into a long value

+ String Addition Operator to concatenate strings

Variables and Arrays – Details

ADbasic 4.20, Manual April 2006

ADwin

57

Each element requires 4 bytes of memory. The first and last elements of the
string are automatically reserved by the ADbasic compiler.
Please note: The element number 0, here text[0] is not to be used!
After dimensioning the elements are not initialized. Values must be assigned
to a string before the string can be read from or processed.

Normal Assignment
Values are assigned to string variables by placing the string’s actual text into
quotation marks (") and setting it equal to the string variable. ADbasic stores
the corresponding ASCII numbers for each character in the memory (see
ASCII table in the Appendix).

Example
text = "HELLO"

Only characters with the ASCII values between 20h…7Fh (displayable cha-
racters in the normal ASCII character set), should be assigned using quotation

text[1] Length of the string in characters (5)

text[2] Character 1 of the string

text[3] Character 2 of the string

text[4] Character 3 of the string

text[5] Character 4 of the string

text[6] Character 5 of the string

text[7] The end of string character, terminating zero (00h)

Element
Index

Memory
Contents

Meaning

text[1] 05h Length of the string in characters (5)

text[2] 48h ASCII value for "H"

text[3] 45h ASCII value for "E"

text[4] 4Ch ASCII value for "L"

text[5] 4Ch ASCII value for "L"

text[6] 4Fh ASCII value for "O"

text[7] 00h End-of-string character

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

58

marks, except the following characters which are assigned using the escape
sequence:

Character Assignment with the Escape Sequence
The escape sequence is used to include numerical values or control charac-
ters into a string. The each escape sequence transfers a single ASCII value
to the ADbasic compiler, which stores it in memory without any changes.
The escape sequence is indicated as part of a string inside quotation marks
with the notation \xhh, where hh is the ASCII value to be transferred, written
in hexadecimal notation. Each escape sequences must have exactly 4 cha-
racters.

Example
text = "\x48\x45\x4C\x4C\x4F"

The memory contents is the same as the one given in the previous ex-
ample.

The escape sequence is necessary for assigning characters that are not dis-
played (such as line feed, carriage return, etc.). The range of values using the
escape sequence is from 00h to FFh.
In addition to the notation \xhh there are also special escape sequences for
frequently used (control) characters:

It is also possible to combine the notations described earlier when assigning
values to a string variable.

– apostrophe ('): \x39

– quotation mark ("): \x34

– backslash (\): \x5C

Sequence ASCII
Value

Meaning

\\ 5C Backslash (\)

\t 09 Tab (TAB)

\n 0A Line Feed (LF)

\r 0D Carriage Return (CR)

Expressions

ADbasic 4.20, Manual April 2006

ADwin

59

Example
text = "HE\x4C\x4CO"

The memory content is the same as the one given in the previous ex-
amples.

The end-of-string character should not be inserted into a string (example:
text = "HE\x00LLO"). The ADbasic compiler will properly assign each cha-
racter to the string, but errors will most likely occur when the string is proces-
sed further on.

String Assignments that are NOT Recommended
Unfortunately, it is possible to insert characters with ASCII values 00h…1Fh
or 80h…0FFh on various ways, for instance typing [?] or the German cha-
racters [ß] and [Ö], using "copy and paste" or the key sequence [ALT]+num-
ber. We explicitly do recommended to use Character Assignment with the
Escape Sequence!
The compiler is able to process such characters. However, these characters
may either have no unique ASCII value (because they are country-specific),
or they may cause unwanted actions (carriage return, etc.) and program
errors.
It is recommend that any control or special characters inserted into a string
only be done using the escape sequence.

3.4 Expressions

3.4.1 Evaluation of Operators
An expression is what is assigned to a variable or transferred as an argument
of an instruction. It consists of any possible combination of:

– simple data: constant, variable or array element

– operators being used for arguments.
For the evaluation of an expression, it is important to understand the order in
which the operators are used. The operators are divided into categories,
which are resolved according to priorities: A category of higher priority is pro-
cessed before a category of lower priority (see fig. 18).
Please take into account, that automatic Type Conversion may in some cases
influence the evaluation of an expression (see page 61), too.

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

60

If 2 or more operators, appearing in the same line, have the same priority (or
if there are the same operators), the compiler processes them in the order they
appear, from left to right.

Example
var = PAR_1 + PAR_2 * PAR_1^3 / 4

corresponds to
var = PAR_1 + (PAR_2 * (PAR_1^3) /4)

Using a negative sign with variables, may return unexpected results, in some
cases, and can be avoided by using parentheses.

Example
var = 1/-x 'not recommended
var = 1/(-x) 'correct: negative inverse value

Operator Category
" " Delimiter of character strings

ADbasic keyword Instruction, function, variable, etc.

= Assignment

() Parentheses

- Negation of a constant

^ Power

* / Multiplication / Division operators

+ -
AND OR XOR

Arithmetic operators
Binary operators

< > = Comparison operators

AND OR Boolean operators

Fig. 18 – Priorities of Operator Categories
(Top = highest priority)

Expressions

ADbasic 4.20, Manual April 2006

ADwin

61

3.4.2 Type Conversion
In ADbasic, variables can (after dimensioning) generally be used without
paying attention to their data types (LONG or FLOAT, see also chapter 3.2.3
"Data Types"). If necessary the data of the LONG type will automatically be
converted into the FLOAT type.
Do not mix up this conversion with the instructions CAST_FLOATTOLONG or
CAST_LONGTOFLOAT, which do quite a different job.
Consider the following special features:

– Cut off decimal places

If a floating-point value is assigned to an integer variable, then the de-
cimal places are cut off and will be lost.

– Converting all Integers to Floats

If an expression contains a floating-point value, all integer values are
automatically converted before the expression is evaluated. This app-
lies if an integer expression

• is assigned to a floating-point variable or
• serves as argument for an ADbasic instruction, expecting a

floating-point value.

Example
PAR_1 = 2 / 4 * 3 'Result: PAR_1=0, because 2/4 = 0

Decimal places are always cut off within integer calculations, and will
then be lost.

But:
FPAR_1 = 2 / 4 * 3 'Result: FPAR_1=1.5
PAR_1 = 2 / 4.0 * 3 'Result: PAR_1=1 (cut off!)

Here the floating-point variable FPAR_1 and the floating-point value
4.0 demand the conversion of all integer values.

– Prevent integers from Conversion

Even using parentheses does not prevent the automatical conversion
into FLOAT. To absolutely make calculations in LONG, an individual pro-
gram line must be used.

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

62

Example
PAR_1 = 2
PAR_2 = 5
'here a conversion is made:
FPAR_3 = (PAR_2 / PAR_1) + 0.2'FPAR_3 = 2.7
'but not here:
PAR_9 = PAR_2 / PAR_1 'PAR_9 = 2 (cut off)
FPAR_4 = PAR_9 + 0.2 'Result: FPAR_1 = 2.2

– Conversion of Arguments

The following expressions are always evaluated separately (and will be
converted, if necessary, as described above):

• Each individual parameter for an instruction.
Additionally a cut off may occur according to the parameter’s data
type (data type see instruction’s description).

• Each argument passed to a function or subroutine.
• Each individual part of a conditional test within a Boolean

expression in an IF…THEN or DO…UNTIL even if there are
multiple tests linked with AND or OR .

Example
PAR_1 = 2
FPAR_2 = 5.5

'Both conditions are true,PAR_1 is not converted into
'FLOAT, therefore PAR_3 = 1.
IF ((PAR_1 / 4 * 3 = 0) AND (FPAR_2 * 1.1 > 5.5)) THEN
PAR_3 = 1

ENDIF

'The condition with FLOAT does not influence the
'LONG calculation, therefore PAR_3 = 0.
IF (FPAR_2 * 1.1 > 5.5) THEN PAR_3 = PAR_1 / 4 * 3

3.5 Decision structures, Loops and Modules
When writinging extensive programs, ADbasic provides sophisticated tools for
structuring them. The following structure elements are available:

– Control structures to help shorten large sections.
• Loops for sections being frequently repeated:

DO … UNTIL or

Decision structures, Loops and Modules

ADbasic 4.20, Manual April 2006

ADwin

63

FOR … TO … {STEP …} NEXT.

• Structures for case-by-case decisions:
IF … THEN … {ELSE} … ENDIF or
SELECTCASE … ENDSELECT.

– Subroutine and Function Macros to define frequently used program
sections as

• Subroutine macros with SUB … ENDSUB
• Function macros with FUNCTION … ENDFUNCTION

– Collections of source code sections and program modules in Include-
Files, which can be included into a user’s source code using
#INCLUDE filename.inc

– Libraries of compiled subroutines and functions, which can be included
into a user’s source code, if necessary:

• Library subroutines with LIB_SUB … LIB_ENDSUB
• Library functions with LIB_FUNCTION … LIB_ENDFUNCTION

More information and examples of the instructions can be found in chapter 6
"Instruction Reference".

3.5.1 Subroutine and Function Macros
The syntax of subroutine and function macros is simple, only requiring the
terms SUB … ENDSUB and FUNCTION … ENDFUNCTION around the relevant
program sections, like parentheses. Contrary to subroutines, functions return
a value.
Source code is more clearly structured with subroutines and functions. These
subroutines and functions define macros, whose complete instruction block is
inserted (prior to compilation) into the place of the source code, where it is
called.
Please note: upon each subroutine or function call, the generated binary file
is increasing in size. You can use library functions or subroutines as an alter-
native.
You will find more information about the structure of macro modules in the
instruction reference (page 146: FUNCTION … ENDFUNCTION; page 214:
SUB … ENDSUB).

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

64

3.5.2 Include-Files
Source code sections can be collected and stored in an "include" file. Such
files (as well as the source code they contain), can very easily be included into
a source code file with the #INCLUDE instruction.
The contents of an include file depends on the same rules as normal source
code files. However, in most cases they contain only subroutine and function
macros.
When an include file is generated, the source code is entered in the same way
as a "normal" ADbasic file but saved using the File / Save as menu option
with the Include file *.inc file type.
Depending on the include file‘s source, attention must be paid to the position
at which the file is included into another source code file, to maintain a working
program structure. If the include-file contains function and subroutine macros,
it must be included before the INIT: section or after the FINISH:section.
You can also include an include-file into source codes of library files and other
include-files (nested include).
Normally, the include files installed with ADbasic contain only subroutine and
function macros, defining instructions for hardware access. Thus, the appro-
priate position for these files to be included is the beginning of the source code
(see page 42).

3.5.3 Libraries
In a library, compiled library subroutines and functions (modules) can be
assembled. With the IMPORT instruction, the modules of a library can be inclu-
ded into a process where they will be called.
The library modules are similar to the subroutine and function macros. They
are created in a source code file using the LIB_SUB … LIB_ENDSUB and/or
LIB_FUNCTION … LIB_ENDFUNCTION instructions. The library file is then
compiled using the Build / Make lib file menu option.
Also, calling library modules several times does not increase the size of the
binary file. Compared to macro functions and subroutines, library modules
require less memory when they are called more than once. However, additio-
nal execution time is needed for calling them (compare to chapter 3.5.1 "Sub-
routine and Function Macros", page 63).
Please note that a library module cannot call a library module within the same
library file. It is recommended macro functions and subroutines be used
instead. Alternatively, additional libraries may also be used.

Decision structures, Loops and Modules

ADbasic 4.20, Manual April 2006

ADwin

65

When interlacing libraries (including a library within another library), the
source code calling the libraries must include all levels (see fig. 19), otherwise
an error message will be returned by the compiler.
Recursive calls of library functions or subroutines are not allowed.
You will find more information about the structure of the library modules in the
instruction reference (page 157: LIB_FUNCTION … LIB_ENDFUNCTION;
page 161: LIB_SUB … LIB_ENDSUB).

Fig. 19 – Interlaced Libraries

Library 1Source code of a process

Library
functions and
subroutines

<LIB2.LI?><LIB1.LI?>

<ADbasic.BAS>

...
IMPORT LIB2.LI?
IMPORT LIB1.LI?
...

IMPORT LIB2.LI?

Library
functions and
subroutines

Library 2

Programming Processes

ADbasic 4.20, Manual April 2006

ADwin

66

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

67

4 Optimizing Processes
The ADwin system is designed to quickly and precisely execute control and
measurement tasks. Depending on the requirements it may be necessary to
optimize your ADbasic program for a faster processing time.
The following pages illustrate steps for optimizing a program. Many factors
determine the optimization process which needs to be considered with each
individual case. Please refer to the "ADbasic Tutorial and Programming
Examples" manual to find more examples for optimizing processes.

4.1 Measuring the Processing Time
For optimization it is important to measure the processing time of a process
cycle or of a program section. This can be done using the internal counters of
the ADwin system.
The processor of the ADwin system has two internal counters, one for high-
priority processes and another for low-priority processes, each incrementing
in different clock rates. The current counter values can be read using the
READ_TIMER instruction; the counter corresponding to the running process’s
priority will automatically be read out.
When power is applied to the ADwin system, both counters are set to the value
0 (zero), then continually incremented in fixed clock pulses (see fig. 21).
The processing time of the program is measured as a time difference. In the
following example, the processing time of a time-critical program section
(minus an offset) is stored in the global variable PAR_1.
To obtain the offset run the both READ_TIMER lines in succession – without
any program lines between them – and calculate the difference of these
values. The offset is to calculate only once for the surveyed program.

Example
DIM t1, t2 AS LONG 'do NOT use float here

EVENT:
…
t1 = READ_TIMER()
… 'Time-critical section
t2 = READ_TIMER()
PAR_1 = t2 - t1 -4 'Process time in clock pulses

'(offset = 4 clock pulses)

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

68

If PAR_1 in the example above equals 37, the time-critical section of
the high-priority process requires 37 × 25ns = 925ns .

It is also possible to measure the time difference between two external events,
in an event-driven process. In the following example the measurement is
stored in the global variable PAR_1.

Example
DIM oldtime, time AS LONG

INIT:
oldtime = READ_TIMER()

EVENT:
time = READ_TIMER()
PAR_1 = time - oldtime
oldtime = time

4.2 Useful Information

4.2.1 Accessing Hardware Addresses
Many of the ADwin system functions are managed by its control and data regi-
sters. These functions can quickly be executed by directly accessing the rele-
vant registers with the PEEK and POKE instructions. Here, "directly" means
that the functions’ addresses are not calculated in the process cycle, but pas-
sed as constant values: saving computing time for the calculation.
The addresses for the control and data registers can be found in the relevant
hardware manual.

4.2.2 Constants instead of Variables
A calculation is executed faster when the values are specified as constants
and not as variables.

Example
PAR_1 = SQRT(PAR_2) 'with PAR_2=17
PAR_1 = SQRT(17)

For the first calculation the value of the variable PAR_2 must be deter-
mined during run-time. The root must then be extracted and assigned
to PAR_1.

Useful Information

ADbasic 4.20, Manual April 2006

ADwin

69

In the second calulation the compiler already has determined the va-
lue. During run-time it will only be assigned.

4.2.3 Faster Measurement Function
With the ADC instruction, an analog-to-digital (A/D) conversion for a channel
with a specified gain is carried out. In order to make its application easier, the
instruction is kept rather simple and combines several sequences (see
chapter 6.3 "ADwin-Gold and ADwin-light-16", page 225 or "Pro-Software
manual").
There are different situations resulting in a faster processing when using these
individual sequences, compared to using the ADC instruction.
For instance, the ADC instruction does not consider that the ADwin-Gold-
system has two ADCs, which are able to convert two different channels at the
same time. This is illustrated in the following example:

Example
REM Example for Gold
REM Set both multiplexers of the ADC to the channel 1
SET_MUX(000000b)
… 'Wait for settling time
START_CONV(11b) 'Start conversion on both ADCs
WAIT_EOC(11b) 'Wait for end of conversion
PAR_1 = READADC(1) 'Read out ADC1
PAR_2 = READADC(2) 'Read out ADC2

The ADwin-light-16 system has only one ADC.

4.2.4 Setting Waiting Times Exactly
Using a waiting time, you can easily set an exact offset between 2 instructions,
for example to adjust the multiplexer settling time between SET_MUX and
START_CONV. Please note chapter 4.2.5 "Using Waiting Times", too.
The instruction for setting the waiting time depends on the processor type:

– Processors T9 and T10:

The instruction SLEEP sets the waiting time exactly: The processor
stops for the pre-set time, causing the next instruction to be started with
appropriate delay.

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

70

Waiting for the multiplexer settling time of 14µs on a Pro I module
would then work like this:
SET_MUX(2,00000b) 'Set Mux to channel 1
REM Here a calculation may be done, which e.g. takes
REM 8µs of the free processor time.
SLEEP(60) 'wait remaining 6µs until 14µs
START_CONV(2) 'Start conversion

– Processor T11:

There are 3 possible instructions for the waiting time:
• P1_SLEEP makes the Pro I bus wait.
• P2_SLEEP makes the Pro II bus wait.
• CPU_SLEEP makes the processor wait (refers to SLEEP).

If the waiting time gaps a delay between I/O-instructions for Pro I mo-
dules, P1_SLEEP is the right choice; for Pro II modules it is P2_SLEEP.
The instruction CPU_SLEEP makes sense only rarely.

Waiting for the multiplexer settling time of 14µs on a Pro I module
would then work like this:
SET_MUX(2,00000b) 'Set Mux to channel 1
P1_SLEEP(1400) 'Make Pro I bus wait 14µs.

'Note the time unit.
START_CONV(2) 'Start conversion
REM The calculation follows but now; the T11 processor will
REM process it automatically in parallel with the I/O
REM instructions.
REM Attention: Within the calculation you should use variables
REM from internal memory only. Otherwise the calculation may
REM anyhow not be run until the I/O instructions are completely
REM processed.

Useful Information

ADbasic 4.20, Manual April 2006

ADwin

71

Why are there different instructions for the waiting time? The porcessor
T11 runs processor instructions and I/O instructions 1 quasi-parallel
(see sketch above). This is very fast, and also leads to parallel and thus
separate timing, resulting in 3 instructions for the waiting time.

The quasi-parallel processing is enabled via a 5-level buffer OFIFO:
The operating system passes an I/O instruction into the OFIFO (if there
is enough space) and immediately starts processing the next instruc-
tion. The example above passes the instructions SET_MUX, P1_SLEEP
and START_CONV into the OFIFO; the subsequent calculation is then run
in the CPU, while e.g. the Pro I bus is still waiting.

Please note: A calculation, that is to be processed in parallel in the
CPU, may only use variables from internal memory. The operating sy-
stem regards each access to the external DRAM, the common memory
area for arrays, as an I/O instruction that has to walk through the OFI-
FO buffer.

4.2.5 Using Waiting Times
Some instructions require a certain waiting time after being called. This time
can be used for other calculations.

1. I/O instructions are those, which access external devices via the OFIFO buf-
fer. External devices (as regards the CPU) are modules on the Pro I or
Pro II bus and the external memory DX.

Processor T11

ADbasic
process

CPU

I/O instructionProcessor
instruction

Pro I bus

Pro II bus

ext. DRAM

P1_SLEEP

P2_SLEEP

CPU_SLEEP

OFIFO

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

72

The SET_MUX and START_CONV instructions require waiting time for the sett-
ling of the multiplexer and the conversion of the ADCs. During this waiting
time, the processor is not busy and could be used for other tasks.
More detailed information about the required waiting times for data conversion
can be found in your hardware manual.
The next example is an extension of the previous example, showing how two
measurements are executed across two separate ADCs. Compared to the
ADC instruction, this enables execution of 4 times the number of measure-
ments.
The key feature of the example is to carry out the individual steps in the con-
version process not sequentially but rather in parallel. The time delay for mul-
tiplexe setting is carried out during the A/D conversion of the other channels.
Both measurement processes are overlapped: The start of conversion for the
channels 1+2 is followed by setting the multiplexer for the channels 3+4.

Example
REM Example for Gold Rev. B
INIT:
SET_MUX(000000b) 'Set Mux for first measurement,

'channels 1+2
SLEEP(140) 'Wait 14 µs

EVENT:
START_CONV(11b) 'Start conversion (channels 1+2)
SET_MUX(001001b) 'Set Mux, channels 3+4
WAIT_EOC(11b) 'Wait for end of conversion

' (channels 1+2)
PAR_1 = READADC(1) 'Read out ADC1, channel 1
PAR_2 = READADC(2) 'Read out ADC2, channel 2

START_CONV(11b) 'Start conversion(channels 3+4)
SET_MUX(000000b) 'Set Mux, channels 1+2
WAIT_EOC(11b) 'Wait for end of conversion

' (channels 3+4)
PAR_3 = READADC(1) 'Read out ADC1, channel 3
PAR_4 = READADC(2) 'Read out ADC2, channel 4

The INIT: section sets the multiplexer up for the first measurement so
that the A/D is ready the first time the EVENT: section is executed.

It is very important that adequate delay for the multiplexer settling time and
A/D conversions be provided or incorrect measurements or A/D conversion

Debugging and Analysis

ADbasic 4.20, Manual April 2006

ADwin

73

failures may be obtained. There are some hints in chapter 4.2.4 "Setting
Waiting Times Exactly".

4.2.6 Optimization with Processor T11
This section describes how to use the specific features of the T11 processor
to speed up a process, especially by optimized memory access.
If nonetheless you reach the processor’s limits, further optimizations are pos-
sible, but only in connection with your specific application. Please contact our
support (see address inside the manual’s cover page).

Using internal memory
For time-critical sequences, use variables and arrays in the internal memory
(EM or DM) as possible. While variables are declared automatically in the
internal memory, arrays (both local and global) have to declared as follows:
DIM DataLocal[100] AS LONG AT DM_LOCAL
DIM DATA_5[2000] AS FLOAT AT DM_LOCAL

Compared to internal memory the access of processor T11 to external
memory slows down for 2 reasons. One the one hand the memory access is
passed into the OFIFO buffer (see page 71) as I/O instruction, which can
cause delays. On the other hand the administration of external memory is slo-
wer than of the internal memory.

Accessing the external memory
For the access to the external memory try to use – as fas as possible in the
program – data blocks, and don’t access single values. If using block-wise
data transfer the processor enables an accelerated access, so e.g. transfer-
ring a block of 20 values quicker than 3 3 single values.
As an example, the block data transfer is quite useful, if a lot of measurement
values are read in short time: At first the collected data packet is saved in quick
internal memory. As soon as the measuring task reaches a non-critical sta-
dium, the data are transferred as block into external memory using the instruc-
tion MEMCPY, leaving the internal memory ready for the next collected data
packet.

4.3 Debugging and Analysis
Debug, timing, and trace modes are ADbasic’s hands-on tools for debugging
and program analysis. All modes are activated via the "Debug" menu (see
page 25) and add their helping features to those programs, which are compi-
led with active mode.

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

74

Please note: Activating of the modes produces additional program code. Thus
the program will need a longer processing time as well as additional memory
– at times at considerable rate. We therefore recommend that you use these
tools for developing and testing of programs only.

4.3.1 Finding Run-time Errors (Debug Mode)
The debug mode is a helping tool to find the following run-time errors in
ADbasic programs:

– Division by zero

– Square root from a negative value

– Access to too large / too small element numbers of an array
Without debug mode, these run-time errors are simply ignored, i.e. though the
result of the program line is undefined it is nevertheless used for the following
program. This may cause, depending on the program, an unwanted beha-
viour, in worst case even the "crash" of the ADwin system.
The option "Debug mode" is activated from the "Debug" menu; do then com-
pile the source code to be checked. On occurrence of a run-time error it is
automatically displayed in the "Debug Errors" windows. As well, the run-
time error is being corrected to maintain a stable mode of operation.
Errors being found should always be eliminated; even the automatic error cor-
rection of the debug mode is no more than a debugging tool, which does not
fit for continuous operation.
Details about activating and display of run-time errors are shown in section
"Debug mode Option" on page 30.

4.3.2 Check the Timing Characteristics (Timing Mode)
The ADwin system is designed in such a manner that an arriving event signal
for a high-priority process (externally generated or by an internal counter)
immediatley starts the relevant process cycle. Processes with such "good"
timing characteristics are deterministic and execute their tasks exactly at a
predetermined period of time.
To check timing characteristics of processes requires some effort, especially
when changes are to be made later, to obtain good timing characteristics. This
effort is worth its price, when required higher frequencies or additional tasks
put the processor workload to its limit. Another example are process cycles not
start as exactly as predetermined according to the measurement task.

Debugging and Analysis

ADbasic 4.20, Manual April 2006

ADwin

75

In the timing mode, information is generated, which can be used to check sel-
ected high-priority processes if they have "good" timing characteristics. For
these processes 7 parameters are calculated, which can be displayed in the
Timing Information window.
Processes have good timing characteristics when the following situations do
not (or rarely) occur:

1. An event signal does not start a process cycle immediately, but a cer-
tain (not exactly defined) time later.

2. An event signal does not start a process cycle at all, but gets "lost".
Even several lost event-signals are possible.

In the first case the operating system tries to make up the delay by using avail-
able idle times in the workload of the processor, until all process cycles again
start at the pre-defined period of time. In the latter case the operating system
cannot make up the delay: Event signals and therefore process cycles are
really lost (see chapter 5.2.5 "Different Operating Modes in the Operating Sys-
tem").
An optimal timing characteristic, especially of the high priority processes, is
obtained in 2 steps by:

1. Checking Number and Priority of Processes

2. Creating Optimal Timing Characteristics of Processes
(Use Timing Mode)

Checking Number and Priority of Processes
In a high-priority process only time-critical tasks should be processed, all other
tasks in one or more low-priority processes (or even processed on the PC).
If possible use only one single high-priority process. Several processes can
very often be merged to a single process; if the Processdelay is identical, we
highly recommend this. It’s worth the effort – especially with a shorter Process-
delay of the processes – because the processor workload will be essentially
lower even if the the same tasks are executed. The graphic below illustrates
this more clearly:

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

76

With several high-priority, time-controlled processes, process cycles cannot
be prevented from starting time-delayed (except their Processdelays are inte-
ger multiples of each other).

Optimal Timing Characteristics of Processes
A high-priority process has an optimal timing characteristic under the following
conditions:

– All process cycles of the process have an almost equal processing
time.

– The processing time of the process cycle is as short as possible.

– The Processdelay of the process is longer than the longest processing
time of all process cycles.

Nevertheless, the processor workload for high-priority processes must leave
enough processor time available for the tasks of low-priority and communica-
tion processes.
To get more information about the timing characteristics of interesting pro-
cesses proceed as follows:

1. Activate the timing option with Debug Enable timing analyzer.

2. Compile (and start) the ADbasic source code.

For each source code which you compile with active timing option, in-
formation about timing characteristics are generated automatically. We

Processor
workload

Number of (high priority) processes
1 2 3 4 5 6 7 8 9 10

0 %

100 %

Globaldelay = 200

Globaldelay = 5000

Debugging and Analysis

ADbasic 4.20, Manual April 2006

ADwin

77

recommend to view only a small number of processes at once, so that
the timing characteristics will not be influenced too much (see below).

3. Disable the Debug Enable timing analyzer option again, so that
other processes being compiled do not unnecessarily generate timing
information.

4. Open the Timing Information window via the Debug Show
timing information menu item.

Note that the timing characteristics on the ADwin system depend on the num-
ber and type of the processes, thus causing accordingly different parameters.
One reason for this fact is the process management of the operating system
(see chapter 5.2.5 "Different Operating Modes in the Operating System").
The evaluation of the information is made during run-time and needs approx.
60 clock cycles additionally (when using a T9, T10 or T11 processor) per pro-
cess cycle and process. The parameters in the window are continuously
updated and refer to the time passed since the last start of the processes. A
short description of the parameters can be found under the Show timing
information Menu Item, page 25.
The (minor) change of timing characteristics by the timing mode itself cannot
be avoided and exists even if no parameters are displayed. This may result
under certain circumstances in further latencies, and is also reproduced in the
corresponding parameters; in short processes with a short Processdelay, a
processor workload of more than 100% can be reached sometimes, so that
the communication to the PC is interrupted.
Please note that during compiling high-priority processes using the timing
option, a low-priority process can be considerably delayed.

4.3.3 Track the Process Flow (Trace Mode)
The trace mode is a help tool for tracing the progress of program processing.
This mode enables to view process information, mainly calculation results,
generated during run-time on the ADwin system, later in a window of the
development environment. You have to predefine the source code lines
whose information you can view later.
The trace mode changes the timing characteristics of a process and needs
additional memory in the data memory as well as in the program memory. This
applies too, when no process information is defined and queried. With large
quantities of defined data the additional requirement for time and memory can
be higher than the requirement for the viewed process itself (without trace
mode).

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

78

The trace mode is used as follows:

1. Activate the trace mode under : Debug Trace Setup and acti-
vate the Enabled option there.

2. Select the necessary lines in the source code and activate them for
the trace mode in the context menu (right mouse button) with Ena-
ble Trace. Active lines have question marks ? at the beginning of
each line.
Active lines can be disabled and enabled again fom within a pro-
gram via the instructions TRACE_MODE_RESUME and
TRACE_MODE_PAUSE.

3. Compile (and start) the source code. Start first with an easy pro-
gram.

4. Open the trace window with Debug Show Trace.
In the trace window left to the active source code lines the process information
is displayed. The following information is displayed:

– A variable value as result of an assignment with the operator = (the
operators DEC and INC are not supported).

– The value of a count variable in a loop, and, depending on this, the vari-
able values in the loop (the count variable can be set at right in the
header line of the trace window).

– The result of a condiditon: True or False.
If an IF … THEN condition is followed by an assignment to a variable
(single-line type of an IF command) and the condition is true, then
only the variable value is displayed.

– The source code of a macro:
Do a right click on the name of the macro (FUNCTION … or SUB …); the
macro text is then inserted directly above the line containing the macro.
The macro text is hidden in the same manner.

The displayed information is stored into a global array (normally DATA_239,
see Trace Setup ...… Menu Item) during run-time, that means during the
time your program is running. The development environment then copies the
array contents to the PC for display. Depending on the array size the informa-
tion can refer to many or only a few events.
When using the New Values icon in the header line, the displayed informa-
tion is updated; if you would like to use the previous process information, you
should first save or print them .

Debugging and Analysis

ADbasic 4.20, Manual April 2006

ADwin

79

By updating the information the process data in the program section INIT: is
overwritten, too.
Note, that the trace mode only refers to the active source code, that is, impor-
ted libraries and include files are not supported. It is only possible to view one
single process in the development environment; for each additional process
you have to run ADbasic again as additional task and set the trace mode there.
Please keep in mind to set a different global variable (DATA_1 … DATA_200)
in each ADbasic task under Debug Trace Setup .
The instructions TRACE_MODE_PAUSE and TRACE_MODE_RESUME disable or
enable the trace mode from within the ADbasic program (for active lines only).
Thus, the trace mode can e.g. be activated as long as a certain condition is
fulfilled.

Optimizing Processes

ADbasic 4.20, Manual April 2006

ADwin

80

Processes in the ADwin Operating System

ADbasic 4.20, Manual April 2006

ADwin

81

5 Processes in the ADwin Operating System
An ADwin system has the capability to control complex test stands while
rapidly executing measurements. Programs using one or more ADbasic pro-
cesses are used to provide this capability. Within these processes you can
specify how analog and digital data is manipulated within the ADwin system
and how it is transferred to and from the outside equipment and PC.
After starting the process the program1 in the ADwin system is (characteristi-
cally) restarted and processed in regular time intervals. This calling of a pro-
cess cycle is triggered by one of the following start signals, called events:

1. Timer event: A pulse of the internal counter. You determine for each
process separately in which time interval (processdelay) a new event
is triggered.

2. External event: An external signal, which arrives at the event input of
the ADwin system. This could be for instance the pulse of an incremen-
tal encoder.

Only one of the 10 possible processes can be controlled by an external event,
all other processes have to run time-controlled.
You define the exact function of a process in the ADbasic source code:

– The initialization in the sections LOWINIT:and/or INIT:.

– The actual function of the process cycle in the central EVENT:section
(event loop).

– The final processing in the FINISH: section.
In most cases control of the processes is done from the computer, that is the
processes are started, stopped or their processdelays changed. You can do
this with ADbasic as well as with other development environments such as
C++ or Visual Basic. With the boot option, it is also possible to have processes
loaded and started automatically on power-up.

1. more precisely: the program section EVENT:.

Processes in the ADwin Operating System

ADbasic 4.20, Manual April 2006

ADwin

82

5.1 Process Management

5.1.1 Types of Processes
Within the ADwin system several processes can run simultaneously. The ope-
rating system is responsible for calling the process cycles according to speci-
fied rules, and for their being processed by the CPU without blocking each
other.
When referring to a "process" in this manual, we mean one of the processes
1...10, that you have programmed.
You assign a priority to each process and thus determine the interaction and
timing of the processes. There are the priorities:

– Processes with High-Priority and

– Processes with Low-Priority

Low-priority processes are further divided into the levels -10 (low) up
to +10 (high).

The process priority is set via the menu Options \ Process Options.

Fig. 20 – Overview of all processes

The standard processes, processes 11 and 12, are only necessary when
using the drivers for the Labview and Testpoint environments. These proces-
ses can be loaded during the boot process along with the operating system,
either from a developer environment (for more details, see the ADwin devel-
oper manual), or from ADbasic. To do this, set the option Load Standard
processes to Yes in the ADbasic menu Options / Compiler.

Process Function Prioritya

a. The meaning of the priorities is described in the following sections

1…10 User-defined processes with functions and pri-
orities you can freely define

low level n
/ high

11, 12 Predefined input / output processes high

15 Process for controlling the flashing LED in
ADwin-Pro and ADwin-Gold systems

low,
level 1

Communica-
tion

Communication between the ADwin system
and the computer: Instruction and data
exchange

medium

Process Management

ADbasic 4.20, Manual April 2006

ADwin

83

If you are not using one of these applications you can stop the transfer of the
standard processes during booting (setting No).
The communication process (see page 84) is part of the operating system. It
receives commands of the computer and exchanges data between the ADwin
system and computer only when the computer requests them.
If you transfer more than one process with the same process number to the
system, only the last process transferred is executed, because the earlier
transferred processes are overwritten.

5.1.2 Processes with High-Priority
Processes with "high" priority get preferential treatment from the operating
system:

– The maximum latency from when a high priority process is called by an
event to when execution of the process begins is 300ns.

– A high-priority process cycle cannot be interrupted and is always com-
pletely processed. During this time all process cycles with low-priority
are blocked.

Neither another high-priority process cycle nor a stop instruction can
interrupt a running, high-priority process cycle. In both cases the sys-
tem will complete the current hight priority process cycle before pro-
ceeding.

In time-controlled high-priority processes the cycle time (processdelay) can be
set in intervals of 25 ns.
The software should be written so that time-critical measurement processes
run with high-priority and all others run with low-priority, so that the processor
can process the time-critical process cycles without any interference from
other operations.
The sections LOWINIT: and FINISH: of a process – if there are any – are
always executed with low-priority, priority level 1, even if the process is set to
run with high-priority.

5.1.3 Processes with Low-Priority
Process cycles with low-priority are immediately interrupted when a process
cycle with a higher priority is called and will stay interrupted until that higher
priority process cycle has finished.
Low-priority processes are further divided into the priority levels -10 (low) up
to +10 (high). Process cycles with a low level can be interrupted by those with

Processes in the ADwin Operating System

ADbasic 4.20, Manual April 2006

ADwin

84

a higher level at any time. The processor T11 keeps strictly to the priority levels
for process management (see chapter 5.2.3 on page 86).
Low-priority processes of the same priority level participate in time slicing.
Here the operating system apportions the computing time to the process
cycles alternating and in equal time slices. One time slice takes 2ms (proces-
sor T9) or 1ms (processors T10, T11) on average.
Low-priority processes must always be time-controlled. The cycle time (pro-
cessdelay) can be set in discrete intervals; interval size see fig. 21 on page 85.
Processes with low-priority on principle do not influence the time characteristic
of high-priority processes, but vice versa they surely do.

5.1.4 Communication Process
The communication process has a priority level between the priorities "high"
and "low". Therefore it can interrupt low-priority process cycles any time and
can be interrupted by high-priority process cycles.
If the computer requests information from the ADwin system, the communica-
tion process must respond within 250ms or a time-out will occur, the commu-
nication between the computer and the ADwin system may be interrupted. In
this case the message The ADwin system does not respond will be dis-
played and the system will have to be reinitialized by rebooting the ADwin
system. The time-out is independent of the communications interface, either
USB or Ethernet.
The cause of an interruption in the communication is that the communication
process does not have enough processor time allocated to it. This can be
caused by the following facts:

– the processdelay of the high-priority processes is too short or

– the processing time of a high-priority process cycle is too long.
More about this subject can be found in chapter 5.3.2 on page 90.

5.2 Time Characteristics of Processes

5.2.1 Processdelay
The time interval, in which time-controlled process cycles are called by the
counter, which is the cycle time of the event section of the process. It is usually
measured in clock cycles of the system clock and called Processdelay, (in ear-
lier ADbasic versions: Globaldelay). The processdelay of each process is spe-
cified by setting the value of the system variable PROCESSDELAY.

Time Characteristics of Processes

ADbasic 4.20, Manual April 2006

ADwin

85

The time resolution of the system clock depends on the process priority and
on the processor type:

Fig. 21 – The time resolution of the system clock (units of the processdelay)

For instance, a processdelay with the value 1000 means that for a high-priority
process on a processor T9 it is called in time intervals of 1000 × 25ns =
25000ns = 25µs, while for a low-priority process in a time interval of
1000 × 100µs = 100000µs = 100ms. You can specify this event interval in the
program line:

PROCESSDELAY = 1000

The processing time of a process cycle must not, even under worst case cir-
cumstances, be higher than the cycle time, so that each process cycle can be
called at the time specified (with PROCESSDELAY). Differences in the compu-
ting time may arise from different program sections which are run conditio-
nally. (If, Case).

Fig. 22 – Processdelay and processing time in high-priority process cycles

Example

If an extensive calculation is executed only every, say 1000 measure-
ments, then the long processing time of this process cycle must be
shorter than the cycle time. In order to obtain short process cycles one
alternative is to divide the calculations into small steps and to process

Processor Priority

High Low

T9 25ns 100µs

T10 25ns 50µs

T11 3.3ns 3.3ns = 0.003µs

Processdelay
(cycle time)

Processing time

125 µs 200 µs175 µs150 µs

Processor free

Process 2

Processes in the ADwin Operating System

ADbasic 4.20, Manual April 2006

ADwin

86

a step in each process cycle. Thus the process cycles have a consis-
tent, short processing time.

5.2.2 Precise Timing of Process Cycles
If you have (as shown in fig. 22) only one high-priority process, it will be called
and processed exactly in its time schedule.
Make sure that the processing time of a high-priority process cycle never
exceeds its cycle time (in the example below: 25µs). This process cycle can-
not be interrupted, thus other process cycles can only be partially processed
or not at all, for instance the important communication process.
If there are several high-priority processes, the actually running process cycle
can influence the time schedule of the remaining process cycles. In fig. 23 for
instance, the call of process 1 has to start after a delay when the processing
of the active process 2 has finished.

Fig. 23 – Delay of a high-priority process cycle

Keep the execution time of high-priority process cycles as short as possible.
Have event loops, which require long processing time, or calculations whose
result cannot be immediately be processed, always run in process cycles with
low-priority.
A low-priority process depends on the time characteristics of all other process
cycles with the same or higher priority. Each interruption minimizes the time,
a low-priority process cycle can use the computing power, and in the worst
case it will not be called at all.

5.2.3 Low-Priority Processes with T11
The processor T11 manages low-priority processes strictly be their priority
level. In contrast, priority levels are of little importance with T9 or T10. Never-

Processdelay 2

125 µs 200 µs175 µs150 µs

Process 2

Process 1

Retardation

Processdelay 1

Time Characteristics of Processes

ADbasic 4.20, Manual April 2006

ADwin

87

theless, communication process and high-priority processes still take prece-
dence over all low-priority processes.
The process management of low-priority processes is different for:

– Processes of different priority levels: All processes of lower priority
level are interrupted, as soon as and as long as a process of higher pri-
ority level is processed.

In this case, process 2 is of higher priority level and therefore interrupts
process 1 several times.

– Processes of equal priority levels: The processes take part in time slic-
ing, that is, within the priority level, the operating system portions out
the processor’s operating time to the process cycles alternating and in
equal time slices (1ms).

The example shows the changeover of the processes quite clearly.
Please note the rule, that a process - process 1 in this example - im-
mediately receives a time slice upon the call of its process cycle.

There is a rare and special case which annuls time slicing: A process
receives a lot of processing time, if both it is frequently called and its
process cycle takes shorter than one time slice. With each call the pro-
cess interrupts other processes of the same priority level and thus
"steals" their processing time.

Processes in the ADwin Operating System

ADbasic 4.20, Manual April 2006

ADwin

88

5.2.4 Workload of the ADwin System
The workload of the processor on the ADwin system is the ratio of the com-
puting time used to the available computing time, indicated in percent.
You can monitor the workload of the processor in the status line display Busy
within the development environment. This value gives you an indication if the
processor still has enough computing time available to complete all of the
required activities.
The workload of the processor should exceed 90 percent only in exceptional
cases and must not exceed 100 percent.

5.2.5 Different Operating Modes in the Operating System
The operating system differentiates between 2 operating modes for the timing
characteristics in high-priority processes, depending on the fact if several
time-controlled (high-priority) processes are active or only one.
If an additional externally controlled process is running, is of no importance
here. The externally controlled process is managed separately by the operat-
ing system and can therefore be seen as a third operating mode.

Single Time-Controlled Process
In a single time-controlled process the operating system uses hardware com-
ponents to process the event signals of the internal counter. In this case the
operating system processes an incoming event signal very quickly.
The hardware components can buffer if an event signal has arrived, but not
how many event signals have arrived. If an event signal has arrived, the oper-
ating system activates the next process cycle at the fixed period in time (Pro-
cessdelay see chapter 5.2.1), unless a high-priority process cycle is just being
processed. In this case the operating system activates the next process cycle
immediately after the currently running process cycle.
If a number of event signals arrives during a high-priority process cycle, only
one single process cycle is called and not the number of arrived process
cycles, respectively. As a consequence all but one of those event signals are
lost. Therefore we recommend the process cycles absolutely be shorter than
the cycle time (Processdelay) of the process.

Several Time-Controlled Processes
In several time-controlled processes, the operating system itself manages
arriving event signals. The operating mode is working slower due to this man-
agement efforts, but the number of all arriving event signals are buffered for

Communication

ADbasic 4.20, Manual April 2006

ADwin

89

each process. Thus it is ensured, that for each event signal a process cycle is
started, even if this happens later than the pre-defined instant of time.
Frequently the time schedules for starting the process cycles are the reason
for the fact that event signals continuously occur during the processing of
another process cycle. With other words, the Processdelay values are not
integer multiples of each other. We recommend that only few processes are
used; it is often possible to merge several processes to one single process
(this results in a smaller processor workload, too).
Always keep in mind that the processor workload depends very much on the
number of processes running. Thus a task performed by 2 (or even more) pro-
cesses will always take more workload than the same task within a single pro-
cess. This is the more of importance the shorter a Processdelay is (see also
chapter 4.3.2 on page 74).
Example: Processes 1 and 2 with a very short Processdelay running as a sin-
gle process each generate 10% workload; both processes together have a
workload of 55%.

Externally Controlled Process
The operating mode for the externally controlled processes is, independent of
time-controlled processes, always the same. The operating system manages
the external process as a single time-controlled process (see above), that is,
arriving event-signals are processed very quickly, but event signals can also
be lost.
An external event signal is a rather important information – in particular,
because it cannot be predefined by the ADwin system – and must not get lost
(finding lost events, see page 25). Therefore note to have short process cycles
in this process (in the section EVENT:).

5.3 Communication

5.3.1 Data Exchange between Processes
Data can be exchanged between different processes via global variables
(PAR_n, FPAR_n) or global arrays (DATA_n). Data can be exchanged with
programs running on the PC using these variables and arrays as well.
If global arrays are used in several processes, they have to be declared iden-
tically in each process. In this case it is practical to save these declarations of
global arrays into an Include-File and include the file into all of these proces-
ses (see also chapter 3.5.2 "Include-Files").

Processes in the ADwin Operating System

ADbasic 4.20, Manual April 2006

ADwin

90

Global variables can be used by one process to control a process running
simultaneously.

Example

Process 1 is a function generator and Process 2 is a controller. The
function generator regularly writes the generated value into the global
variable PAR_10. At every event loop the controller process reads out
the global variable PAR_10 and uses its contents as setpoint of the
control loop.

Thus the function generator very easily controls the setpoint of the con-
troller. All local variables and arrays of Process 1 are hidden from
Process 2 (and vice versa). Take into account that the timing charac-
teristics of both processes must be considered.

5.3.2 Communication between Computer and ADwin System
From PC applications and development environments, you can control the
processes on the ADwin system, as well as requested data from or send data
to the system. An ADwin system cannot communicate with the computer on
its own, but instead responds to requests coming from the computer.
All data exchange between the ADwin system and the PC is made via global
variables (PAR_n, FPAR_n) or global arrays (DATA_n).
The communication to the ADwin system is managed under Windows with the
ADwin32.dll (dynamic-link library). In the ADwin system the communication
process is responsible for this task (page 84).
If you are working with the ActiveX interface, the latter is responsible for the
communication with the ADwin system. Internally the ActiveX interface trans-
fers or gets the data via the ADwin32.dll.
The ADwin32.dll has the following tasks:

– Communication with the connected ADwin system via the specified
communication interface: USB, Ethernet (TCP/IP).

– Recognizing and handling of communication errors.

– Blocking several computer applications if they want to access the
same system at the same time.

With the blocking mechanism several applications can simultaneously
access one or more ADwin systems independent of each other.

If a computer application starts the communication to a system, it transfers a
device number in addition to the specified instruction. The ADwin32.dll

Communication

ADbasic 4.20, Manual April 2006

ADwin

91

uses this "Device Number" to differentiate between the various ADwin
systems and assign the corresponding configurations.

5.3.3 The Device Number
Each ADwin system connected to a computer is accessed via a unique device
number (unique to the PC).
You set the device number with the program ADconfig: .
In ADconfig you link a Device Number with the communication parameters,
which define how a system can be accessed (USB, Ethernet). This is the infor-
mation the ADwin32.dll needs in order to being able to communicate with
the system.

5.3.4 Communication with Development Environments
You access the ADwin system from the PC with the help of a user interface.
You may generate this user interface with one of the conventional develop-
ment environments such as Visual Basic, C++, Delphi or C#.NET, or you may
use a ready-made user interface such as TestPoint or MATLAB.
For each of these an appropriate driver software, which enables you to access
the ADwin system is provided. If you have a special request, please contact
us. We can also provide turnkey measurement data evaluation programs.
Under Windows a DLL or ActiveX interface can establish the communication
with the system simultaneously from several programs (see also "Communi-
cation between Computer and ADwin System" on page 90). The special
instructions for your user interface are described more detailed in the relevant
ADwin developer software.
From your user interface you can:

– transfer compiled programs (binary files) into the ADwin system. Com-
pile the program in ADbasic with Build/Make Bin File.

– start, control and stop processes in the ADwin system.

– request data from the ADwin system or send data to the system.
Although the ADwin system works independently, you can access global
variables and arrays from the user interface any time, without delaying time-
critical processes. This way all processes can quickly exchange data with the
computer (or with each other).

Processes in the ADwin Operating System

ADbasic 4.20, Manual April 2006

ADwin

92

Instruction Reference

ADbasic 4.20, Manual April 2006

ADwin

93

6 Instruction Reference

In the following chapters the ADbasic instructions are listed:

– chapter 6.2 "Instructions for L16, Gold, Pro", page 94-224

The hardware-related instructions for the ADwin-Pro system can be
found in the documentation "ADwin-Pro Software".

– chapter 6.3 "ADwin-Gold and ADwin-light-16", page 225-255

– chapter 6.4 "ADwin-light-16 DIO1/2 / ADwin-Gold CO1", page 255-313

– chapter 6.6 "ADwin-light-16 Rev. B", page 359-364
In these chapters the instructions are mostly listed in alphabetical order. In the
annex you will find all instructions also listed alphabetically and in groups.

6.1 Instruction Syntax
Please note:

– Any expressions can be used as arguments.

– Some arguments require a specified data structure, which are labelled
as follows:

– The expected data type is given for each argument and for a function’s
return value:

constant numbers such as 35 or 3.14159, and
expressions without variables.
Character constants (strings) are enclosed in quo-
tes such as "this text".

variable or array element.

array, also identified in the command syntax by its
brackets [] after the array name.

fifo array (DATA_n declared as fifo).

integer number

floating point number

character string

logic expression in a condition

CONST

VAR

ARRAY

FIFO

LONG

FLOAT

STRING

LOGIC

Instructions for L16, Gold, Pro

ADbasic 4.20, Manual April 2006

ADwin

94

If the argument has a different data type than expected, you will get a
type conversion of the argument (chapter 3.4.2 on page 61).

– Some instructions can only be used, when a specific library or include
file is included. Under Syntax the relevant include-instruction is indica-
ted (please, place this command line at the beginning of the source
code).

We assume that the necessary library or include-file is located in the di-
rectory, which is set under the Options Settings menu, Direc-
tory item, (see also the instructions #INCLUDE or IMPORT).

6.2 Instructions for L16, Gold, Pro

+ Addition

ADbasic 4.20, Manual April 2006

ADwin

95

+ Addition
The "+" operator adds two values (see also "+ String Addition").

Syntax

ret_val = val_1 + val_2

Parameters

Notes

Please note that combining different variable types with the "+" opera-
tor will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

See also

- Subtraction, * Multiplication, / Division, ^ Power

Example
PAR_1 = 9 + 4 'PAR_1 = 13

val_1 Addend 1.

val_2 Addend 2.

FLOAT
LONG

FLOAT
LONG

LONG FLOAT

+ String Addition

ADbasic 4.20, Manual April 2006

ADwin

96

+ String Addition
The "+" operator concatenates two strings (see also "+ Addition").

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

val = val_1 + val_2

Parameters

Notes

If you concatenate two strings and assign them to another string, the
size of the destination string must be declared greater or equal to the
sum of the sizes of the input strings.

See also

STRING "", ASC, CHR, FLOTOSTR, FLO40TOSTR, LNGTOSTR,
STRCOMP, STRLEFT, STRLEN, STRMID, STRRIGHT, VALF, VALI

Example
IMPORT string.li9

'Dimension 3 strings: 10, 5, 4 characters
DIM res_str[10] AS STRING
DIM str_1[5] AS STRING
DIM str_2[4] AS STRING

INIT:
str_1 = "ADwin" '5 characters
str_2 = "Gold" '4 characters

EVENT:
res_str = str_1 + "-" + str_2 'Concatenate strings

PAR_1 = STRLEN(res_str) 'PAR_1 = 10(number of the characters)

val_1 character string1.

val_2 character string 2.

STRING

STRING

- Subtraction

ADbasic 4.20, Manual April 2006

ADwin

97

- Subtraction
The "-" operator subtracts one value from another.

Syntax

val = val_1 - val_2

Parameters

Notes

Please note that combining different variable types with the "-" opera-
tor will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

If you use "-" as a sign of a variable (unary operator), you may in some
cases get unexpected results, which can be avoided by using brackets
(see also chapter 3.4.1 on page 59).

See also

+ Addition, * Multiplication, / Division, ^ Power

Example
PAR_1 = 9 - 4 'PAR_1 = 5

val_1 Minuend.

val_2 Subtrahend.

FLOAT
LONG

FLOAT
LONG

LONG FLOAT

* Multiplication

ADbasic 4.20, Manual April 2006

ADwin

98

* Multiplication
The "*" operator mulitplies two values.

Syntax

val = val_1 * val_2

Parameters

Notes

Please note that combining different variable types with the "*"opera-
tor will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

See also

+ Addition, - Subtraction, / Division, ^ Power

Example
PAR_1 = 9 * 4 'PAR_1 = 36

val_1 Multiplicator 1.

val_2 Multiplicator 2.

FLOAT
LONG

FLOAT
LONG

LONG FLOAT

/ Division

ADbasic 4.20, Manual April 2006

ADwin

99

/ Division
The "/" operator divides one value by another.

Syntax

val = val_1 / val_2

Parameters

Notes

Please note that combining different variable types with the "/"opera-
tor will cause a type conversion (see chapter 3.4.2 on page 61). During
conversion from the type into the type rounding dif-
ferences can occur which influence the result.

If the divisor is a variable with a negative sign, you should use braces
to ensure you get the expected result (see also chapter 3.4.1 "Evalua-
tion of Operators" on page 59).

See also

+ Addition, - Subtraction, * Multiplication, ^ Power

Example
PAR_1 = 36 / 4 'PAR_1 = 9
PAR_2 = 2 / 4 'PAR_2 = 0 -> integer calculation
PAR_3 = 27 / (-PAR_1) 'PAR_3 = -3
'Please note the braces in the last line

val_1 Dividend.

val_2 Divisor.

FLOAT
LONG

FLOAT
LONG

LONG FLOAT

^ Power

ADbasic 4.20, Manual April 2006

ADwin

100

^ Power
The "^" operator calculates the value of a number raised to a power.

Syntax

val = val_1 ^ val_2

Parameters

Notes

Please note that combining different variable types with the power op-
erator will cause a type conversion. During conversion from the type

 into the type rounding differences can occur which
influence the result.

If basis and exponent are variables with even value (but not constants),
the power is nevertheless calculated using Float arithmetic. Large re-
sults therefore show the typical Float inaccuracy with large numbers.

Example:
PAR_2 = 31 ' variable
PAR_1 = 2^PAR_2 ' = 7FFFFFE2h

If the basis and/or the exponent are a variable with a negative sign, you
should use braces to ensure the sign will be considered upon expo-
nentiation (see also chapter 3.4.1 "Evaluation of Operators" on
page 59). This is not necessary with constants.
var1 = -2^2 'var1 = 4
var2 = -var1^2 'var2 = -16
var3 = (-var1)^2 'var3 = 16

Polynoms are calculated quicker, if you reduce powers by factoring out
receiving a multiplication.
y = a + b*x + c*x^2 + d*x^3 +e*x^4 'slower version
y = a + x*(b + x*(c + x*(d + x*e))) 'quicker version

val_1 Basis.

val_2 Exponent.

FLOAT
LONG

FLOAT
LONG

LONG FLOAT

^ Power

ADbasic 4.20, Manual April 2006

ADwin

101

See also

+ Addition, - Subtraction, * Multiplication, / Division, EXP, LN, LOG

Example
PAR_1 = 9 ^ 4 'PAR_1 = 6561

#…, Preprocessor Statement

ADbasic 4.20, Manual April 2006

ADwin

102

#…, Preprocessor Statement
An ADbasic instruction beginning with the "#" sign instructs the preprocessor
to treat the following source code differently. The output of the preprocessor
is further processed by the compiler.
The following preprocessor statements are available:

#DEFINE Definition of symbolic constants: Search and replace
character strings in the source code with other charac-
ter strings.

#INCLUDE Include a file: Insert a file (with source code) into the
source code.

#IF…#ENDIF

Conditional compilation: If the condition is true the cor-
responding code lines are compiled, otherwise deleted.

: Colon

ADbasic 4.20, Manual April 2006

ADwin

103

: Colon
The sign ":" separates more than one instruction within a single line.

Syntax

[Step_1] : [Step_2] {: [Step_3] …}

Notes

[Step_n] refers to any program instruction as is otherwise indicated
in one individual program line.

A program line must not be longer than 255 characters (exception see
#INCLUDE on page 155).

It is recommend that you use this instruction only when it makes the
source code more clearly-structured.

Example
INC PAR_1 : INC PAR_2
'Increase PAR_1 and PAR_2 in *one* line

=, Assignment

ADbasic 4.20, Manual April 2006

ADwin

104

=, Assignment
The operator "=" assigns the result of the expression on the right side of the
operator to the variable or the array element on the left side of the operator.

Syntax

var = expr

Parameters

Notes

If the data format of the expression is not similar to the data format of
the destination variable or the array, it is converted into the appropriate
data format or the assignment is rejected as illegal. During the conver-
sion rounding differences can occur which influence the result.

Example
DIM val_1, val_2 AS LONG'Declaration

INIT:
val_1 = 69 'Assignment of a constant

EVENT:
val_2 = val_1 * 2 'Assignment of an expression

var Variable or array.

expr Expression.

VAR FLOAT
LONG STRING

FLOAT LONG
STRING

< = > Comparison

ADbasic 4.20, Manual April 2006

ADwin

105

< = > Comparison
The operators "<", "=" and ">" are used to compare two values. In ADbasic
these operators can only be found in conditional expressions.

Syntax

IF (val_1 > val_2) THEN

Parameters

Notes

The following comparisons are possible:

See also

IF … THEN … {ELSE …} ENDIF, #IF … THEN … {#ELSE … } #ENDIF

Example
DIM value AS LONG
EVENT:
value = -5

 IF (value < 0) THEN value = 0
REM Result: value = 0

val_1 Operand.

val_2 Operand.

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

<> not equal to

FLOAT
LONG

FLOAT
LONG

ABSF

ADbasic 4.20, Manual April 2006

ADwin

106

ABSF
ABSF provides the absolute value of a float variable.

Syntax

ret_val = ABSF(value)

Parameters

Notes

The execution time of the function 150ns with a T9, 75ns with a T10,
17ns with a T11.

See also

ABSI

Example
DIM val_1, val_2 AS FLOAT
EVENT:
val_1 = -5.3
val_2 = ABSF(val_1) 'Result: val_2 = 5.3

value Argument.

ret_val Absolute value of the argument.

FLOAT

FLOAT

ABSI

ADbasic 4.20, Manual April 2006

ADwin

107

ABSI
ABSI provides the absolute value of a long variable.

Syntax

ret_val = ABSI(value)

Parameters

Notes

The execution time of the function 75ns with a T9, 50ns with a T10,
17ns with a T11.

See also

ABSF

Example
DIM val_1, val_2 AS LONG

EVENT:
 val_1 = -5
 val_2 = ABSI(val_1) 'Result: val_2 = 5

value Argument.

ret_val Absolute value of the argument.

LONG

LONG

AND

ADbasic 4.20, Manual April 2006

ADwin

108

AND
The operator AND combines two integer values bit by bit or two Boolean
expressions as Boolean operator.

Syntax

var = val_1 AND val_2 'bitwise operator

IF ((expr1) AND (expr2)) THEN 'Boolean operator

Parameters

Notes

With AND you can only combine expressions of the same type (integer
or Boolean) with each other, mixing them is not possible.

You can use Boolean operators only in statements such as IF … THEN
… ELSE or DO … UNTIL (variables cannot have Boolean values).

If you use several Boolean operators in one line, you have to put each
operation into separate parentheses. This is not necessary for combin-
ing integer values.

See also

NOT, OR, XOR

Example
REM Bitwise operator of LONG variables
DIM val_1, val_2, val3 AS LONG
val_1 = 0100b '= 4
val_2 = 0110b '= 5
val3 = val_1 AND val_2 'bitwise operator
REM Result: val3 = 0100b = 4

val_1, val_2 Integer value.

expr1, expr2 Boolean operator with the value "true" or
"false".

LONG

LOGIC

AND

ADbasic 4.20, Manual April 2006

ADwin

109

Or:
REM Boolean operation of Boolean expressions
DIM fval_1 AS FLOAT
DIM val4 AS LONG
fval_1 = 3.14

REM Boolean operation: (true AND true) = true
IF ((fval_1 < 9.1) AND (fval_1 > 3.1)) THEN
val4 = 1

ELSE
val4 = 0

ENDIF 'Result: val4 = 1

ARCCOS

ADbasic 4.20, Manual April 2006

ADwin

110

ARCCOS
ARCCOS provides the arc cosine of the argument.

Syntax

ret_val = ARCCOS(val)

Parameters

Notes

For val < -1 the value π (3.14159...) is returned, for val > 1 the value
0 (zero).

The execution time of the function 2.9µs with a T9, 1.45µs with a T10,
0.68µs with a T11.

See also

SIN, COS, TAN, ARCSIN, ARCTAN

Example
DIM val_1, val_2 AS FLOAT

EVENT:
 val_1 = 0.5
 val_2 = ARCCOS(val_1)
REM Result: val_2 = 1.0472

val Argument (-1 … +1).

ret_val Arc cosine of the argument in radians (0…π).

FLOAT

FLOAT

ARCSIN

ADbasic 4.20, Manual April 2006

ADwin

111

ARCSIN
ARCSIN provides the arc sine of the argument.

Syntax

ret_val = ARCSIN (val)

Parameters

Notes

The execution time of the function 2.8µs with a T9, 1.4µs with a T10,
0.67µs with a T11.

See also

SIN, COS, TAN, ARCCOS, ARCTAN

Example
DIM val_1, val_2 AS FLOAT

EVENT:
 val_1 = 0.5
 val_2 = ARCSIN(val_1)
REM Result: val_2 = 0.5236

val Argument (-1 … +1).

ret_val Arc sine of the arguments in radians
(-π/2 … +π/2).

FLOAT

FLOAT

ARCTAN

ADbasic 4.20, Manual April 2006

ADwin

112

ARCTAN
ARCTAN provides the arc tangent of the argument.

Syntax

ret_val = ARCTAN(val_1)

Parameters

Notes

The execution time of the function 1.8µs with a T9, 0.9µs with a T10,
0.42µs with a T11.

See also

SIN, COS, TAN, ARCSIN, ARCCOS

Example
DIM val_1, val_2 AS FLOAT

EVENT:
val_1 = 0.5
val_2 = ARCTAN(val_1)

'Result: val_2 = 0.4636

val_1 Argument (whole range of values, see "Enter-
ing Numerical Values" on page 47).

ret_val Arc tangent of the argument in radians
(-π/2…π/2).

FLOAT

FLOAT

ASC

ADbasic 4.20, Manual April 2006

ADwin

113

ASC
ASC determines the corresponding decimal value for a single ASCII character
or for the first character of a character string.

Syntax

ret_val = ASC(STRING)

Parameters

See also

STRING "", + String Addition, CHR, FLOTOSTR, FLO40TOSTR, LNG-
TOSTR, STRCOMP, STRLEFT, STRLEN, STRMID, STRRIGHT,
VALF, VALI

Example
DIM text[10] AS STRING

INIT:
 text="Hello"

EVENT:
 PAR_1=ASC(text) 'PAR_1 = 48h = 72
 PAR_2=ASC("?") 'PAR_1 = 3Fh = 63

string Character string .

ret_val ASCII number (0…255) of the (first) charac-
ter.

STRING

LONG

CAST_FLOATTOLONG

ADbasic 4.20, Manual April 2006

ADwin

114

CAST_FLOATTOLONG
CAST_FLOATTOLONG changes the data type of the argument from FLOAT into
LONG.

Syntax

ret_val = CAST_FLOATTOLONG(var)

Parameters

Notes

This function does not execute a standard type conversion of a num-
ber (see chapter 3.4.2 "Type Conversion", page 61). Use the operator
"=" for the assignment of a float value to an integer variable.

This instruction is to be reasonably used in combination with the inver-
se function CAST_LONGTOFLOAT, if there is a bit pattern representing
a float value but given with data type Long. Contrary to the data type
the bit pattern will remain unchanged, so it will again be interpreted as
the correct float value (see also chapter 3.2.3 on page 46).

An example of practice appears with data transfer: A CAN- or RSxxx-
bus only transfers 8-bit data packages of data type integer. Therefore,
a 32-bit float value has to be changed into data type long with CAST_
FLOATTOLONG and then divided into 4 separate 8-bit packages. The
receiver has to reassemble the packages again and restore the data
type float with CAST_LONGTOFLOAT.

See also

CAST_LONGTOFLOAT

var Bit pattern with data type LONG.

ret_val Identical bit pattern with data type FLOAT.

FLOAT

LONG

CAST_LONGTOFLOAT

ADbasic 4.20, Manual April 2006

ADwin

115

CAST_LONGTOFLOAT
CAST_LONGTOFLOAT changes the data type of the argument from LONG into
FLOAT.

Syntax

ret_val = CAST_LONGTOFLOAT(val)

Parameters

Notes

This function does not execute a standard type conversion of a num-
ber (see chapter 3.4.2 "Type Conversion", page 61). Use the operator
"=" for the assignment of a float value to an integer variable.

This instruction is to be reasonably used, if there is a bit pattern repre-
senting a float value but given with data type Long. Contrary to the data
type the bit pattern will remain unchanged, so it will again be interpret-
ed as the correct float value (see also chapter 3.2.3 on page 46).

An example of practice appears with data transfer: A CAN- or RSxxx-
bus only transfers 8-bit data packages of data type integer. Therefore,
a 32-bit float value has to be changed into data type long with CAST_
FLOATTOLONG and then divided into 4 separate 8-bit packages. The
receiver has to reassemble the packages again and restore the data
type float with CAST_LONGTOFLOAT.

See also

CAST_FLOATTOLONG

val Bit pattern with data type FLOAT.

ret_val Identical bit pattern with data type LONG.

LONG

FLOAT

CHR

ADbasic 4.20, Manual April 2006

ADwin

116

CHR
CHR assigns an ASCII character with a specified decimal number to a string
variable.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

CHR(vascii,dest_text)

Parameters

Notes

If a string variable has more than one character (or element), CHR as-
signs the ASCII character only to the first element of the string.

See also

STRING "", + String Addition, ASC, FLOTOSTR, FLO40TOSTR, LNG-
TOSTR, STRCOMP, STRLEFT, STRLEN, STRMID, STRRIGHT,
VALF, VALI

Example
IMPORT STRING.LI9

DIM text_a[1], text_b[1] AS STRING

EVENT:
CHR(13, text_a) 'Carriage Return
CHR(10, text_b) 'Line Feed

vascii Decimal number (0…255) of the desired
ASCII character.

dest_text String variable to which the character is
assigned.

LONG

STRING

COS

ADbasic 4.20, Manual April 2006

ADwin

117

COS
COS provides the cosine of an angle.

Syntax

ret_val = COS(angle)

Parameters

Notes

If you use input values which are not in the range of -π…+π, the calcu-
lation error grows with the increasing value.

The execution time of the function 1.3µs with a T9, 0.7µs with a T10,
0.31µs with a T11.

See also

SIN, TAN, ARCCOS, ARCSIN, ARCTAN

Example
DIM val_1, val_2 AS FLOAT
EVENT:
val_1 = -5.3
val_2 = COS(val_1) 'Result: val_2 = 0.55…

angle Angle in radians (-π…π).

ret_val Cosine of the angle (-1…1).

FLOAT

FLOAT

CPU_SLEEP

ADbasic 4.20, Manual April 2006

ADwin

118

CPU_SLEEP

Processor T11 only: CPU_SLEEPcauses the processor to wait for a certain
time.Syntax

CPU_SLEEP(val)

Parameters

Notes

Alternatively there are the instructions P1_SLEEP and P2_SLEEP (see
also chapter 4.2.4 "Setting Waiting Times Exactly"). For processors up
to T10 use the instruction SLEEP.

The waiting time should always be smaller than the cycle time set with
PROCESSDELAY.

In a high-priority process the instruction CPU_SLEEP cannot be inter-
rupted. Thus, very high values in high-priority processes can cause an
interruption in the communication to the PC.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array ele-
ments.

• The variable in the argument is declared in the memory area
DRAM_EXTERN. The time interval may vary because it depends
on several conditions.

• The argument is an array.
• The argument is a floating point value.

See also

NOP, P1_SLEEP, P2_SLEEP, SLEEP

val Number (9…715827879 ≈ 230 / 1.5) of time
units to wait in 10ns.

LONG

CPU_SLEEP

ADbasic 4.20, Manual April 2006

ADwin

119

Example
EVENT:
REM Wait to start a subsequent measurement exactly 100 µs
REM after the external Event signal.
CPU_SLEEP(10000)
…

DATA_n

ADbasic 4.20, Manual April 2006

ADwin

120

DATA_n
The DIM DATA_n[…] AS … instruction dimensions a global DATA array.
More information about dimensing with DIM see page 125.

Syntax

DIM DATA_n[dim1] {, DATA_n[dim2]} AS <ARR_TYPE> {AT
<MEM_TYPE>}

DIM DATA_n[dim1]{[dim2]} AS <ARR_TYPE> {AT <MEM_TY-
PE>}

Parameters

Notes

You can access the array elements 1…dim. The array element [0]
must not be used since it is used for internal purpose.
The maximum array size depends on the available physical memory
size of the ADwin system.

A global array may be declared 2-dimensional. The specifics are de-
scribed in chapter 3.3.3 on page 53.

See also

DIM, FIFO, "2-dimensional Arrays" on page 53,
"Variables and Arrays in the Data Memory" on page 51

DATA_n Name of the declared DATA array (n: 1…200).

<ARR_TYPE> Data type: FLOAT, LONG, STRING.

dim1, dim2 Array size: Number of the array elements of
the type ARR_TYPE (≥1).

<MEM_TYPE> memory, where the array elements are
stored:

DRAM_EXTERN: external data memory
(Default).

DM_LOCAL: internal data memory.
available for T11 only:
EM_LOCAL: extended program or data

memory.

CONST
LONG

DATA_n

ADbasic 4.20, Manual April 2006

ADwin

121

Example
REM Dimension the global array DATA_20 with
REM 1000 LONG elements
DIM DATA_20[1000] AS LONG

REM Dimension the global array DATA_5 with
REM 20 x 75 FLOAT elements
DIM DATA_5[20][75] AS FLOAT

DEC

ADbasic 4.20, Manual April 2006

ADwin

122

DEC
DEC decrements the value of a long-variable by 1.

Syntax

DEC(var)

Parameters

Notes

The instruction DEC(var) provides the same result as the program li-
ne: val=val-1 and it may have shorter execution time.

See also

INC, - Subtraction

Example
DIM index AS LONG
DIM DATA_1[1000] AS LONG

INIT:
index=1000

EVENT:
DAC(1,DATA_1[index]) 'Output the value on DAC1
DEC(index) 'Decrement the index by 1
IF (index<1) THEN
index=1000 'Start again after 1000 outputs

ENDIF

var Name of a local or global long-variable. VAR
CONST
LONG

#DEFINE

ADbasic 4.20, Manual April 2006

ADwin

123

#DEFINE
#DEFINE replaces a symbolic name in the source code with an expression, for
instance a constant.

Syntax

#DEFINE name expression

Parameters

Notes

Place this instruction at the beginning of a source code.

The function #DEFINE is a preprocessor instruction, that means the re-
placement is made when you compile the source code (even before
the compiler generates the program). Use this function in order to use
more descriptive names in the source code instead of constants, para-
meters or expressions.

The first character string up to a blank is interpreted as a symbolic na-
me, the following text until the carriage return is interpreted as an ex-
pression to be inserted1. The expression is inserted exactly as you
have defined it; variable names in the expression are not replaced by
their value, but as a character string.

Neither name nor expression are case-sensitive.

If you want to use a mathematical term for expression, we recom-
mend it be placed in parenthesis to avoid errors (see examples).

See also

#INCLUDE

name Symbolic name, without quotation marks.
Special chars are not allowed, only alphanu-
meric characters (a…z, A…Z, 0…9) and the
underscore (_).

expression Expression for the symbolic name, without
quotation marks.
All characters are allowed.

1. Text behind a comment char "'" will be ignored by the compiler.

CONST
STRING

CONST
STRING

#DEFINE

ADbasic 4.20, Manual April 2006

ADwin

124

Example
#DEFINE setpoint PAR_1 'Comments like this are ignored
#DEFINE measured DATA_1
#DEFINE pi 3.141592654

With these instructions you can use the names setpoint, measured
and pi in the source code instead of PAR_1 , DATA_1 and
3.141592654.

#DEFINE setpoint (13 + 4^3)
PAR_1 = 2 * setpoint '= 2 * (13 + 4^3)

Without the parentheses in the #DEFINE expression you would get the
value "90" instead of the expected "154".

DIM

ADbasic 4.20, Manual April 2006

ADwin

125

DIM
DIM declares one or more

– local variables

– local one-dimensional arrays (also strings)

– global one-dimensional arrays (DATA_n[n])

– global two-dimensioned arrays (DATA_n[n][m].
Information about variables and data types can be found in chapter 3.2.3,
information about FIFO arrays under the heading FIFO on page 133.

DIM

ADbasic 4.20, Manual April 2006

ADwin

126

Syntax

DIM var1 {, var2, …} AS <VAR_TYPE>

DIM array1[dim1] {, array2[dim2]} AS <VAR_TYPE>
{AT <MEM_TYPE>}

DIM DATA_n[dim1] {, DATA_n[dim2]} AS <VAR_TYPE>
{AS FIFO} {AT <MEM_TYPE>}

DIM DATA_n[dim1][dim2] AS <VAR_TYPE> {AT <MEM_TYPE>}

Parameters

Notes

The global variables PAR_n and FPAR_n must not be declared, becau-
se they are predefined.

If you want to access data from the computer or from several proces-
ses, you can only do this by using global variables and arrays.

In an array you can access the elements 1…dim. The array element
[0] must not be used, because it is used for internal purposes.
The maximum array size depends on the physical memory on the
ADwin system.

String variables are local arrays of type (see "Strings" on
page 56). They cannot be declared as FIFO.

var1, var2 Names of the declared variables.

array1 ,
array2 ,
DATA_n

Names of the declared arrays. For DATA_n
you can select n from 1…200.

<VAR_TYPE> Data type: FLOAT, LONG.
for arrays also: STRING.

dim1, dim2 Array size: Number (≥1) of the array elements
of the type VAR_TYPE.

<MEM_TYPE> Memory where the variables are stored:
DRAM_EXTERN: external memory (default for arrays).
DM_LOCAL:local memory (default for variables).
available for T11 only:
EM_LOCAL: extended program or data memory.

CONST
LONG

FLOATLONGSTRING

DIM

ADbasic 4.20, Manual April 2006

ADwin

127

See also

DATA_n, EVENT:, FIFO, FINISH:, INIT:, LOWINIT:, STRING "", "2-di-
mensional Arrays" on page 53, "Variables and Arrays in the Data Me-
mory" on page 51

Example
REM Dimension var1 as LONG variable
DIM var1 AS LONG

REM Dimension the local array "array1" with 1000 LONG elements
DIM array1[1000] AS LONG

REM Dimension the global array DATA_20 with
REM 1000 LONG elements as ring buffer
DIM DATA_20[1000] AS LONG AS FIFO

REM Dimension the array TEXT with
REM 50 elements as string variable
DIM text[50] AS STRING

DO … UNTIL

ADbasic 4.20, Manual April 2006

ADwin

128

DO … UNTIL
DO…UNTIL repeatedly executes a block of instructions until the exit condition
evaluates to "true". The block is executed at least one time.

Syntax

DO

… 'Instruction block

UNTIL (condition)

Parameters

See also

< = > Comparison, AND, OR, FOR … TO … {STEP …} NEXT, SE-
LECTCASE

Notes

You can nest DO…UNTIL loops repeatedly; only the available memory
size will limit the number of nested loops.

Avoid loops with long execution times in high-priority processes, be-
cause they cannot be interrupted.

Example
DIM count AS LONG
DIM DATA_1[100] AS LONG AS FIFO

INIT:
count = 1

EVENT:
DO 'Start loop
DATA_1 = ADC(1,4) 'Read out measurement value
INC count 'Increase count variable

UNTIL (count > 100) 'Are 100 measurements being made?

condition Boolean abort condition with the operators <,
>, =, AND and OR.

LOGIC

END

ADbasic 4.20, Manual April 2006

ADwin

129

END
END ends a process in the EVENT: section.

Syntax

END

Notes

The instruction END stops the processing of an EVENT:section imme-
diately and starts processing the section FINISH: (if existing). Any in-
structions in the EVENT: section following the END instruction are not
processed.

In the other program sections you should use the EXIT instruction in-
stead of END.

See also

EXIT, PROZESSn_RUNNING, RESTART_PROCESS, START_PRO-
CESS, START_PROCESS_DELAYED, STOP_PROCESS

Example
EVENT:
IF (ADC(1) > 3000) THEN'Measure and compare
END 'End process, but execute FINISH:

ENDIF

FINISH:
SET_DIGOUT(1) 'Set digital output 1

EVENT:

ADbasic 4.20, Manual April 2006

ADwin

130

EVENT:
The keyword EVENT: marks the start of the main program section, which is
called every Event signal.

Syntax

EVENT: {AT <MEM_TYPE>}

Parameters

Notes

See also overview of program sections in chapter 3.1.1 on page 43.

The program section EVENT: is the central functional section, which in
a process is called in (typically) regular intervals, until it is stopped. De-
pending on the settings the call is triggered by a cyclic timer event si-
gnal or by an external event signal. See more in chapter 5 "Processes
in the ADwin Operating System".

The processor type T11 can store each program section in a different
memory area (see chapter 3.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FI-
NISH:.

See also

DIM, LOWINIT:, INIT:, FINISH:

Example
DIM val_1 AS FLOAT

EVENT:
val_1 = -5.3

<MEM_TYPE> T11 only: memory area, where the program section
EVENT: is stored.

PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data

memory.DRAM_EXTERN: external data memory.

EXIT

ADbasic 4.20, Manual April 2006

ADwin

131

EXIT
EXIT ends a process in the sections LOWINIT:, INIT: or FINISH:.

Syntax

EXIT

Notes

The process is immediately stopped. Program lines following EXIT in
the same section, will not be executed.

Use the instruction END in the section EVENT:.

See also

END, PROZESSn_RUNNING, RESET_EVENT, RESTART_PRO-
CESS, START_PROCESS, START_PROCESS_DELAYED, STOP_
PROCESS

Example
INIT:
IF (ADC(1) > 3000) THEN 'Measure and compare
SET_DIGOUT(0) 'Set digital output
EXIT 'End this process

ENDIF

EXP

ADbasic 4.20, Manual April 2006

ADwin

132

EXP
EXP calculates the power to the base e of the argument.

Syntax

ret_val = EXP(val)

Parameters

Notes

The execution time of the function 1.3µs with a T9, 0.7µs with a T10,
0.31µs with a T11.

See also

LN, LOG

Example
DIM val_1, val_2 AS FLOAT

EVENT:
 val_1 = 5
 val_2 = EXP(val_1) 'Result: val_2 = 148.41…

val Argument.

ret_val Exponential value of the argument to the
base e.

FLOAT

FLOAT

FIFO

ADbasic 4.20, Manual April 2006

ADwin

133

FIFO
The DIM DATA_n AS FIFO instruction defines a global DATA array as a ring
buffer.

Syntax

DIM DATA_n[dim] AS <ARR_TYPE> AS FIFO

Parameters

Notes

Once a DATA array is defined as FIFO ring buffer (see also
chapter 3.3.3 on page 53), it cannot be used as a "normal" array.

FIFO arrays (first in, first out) are managed by data pointers. After di-
mensioning the array you should initialize these data pointers with the
instruction FIFO_CLEAR, in the section LOWINIT: or INIT:. The data
in the FIFO are not changed neither by dimensioning the array nor by
initializing.

If you write data into a FIFO array faster than you read it, older stored
data will be overwritten and are lost. To avoid this you can use the in-
structions FIFO_EMPTY and FIFO_FULL to determine the amount of
space in the array.

If (with processor T11 only) the array size is set to a non-valid array size
dim, the FIFO array is automatically dimensioned using the next great-
er and valid array size. As an example the compiler will change an ar-
ray size [1000] automatically to [1003].

See also

DIM, DATA_n, FIFO_CLEAR, FIFO_EMPTY, FIFO_FULL

DATA_n Name of the declared DATA-field (n: 1…200).

<ARR_TYPE> Defined variable type: FLOAT, LONG.

dim Array size: Number of elements of type
ARR_TYPE in the array.
With processor T11 the range for dim it be set
in steps of 4 only:
dim = 4 × a + 3; a ≥ 0.

FIFO

ADbasic 4.20, Manual April 2006

ADwin

134

Example
REM Dimension the global array DATA_20 with
REM 1000 LONG elements as ring buffer
DIM DATA_20[1000] AS LONG AS FIFO

FIFO_CLEAR

ADbasic 4.20, Manual April 2006

ADwin

135

FIFO_CLEAR
FIFO_CLEAR initializes the write and read pointers of a FIFO array.

Syntax

FIFO_CLEAR(arraynum)

Parameters

Notes

Initalization of the write and read pointers does not change the data in
the the array.

The FIFO pointers are not initialized upon dimensioning. You should in-
itialize the pointers in the sections LOWINIT: or INIT: with FIFO_
CLEAR.

Initializing the FIFO pointers during program run is useful, if you want
to clear all data of the array (because of a measurement error for in-
stance).

See also

FIFO, FIFO_EMPTY, FIFO_FULL

arraynum Number of the DATA-FIFO array (1…200). LONG

FIFO_CLEAR

ADbasic 4.20, Manual April 2006

ADwin

136

Example
DIM DATA_1[20000] AS LONG AS FIFO 'Declaration
DIM reinit_fifo_flag AS LONG

INIT:
FIFO_CLEAR(1) 'Initialize the FIFO pointer

EVENT:
REM Query the number of empty places in the FIFO array
IF (FIFO_EMPTY(1) > 1) THEN
REM Measure the analog input 1 and save it in the FIFO
DATA_1 = ADC(1)

ENDIF
.
. 'Program Text
.
IF (reinit_fifo_flag) THEN 'e.g. error occurred
FIFO_CLEAR(1) 'Initialize the FIFO pointer

ENDIF

FIFO_EMPTY

ADbasic 4.20, Manual April 2006

ADwin

137

FIFO_EMPTY
FIFO_EMPTY determines the number of empty elements in a FIFO array.

Syntax

ret_val = FIFO_EMPTY(arraynum)

Parameters

Notes

If you want to write data into a FIFO array, you can use this instruction,
to determine if the FIFO still has enough empty elements.

See also

FIFO, FIFO_CLEAR, FIFO_FULL

Example
DIM DATA_1[20000] AS LONG AS FIFO'Declaration

INIT:
FIFO_CLEAR(1) 'Initialize the FIFO pointer

EVENT:
REM Query the number of empty elements in the FIFO array
IF (FIFO_EMPTY(1) > 1) THEN
REM Measure the analog input 1 and save it in the FIFO
DATA_1 = ADC(1)

ENDIF

arraynum Number of the DATA-FIFO-array (1…200).

ret_val Number of the empty array elements.

LONG

LONG

FIFO_FULL

ADbasic 4.20, Manual April 2006

ADwin

138

FIFO_FULL
FIFO_FULL determines the number of elements used in the FIFO array.

Syntax

ret_val = FIFO_FULL(arraynum)

Parameters

Notes

Before reading out or using data from the FIFO array, you should use
this instruction, to check if there is data in the FIFO. If there is no data
an undefined value is returned from the FIFO array.

See also

FIFO, FIFO_CLEAR, FIFO_EMPTY

Example
DIM DATA_1[20000] AS LONG AS FIFO 'Declaration

INIT:
FIFO_CLEAR(1) 'Initialize the FIFO pointer

EVENT:
REM Query if there are data in the FIFO
IF (FIFO_FULL(1) > 0) THEN
REM Output a FIFO value on the analog output 1
DAC(1, DATA_1)

ENDIF

arraynum Number of the DATA-FIFO-array (1…200).

ret_val Number of the occupied array elements
(0…dim).

LONG

LONG

FINISH:

ADbasic 4.20, Manual April 2006

ADwin

139

FINISH:
The key word FINISH: marks the start of the finishing program section. The
program section always has low-priority, level 1.

Syntax

FINISH: {AT MEM_TYPE}

Parameters

Notes

See also overview of program sections in chapter 3.1.1 on page 43.

The program section FINISH: is run once as soon as the process is
stopped.

The processor type T11 can store each program section in a different
memory area (see chapter 3.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FI-
NISH:.

See also

DIM, LOWINIT:, INIT:, EVENT:

Example
DIM val_1 AS FLOAT

FINISH:
val_1 = -5.3

<MEM_TYPE> T11 only: memory area, where the program section
EVENT: is stored.

PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data

memory.DRAM_EXTERN: external data memory.

FLOTOSTR

ADbasic 4.20, Manual April 2006

ADwin

140

FLOTOSTR
FLOTOSTR converts a floating point value into a character string.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

FLOTOSTR(val, string[])

Parameters

Notes

The length of the returned string varies from 11 to 13 characters, de-
pending on the sign of mantissa and exponent.

See also

ASC, CHR, FLO40TOSTR, LNGTOSTR, STRING "", STRCOMP,
STRLEFT, STRLEN, STRMID, STRRIGHT, VALF, VALI

val Value to be converted.

string[] String in the format:
{-}#.######E{-}##.

FLOAT

ARRAY
STRING

FLOTOSTR

ADbasic 4.20, Manual April 2006

ADwin

141

Example
IMPORT STRING.LI9 'String library for the T9

DIM text[13] AS STRING
DIM pi, number AS FLOAT

INIT:
pi = 3.141592654
FPAR_1 = -pi^-20

EVENT:
REM Convert a floating point number into a string
FLOTOSTR(FPAR_1, text)
PAR_1 = text[1] 'String length = 13
PAR_2 = text[2] 'ASCII character 2Dh = "-"
PAR_3 = text[3] 'ASCII character 31h = "1"
PAR_4 = text[4] 'ASCII character 2Eh = "."
PAR_5 = text[5] 'ASCII character 31h = "1"
PAR_6 = text[6] 'ASCII character 34h = "4"
PAR_7 = text[7] 'ASCII character 30h = "0"
PAR_8 = text[8] 'ASCII character 32h = "2"
PAR_9 = text[9] 'ASCII character 35h = "5"
PAR_10 = text[10] 'ASCII character 35h = "5"
PAR_11 = text[11] 'ASCII character 45h = "E"
PAR_12 = text[12] 'ASCII character 2Dh = "-"
PAR_13 = text[13] 'ASCII character 31h = "1"
PAR_14 = text[14] 'ASCII character 30h = "0"
PAR_15 = text[15] 'String end character = 0

FLO40TOSTR

ADbasic 4.20, Manual April 2006

ADwin

142

FLO40TOSTR
Processor T11 only: FLO40TOSTR converts a floating point value into a cha-
racter string.

Syntax

IMPORT STRING.LI* '*.LIB for T11

FLO40TOSTR(val, string[])

Parameters

Notes

The length of the returned string varies from 13 to 15 characters, de-
pending on the sign of mantissa and exponent.

See also

ASC, CHR, FLOTOSTR, LNGTOSTR, STRING "", STRCOMP, STR-
LEFT, STRLEN, STRMID, STRRIGHT, VALF, VALI

val Value to be converted.

string[] String in the format:
{-}#.########E{-}##.

FLOAT

ARRAY
STRING

FLO40TOSTR

ADbasic 4.20, Manual April 2006

ADwin

143

Example
IMPORT STRING.LIB 'String library for T11

DIM text[15] AS STRING
DIM pi, number AS FLOAT

INIT:
pi = 3.141592654
FPAR_1 = -pi^-20

EVENT:
REM Convert a floating point number into a string
FLO40TOSTR(FPAR_1, text)
PAR_1 = text[1] 'String length = 13
PAR_2 = text[2] 'ASCII character 2Dh = "-"
PAR_3 = text[3] 'ASCII character 31h = "1"
PAR_4 = text[4] 'ASCII character 2Eh = "."
PAR_5 = text[5] 'ASCII character 31h = "1"
PAR_6 = text[6] 'ASCII character 34h = "4"
PAR_7 = text[7] 'ASCII character 30h = "0"
PAR_8 = text[8] 'ASCII character 32h = "2"
PAR_9 = text[9] 'ASCII character 35h = "5"
PAR_10 = text[10] 'ASCII character 35h = "6"
PAR_11 = text[11] 'ASCII character 35h = "4"
PAR_12 = text[12] 'ASCII character 35h = "7"
PAR_13 = text[13] 'ASCII character 45h = "E"
PAR_14 = text[14] 'ASCII character 2Dh = "-"
PAR_15 = text[15] 'ASCII character 31h = "1"
PAR_16 = text[16] 'ASCII character 30h = "0"
PAR_17 = text[17] 'String end character = 0

FOR … TO … {STEP …} NEXT

ADbasic 4.20, Manual April 2006

ADwin

144

FOR … TO … {STEP …} NEXT
The FOR…NEXT instruction creates a program loop which executes a speci-
fied number of times.

Syntax

FOR i = X TO Y {STEP Z}

… 'instruction block

NEXT i

Parameters

Notes

The instruction block is executed at least once, even if the start value
X is greater than the end value Y.

Declare the count variable as LONG variable.

A high priority process cannot be interrupted by another process,
which is also true while executing a time intensive FOR...NEXT loop.
Since the ADwin processor cannot respond to other events in this time,
it is important to keep the number of loops small for high priority pro-
cesses.

See also

DO … UNTIL, IF … THEN … {ELSE …} ENDIF, SELECTCASE

i Count variable.

X Start value of the run variable.

Y End value of the run variable.

Z Step length (≥1) of the run variable; default: 1.

LONG

LONG

LONG

LONG

FOR … TO … {STEP …} NEXT

ADbasic 4.20, Manual April 2006

ADwin

145

Example
DIM index AS LONG
DIM sinus[360] AS FLOAT'Array for sine values
DIM pi AS FLOAT

INIT:
pi = 3.14159
REM Calculate the sine values in degrees (0° to 359°)
FOR index = 1 TO 360
sinus[index] = (2047*SIN((index - 1) * 2*pi/360))

NEXT index
index = 1 'Initialize the count index

EVENT:
DAC(1, sinus[index]) 'Output the amplitude value
INC index 'Increase the count index
REM From 360 degrees onward, restart at 0
IF (index > 360) THEN index = 1

FUNCTION … ENDFUNCTION

ADbasic 4.20, Manual April 2006

ADwin

146

FUNCTION … ENDFUNCTION
FUNCTION…ENDFUNCTION is used to define a function macro with passed
and returned values.

Syntax

FUNCTION macro_name({val_1, val_2, …}) AS <VAR_TYPE>

{DIM var AS <VAR_TYPE>}

… 'instruction block

macro_name = … 'assign return value

ENDFUNCTION

Parameters

Notes

You will find general information about macros in chapter 3.5.1 on
page 63.

This instruction defines a function macro, which means that the whole
instruction block between FUNCTION and ENDFUNCTION is inserted
any place where the macro is called.

Functions help to make your source code more clearly-structured.
Please note that each function call will increase the size of the com-
piled file.

macro_name Name of the function and of the return value,
data type <VAR_TYPE>.

val_1, val_2 Names of passed parameters;
for arrays use the syntax with dimension
brackets: array[] or DATA_n[].

<VAR_TYPE> Data type of the function and the return
parameter: FLOAT or LONG, but not STRING.

FLOAT
LONG

STRING

FUNCTION … ENDFUNCTION

ADbasic 4.20, Manual April 2006

ADwin

147

You may insert functions at the following 3 locations:

1. Before the section INIT:/LOWINIT:

2. After the section FINISH:

3. In a separate file which you include with the instruction #INCLUDE
(only in locations described in 1. and 2.).

Please note the following when defining functions:
• no process sections such as LOWINIT:, INIT:, EVENT:, or

FINISH: can be defined.
• local variables can be defined at the beginning, which are only

available in the function and for the processing period.
This is true even when a variable has the same name as a vari-
able outside of the function.

• a value should be assigned to the function name, which will be
the returned value for the function in the source code.

A function is called with its name and with the arguments you have de-
fined; the function must be used as argument in the calling program li-
ne, e.g. in an assignment (see example). All expression types
(including one- and two-dimensional arrays) are allowed as argu-
ments, as long as they have the appropriate data type.
If you don’t define arguments you neverthelesse have to use the (em-
pty) braces for the function’s call: name().

If an array is used as a passed parameter the syntax is different for def-
inition and call:

• definition of function with dimension brackets:
FUNCTION name(array[]) …

• call of function without dimension brackets:
ret_val=name(array)

If a value is assigned to a passed parameter within the function, the
function’s call must use a variable or a single array element as argu-
ment for this parameter.

If a passed parameter is part of an expression inside a function the pa-
rameter should be set in braces. This avoids problems with the order
of operator evaluation.

See also

#INCLUDE, SUB … ENDSUB, LIB_FUNCTION … LIB_ENDFUNC-
TION, LIB_SUB … LIB_ENDSUB

FUNCTION … ENDFUNCTION

ADbasic 4.20, Manual April 2006

ADwin

148

Example
FUNCTION average(w1, w2, w3) AS FLOAT
REM The function calculates the mean of the values
REM w1, w2 und w3
DIM sum AS FLOAT
sum = w1 + w2 + w3
average = sum/3

ENDFUNCTION

Calling the function e.g. is done by the following program lines:
x = average(x1, x2, x3)
DAC(1,average(x1, x2, x3))

The same function with an array as passed parameter:
FUNCTION average_array(array[]) AS FLOAT
average_array=(array[1] + array[2] + array[3])/3

ENDFUNCTION

Calling this function is made in a similar manner (but without dimension
brackets):
x = average_array(array)
DAC(1,average_array(array))

For array you can indicate a global or a local array. Enter the array
name only, without element number and brackets.

IF … THEN … {ELSE …} ENDIF

ADbasic 4.20, Manual April 2006

ADwin

149

IF … THEN … {ELSE …} ENDIF
The IF…THEN control structure is used to conditionally execute a single
instruction (IF…THEN…) or a block of instructions (IF … THEN … ELSE …
ENDIF).

Syntax

IF (condition) THEN

… 'Instruction block

{ELSE 'the else-block is optional

… 'Instruction block }

ENDIF

or

IF (condition) THEN instr

Parameters

Notes

You can nest IF structures repeatedly; only limited by the available
memory.

The instruction block after ELSE (if there is one) is executed faster than
the one after IF…THEN. This can be used to speed up the total exe-
cution time of the EVENT:section, by putting the condition that has
most common state, int ehe ELSE statement, for instance when you
check if limit values are exceeded.

In the single-line version, the instruction cannot call a subroutine macro
(SUB) nor a function macro (FUNCTION).

condition Boolean condition with the operators <, >,
=, AND and OR.
If the condition is "true" the instructions after
THEN are executed.

instr Instruction (corresponds to an instruction
line).

LOGIC

IF … THEN … {ELSE …} ENDIF

ADbasic 4.20, Manual April 2006

ADwin

150

See also

< = > Comparison, AND, OR, DO … UNTIL, SELECTCASE

Example
DIM val AS LONG 'Declaration

EVENT:
val = ADC(1) 'Acquire measurement value

IF (val > 3000) THEN 'Limit value is exceeded:
CLEAR_DIGOUT(1) 'Reset DIGOUT 1
SET_DIGOUT(0) 'Set DIGOUT 0

ELSE 'Limit value is not exceeded:
CLEAR_DIGOUT(0) 'Reset DIGOUT 0
SET_DIGOUT(1) 'Set DIGOUT 1

ENDIF 'End of control structure

#IF … THEN … {#ELSE … } #ENDIF

ADbasic 4.20, Manual April 2006

ADwin

151

#IF … THEN … {#ELSE … } #ENDIF

This preprocessor structure is used to conditionally compile a block of instruc-
tions (#IF…THEN…#ELSE…#ENDIF).

Syntax

#IF condition THEN

… 'instruction block

{#ELSE 'the else-block is optional

… 'instruction block}

#ENDIF

Parameters

Notes

The condition may only use the operator "="; neither Boolean conditi-
ons using AND and OR nor bracing is allowed. You can nest IF struc-
tures repeatedly; only limited by the available memory.

condition Boolean condition (no braces or quotation
marks) of the form:

<SYSPAR> = value

If the condition is "true" the instructions
after THEN are executed.
The system parameter <SYSPAR> and the
corresponding value are shown in the table
below:

<SYSPAR> value Meaning

ADWIN_
SYSTEM

ADWIN_CARD
ADWIN_GOLD
ADWIN_L16
ADWIN_PRO

"System" setting in the window
"Compiler Options".

PROZESSOR T9
T10
T11

"Processor" setting in the win-
dow "Compiler Options".

LOGIC

#IF … THEN … {#ELSE … } #ENDIF

ADbasic 4.20, Manual April 2006

ADwin

152

There is no single-line version as with IF…THEN.

When calling the compiler via Command Line Calling (see page A-11)
the system parameters refer to the command line options /Sx and
/Px.

See also

< = > Comparison, IF … THEN … {ELSE …} ENDIF

Beispiel
REM set low priority processdelay to 800µs
#IF PROZESSOR = T11 THEN 'If CPU = T11
REM T11: 800µs = 240000 x 3,3ns
PROCESSDELAY = 240000

#ELSE
#IF PROZESSOR = T10 THEN 'If CPU = T10
REM T10: 800µs = 16 x 50µs
PROCESSDELAY = 16

#ELSE 'other CPU, here: CPU = T9
REM T9: 800µs = 8 x 100µs (also other CPUs)
PROCESSDELAY = 8

#ENDIF
#ENDIF

IMPORT

ADbasic 4.20, Manual April 2006

ADwin

153

IMPORT
IMPORT includes functions and subroutines from the specified library file
during compilation.

Syntax

IMPORT {path}file

Parameters

Notes

Insert IMPORT instructions at the beginning of your source code (befo-
re you declare the variables). If you import several library files in a pro-
gram, you have to also IMPORT the files in any functions you call that
use these instructions.

Only those functions and subroutines which you call in your source
code are imported from the library file.

You should always indicate the complete path name, otherwise only
the standard directory is searched. (See Options Menu Directory
Sheet, page 24). Use the back slash "\" in the path name to separate
directory names.

See also

#INCLUDE, LIB_FUNCTION … LIB_ENDFUNCTION, LIB_SUB …
LIB_ENDSUB

Example
IMPORT STRING.LI9 'Imports the string library for

'the T9 processor
IMPORT C:\MyFiles\ADwinLibs\dig2volt.LIA 'Imports a user

'library for the T10 processor

file File name of the library file without
inverted commas. The file extension is
.LI9 for T9, .LIA for T10, .LIB for T11.

path Path name of the library file (with drive), with-
out inverted commas.

CONST
STRING

CONST
STRING

INC

ADbasic 4.20, Manual April 2006

ADwin

154

INC
INC increments the value of a local or global integer variable by one.

Syntax

INC(var)

Parameters

Notes

The instruction INC(val) is equivalent the program line: val=val+1
and it may have shorter execution time.

See also

DEC, + Addition

Example
DIM index AS LONG
DIM DATA_1[1000] AS LONG

INIT:
index=1

EVENT:
DATA_1[index] = ADC(1)'Transfer the measurement value into

'the array
INC(index) 'Increment index by 1
IF (index>1000) THEN END 'End the program after

'1000 measurements

var Name of a local or global long-variable. VAR
CONST
LONG

#INCLUDE

ADbasic 4.20, Manual April 2006

ADwin

155

#INCLUDE
#INCLUDE includes all the contents of an include-file into the source code.

Syntax

#INCLUDE {path}filename

Parameters

Notes

You find general information about include-files in chapter 3.5.2 on
page 64.

Insert the #INCLUDE instructions at the beginning of your source code
(before you declare the variables). You can import other include-files in
the source code of an include-file.

If any include-file uses library functions, you have also to include the
corresponding library files with IMPORT.

You should always indicate the complete path name, otherwise only
the standard directory is searched (see Options Menu Directory
Sheet, page 24). Use the back slash "\" in the path name to separate
directory names.

Please note: A program line with an #INCLUDE instruction should not
exceed 136 characters (maximum length for other lines see
page 103). Any further character of this line will not be processed by
the compiler.

See also

#DEFINE, IMPORT, FUNCTION … ENDFUNCTION,
SUB … ENDSUB

Example
#INCLUDE C:\Test\demofunc.inc
#INCLUDE demofunc.inc 'find file in standard directory

filename Name of the file to be included (with the exten-
sion .inc), without quotes.

path Complete path with drive.

CONST
STRING

CONST
STRING

INIT:

ADbasic 4.20, Manual April 2006

ADwin

156

INIT:
The keyword INIT: marks the start of the initializing program section.

Syntax

INIT: {AT <MEM_TYPE>}

Parameters

Notes

See also overview of program sections in chapter 3.1.1 on page 43.

The program section INIT: is run once as soon as the process is star-
ted and (if existing) the program section LOWINIT: is finished.

The program section has the priority as set for the process (menu entry
"Options / Process"). With high priority the section cannot be inter-
rupted and should then be as short as possible.

The processor type T11 can store each program section in a different
memory area (see chapter 3.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FI-
NISH:.

See also

DIM, LOWINIT:, EVENT:, FINISH:

Beispiel
DIM val_1 AS FLOAT
INIT:
val_1 = -5.3

<MEM_TYPE> T11 only: memory area, where the program section
EVENT: is stored.

PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data

memory.DRAM_EXTERN: external data memory.

LIB_FUNCTION … LIB_ENDFUNCTION

ADbasic 4.20, Manual April 2006

ADwin

157

LIB_FUNCTION … LIB_ENDFUNCTION
With LIB_FUNCTION…LIB_ENDFUNCTION a function with passed and
return parameters is defined in a library file.

Syntax

LIB_FUNCTION lib_name(<LIB_PAR1> {, <LIB_PAR2>, …})
AS <FCT_TYPE>

{DIM var AS <VAR_TYPE>}

{#DEFINE name expression}

… 'Instruction block

name = …

LIB_ENDFUNCTION

Syntax of passed parameters <LIB_PAR>::
<BY_TYPE> var_name AS <VAR_TYPE> {AT <MEM_TYPE>}

LIB_FUNCTION … LIB_ENDFUNCTION

ADbasic 4.20, Manual April 2006

ADwin

158

Parameters

Notes

You will find general information about library files in chapter 3.5.3 on
page 64.

Generate library functions (and library subroutines) in a separate sour-
ce code file. The compilation with "Build/Make lib file" creates
the library file. With IMPORT those library modules are included into a
process which are being called in the process.

In a library function you
• can declare and use local variables and arrays (only one-

dimensional).
Declare variables always at the beginning of the subroutine, but
never outside.

• can use global variables and arrays which are passed as
parameters.

• can process one-dimensional arrays only.
You can pass two-dimensional arrays as parameters, but they

lib_name Name of the library function and of the return value;
data type <FCT_TYPE>.

<FCT_TYPE> Data type: FLOAT, LONG.

var_name Name of a passed parameter inside of library function;
for arrays use the syntax with dimension brackets:
array[] or DATA_n[].

<BY_TYPE> Methods for the transfer of parameters:
BYREF: pass reference (pointer) to variable or array.
BYVAL: pass value only.

<VAR_TYPE> Data type: FLOAT, LONG, STRING.

<MEM_TYPE> Useful for processor T10 only: Type of memory, where
the passed parameters are stored; to be used only
with arrays:
DRAM_EXTERN: external memory.
DM_LOCAL:local memory.

LIB_FUNCTION … LIB_ENDFUNCTION

ADbasic 4.20, Manual April 2006

ADwin

159

will be considered as one-dimensional arrays in the function
(see also chapter 3.3.3 on page 53).

• should assign a value to the function name, which will be the
value returned for the function in the source code.

• cannot define process sections such as LOWINIT:, INIT:,
EVENT:, or FINISH:.

• cannot call a library function or subroutine from the same library
file.
If necessary you have to put the function, which is to be called,
into a new library file and import it from there.

• cannot use the instruction SELECTCASE.

There are 2 methods for passing parameters that differ as follows:
• BYREF: The library function can change the parameter, so that

the changed value is available in the program (the address of
the parameter is transferred).

• BYVAL: The library function can only access the value of the
parameter, but cannot change it. Thus, the parameter remains
the same for the program that calls the function.

Passed parameters should always be declared AT <MEM_TYPE>, to
save valuable processor time (<MEM_TYPE> must fit with the declara-
tion of the passed parameters in the calling program, see DIM). If not,
the library function has to detect the parameter’s memory type at run
time.

If an array is passed as parameter, the syntax for definition and call dif-
fers:

• Definition of the library function’s parameter with brackets:
LIB_FUNCTION funcname (… array[] …)

• Call with the parameter without brackets:
ret_val=funcname(… array …)

If arrays are used as passed parameters always define them as BYREF
and without indicating any array size. You cannot use FIFO arrays as
passed parameters.

See also

LIB_SUB … LIB_ENDSUB, IMPORT, FUNCTION … ENDFUNCTION,
SUB … ENDSUB

LIB_FUNCTION … LIB_ENDFUNCTION

ADbasic 4.20, Manual April 2006

ADwin

160

Example
'---------- Calculate a mean value ----------
LIB_FUNCTION average(BYREF array[] AS LONG, BYVAL ptr AS LONG,

BYVAL cnt AS LONG) AS LONG
DIM i AS LONG
average = 0
IF (cnt > 0) THEN
FOR i = ptr TO (ptr + cnt)
average = average + array[i]

NEXT i
average = average / cnt

ENDIF
LIB_ENDFUNCTION

Calling the library function average is illustrated in the following example, a
"moving average filter":

REM Import the library 'MEAN'
IMPORT C:\MyFiles\ADwinLibs\MEAN.LI9
#DEFINE cnt 10 'Number of the samples
#DEFINE samples DATA_1 'Number of measm. values
#DEFINE filtered DATA_2'Number of filtered measm.

'values
#DEFINE length 1000 'Length of the array
DIM samples[length] AS LONG'Source array
DIM filtered[length] AS LONG'Destination array
DIM i AS LONG 'Count variable

INIT:
i = 1 'Initialize the count variable
PROCESSDELAY = 40000'Measurement with 1 kHz

EVENT:
samples[i] = ADC(1) 'Measure and save analog values
INC i 'Increment count variable
IF (i> length) THEN END'Are 1000 measurements complete?

'If yes: process FINISH

FINISH:
FOR i = 1 TO (length - cnt)'For all measm. values
REM Call library function "average"
filtered[i + cnt] = average(samples,i,cnt)
REM Note the call with the passed array 'samples'
REM *without* dimension brackets

NEXT i

LIB_SUB … LIB_ENDSUB

ADbasic 4.20, Manual April 2006

ADwin

161

LIB_SUB … LIB_ENDSUB
The LIB_SUB…LIB_ENDSUB is used to define a subroutine with passed
parameters in a library file.

Syntax

LIB_SUB lib_name(<LIB_PAR1> {, <LIB_PAR2>, …})

{DIM var AS <VAR_TYPE>}

{#DEFINE name expression}

… 'Instruction block

LIB_ENDSUB

Syntax of passed parameters <LIB_PAR>:
<BY_TYPE> var_name AS <VAR_TYPE> {AT <MEM_TYPE>}

Parameters

Notes

You will find general information about library files in chapter 3.5.3 on
page 64.

lib_name Name of the library subroutine.

var_name Name of a passed parameter inside of library sub;
for arrays use the syntax with dimension brackets:
array[] or DATA_n[].

<BY_TYPE> Methods for the transfer of parameters:
BYREF: pass reference (pointer) to variable and array.
BYVAL: pass value only.

<VAR_TYPE> Data types: FLOAT, LONG, STRING.

<MEM_TYPE> Useful for processor T10 only: Type of memory, where
the passed parameters are stored; to be used only
with arrays:
DRAM_EXTERN: external memory.
DM_LOCAL:local memory.

LIB_SUB … LIB_ENDSUB

ADbasic 4.20, Manual April 2006

ADwin

162

Generate library subroutines (and library functions) in a separate sour-
ce code file. The compilation with "Build/Make lib file" creates
the library file. With IMPORT those library modules are included into a
process which are being called in the process.

In a library subroutine you can
• declare and use local variables and arrays (only one-dimen-

sional).
Declare variables always at the beginning of the subroutine, but
never outside.

• use global variables and arrays which are passed as parame-
ters.

• process one-dimensional arrays only.
You can pass two-dimensional arrays as parameters, but they
will be considered as one-dimensional arrays in the function
(see also chapter 3.3.3 on page 53).

• cannot define process sections such as LOWINIT:, INIT:,
EVENT:, or FINISH:.

• cannot call a library function or subroutine from the same library
file.
If necessary you have to put the function, which is to be called,
into a new library file and import it from there.

• cannot use the instruction SELECTCASE.

There are 2 methods for passing parameters that differ as follows:
• BYREF: The library function can change the parameter, so that

the changed value is available in the program (the method
transfers the address of the parameter).

• BYVAL: The library function can only access the value of the
parameter, but cannot change it. Thus, the parameter remains
the same for the program that calls the function.

Refers to processor T10 only: Passed parameters should always be
declared AT <MEM_TYPE>, to save valuable processor time (<MEM_
TYPE> must fit with the declaration of the passed parameters in the cal-
ling program, see DIM). If not, the library subroutine has to detect the
parameter’s memory type at run time.

LIB_SUB … LIB_ENDSUB

ADbasic 4.20, Manual April 2006

ADwin

163

If an array is passed as parameter, the syntax for definition and call dif-
fers:

• Definition of the library subroutine’s parameter with brackets:
LIB_SUB subname (… array[] …)

• Call with the parameter without brackets:
subname(… array …)

If arrays are used as passed parameters always define them as BYREF
and without indicating any array size. You cannot use FIFO arrays as
passed parameters.

See also

LIB_FUNCTION … LIB_ENDFUNCTION, IMPORT, FUNCTION …
ENDFUNCTION, SUB … ENDSUB

Example:
REM Measurement value conversion from Digits(0…65535)
REM to Volt(±10V)
LIB_SUB dig2volt(BYREF digit[] AS LONG, BYVAL ptr AS LONG,

BYVAL cnt AS LONG, BYVAL gain AS LONG,
BYREF volt[] AS FLOAT)

DIM i AS LONG
FOR i = ptr TO (ptr + cnt)
volt[i] = ((digit[i] * 20 / 65536) - 10) / gain

NEXT i
LIB_ENDSUB

LIB_SUB … LIB_ENDSUB

ADbasic 4.20, Manual April 2006

ADwin

164

Calling the library function dig2volt is illustrated in the following example, a
conversion of measurement values:

REM The library 'DIG2VOLT' is imported
IMPORT C:\MyFiles\ADwinLibs\DIG2VOLT.LI9

#DEFINE cnt 1000 'Number of the samples
#DEFINE ptr 1 'Start point of the samples which are

'to be converted
#DEFINE gain 1 'Gain of the PGA
#DEFINE samples DATA_1 'Memory for measurement values
#DEFINE scaled DATA_2 'Memory for converted measurement

'values
#DEFINE length 1000 'Length of the array

DIM samples[length] AS LONG'Source array
DIM i AS LONG 'Count variable

INIT:
i = 1 'Initialize the count variable
PROCESSDELAY = 40000'Measurement with 1 kHz

EVENT:
samples[i] = ADC(1) 'Measure and save analog values
 INC i 'Increment count variable
 IF (i> length) THEN END'Are 1000 measurements being made?

'If yes: process FINISH

FINISH:
REM Convert the measurement values by
REM calling the library subroutine 'dig2volt'
dig2volt(samples,ptr,cnt,gain,scaled)
REM Note the call with the passed array 'samples'
REM *without* dimension brackets

LN

ADbasic 4.20, Manual April 2006

ADwin

165

LN
LN provides the natural logarithm (to base e) of an argument.

Syntax

ret_val = LN(val)

Parameters

Notes

The execution time of the function 1.45µs with a T9, 0.7µs with a T10,
0.37µs with a T11.

See also

LOG, EXP

Example
DIM val1, val2 AS FLOAT

EVENT:
 val1 = 5.3
 val2 = LN(val1) 'Result: val2 = 1.667…

val Argument.

ret_val Natural logarithm of the argument.

FLOAT

FLOAT

LNGTOSTR

ADbasic 4.20, Manual April 2006

ADwin

166

LNGTOSTR
LNGTOSTR converts an integer value into a string.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

LNGTOSTR(value, STRING)

Parameters

Notes

The length of the generated string depends on the character which is
to be converted and on the sign. String lengths of 1 to 11 characters are
possible.

You will find information about the string structure in chapter 3.3.5 on
page 56.

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
STRCOMP, STRLEFT, STRLEN, STRMID, STRRIGHT, VALF, VALI

value Value to be converted.

string Result string.

LONG

ARRAY
STRING

LNGTOSTR

ADbasic 4.20, Manual April 2006

ADwin

167

Example
IMPORT STRING.LI9
DIM digits[11] AS STRING'Result-string
DIM a AS LONG

INIT:
a = -1234567890

EVENT:
LNGTOSTR(a,digits) 'Convert to string
PAR_1=digits[1] 'String length = 11
PAR_2=digits[2] 'ASCII character 45 = "-"
PAR_3=digits[3] 'ASCII character 49 = "1"
PAR_4=digits[4] 'ASCII character 50 = "2"
PAR_5=digits[5] 'ASCII character 51 = "3"
PAR_6=digits[6] 'ASCII character 52 = "4"
PAR_7=digits[7] 'ASCII character 53 = "5"
PAR_8=digits[8] 'ASCII character 54 = "6"
PAR_9=digits[9] 'ASCII character 55 = "7"
PAR_10=digits[10] 'ASCII character 56 = "8"
PAR_11=digits[11] 'ASCII character 57 = "9"
PAR_12=digits[12] 'ASCII character 48 = "0"
PAR_13=digits[13] 'End of string sign = 0

LOG

ADbasic 4.20, Manual April 2006

ADwin

168

LOG
LOG provides the decimal logarithm (to base 10) of an argument.

Syntax

ret_val = LOG(val)

Parameters

Notes

The execution time of the function 1.5µs with a T9, 0.75µs with a T10,
0.38µs with a T11.

See also

LN, EXP

Example
DIM val1, val2 AS FLOAT

EVENT:
val1 = 5.3
val2 = LOG(val1) 'Result: val2 = 0.724…

val Argument.

ret_val Decimal logarithm of the argument.

FLOAT

FLOAT

LOWINIT:

ADbasic 4.20, Manual April 2006

ADwin

169

LOWINIT:
The key word LOWINIT: marks the start of an initializing program section. The
program section always has low-priority, level 1.

Syntax

LOWINIT: {AT MEM_TYPE}

Parameters

Notes

See also overview of program sections in chapter 3.1.1 on page 43.

The program section LOWINIT: is run once as soon as the process is
started. The section serves to initialize, e.g. variables or data connec-
tions. LOWINIT: is always run before the INIT: section (if existing).

{bml ICO-OnlHlp-HandRight.wmf}The section LOWINIT: is suitable
for huge non-time-critical initialization sequences since it can be inter-
rupted (due to low priority).

The processor type T11 can store each program section in a different
memory area (see chapter 3.3.2 "Memory Areas"). The huge, but slow
memory area DRAM_EXTERN should be used for none-time-critical pro-
gram sections; mostly these are the sections LOWINIT:, INIT:, FI-
NISH:.

See also

DIM, INIT:, EVENT:, FINISH:

Example
DIM val_1 AS FLOAT

LOWINIT:
val_1 = -5.3

<MEM_TYPE> T11 only: memory area, where the program section
EVENT: is stored.

PM_LOCAL: internal program memory (default).
EM_LOCAL: extended internal program or data

memory.DRAM_EXTERN: external data memory.

MEMCPY

ADbasic 4.20, Manual April 2006

ADwin

170

MEMCPY
Processor T11 only: MEMCPY copies a specified amount of array elements
from a source array to a destination array.

Syntax

MEMCPY(array1[i1], array2[i2], count)

Parameters

Notes

MEMCPY is the simple and much faster alternative to copying data in a
FOR…NEXT-loop.

The instruction may be used neither with FIFO arrays nor with local
variables.

{bml ICO-OnlHlp-HandRight.wmf}Please note: The data types of
source and destination array must be identical and the destination ar-
ray must be declared large enough to hold all copied data.

The access to indexes out of bounds can be monitored in debug mode
for the destination array (see Debug mode Option on page 30). The
source array cannot be monitored.

See also

DIM

array1[] Name of the source array.

i1 Index (≥1) of the first copied array element.

array2[] Name of the destination array.

i2 Index (≥1) of the first array element to be
written.

count Number (≥1) of array elements to be copied.

LONG
FLOAT
STRING

LONG

LONG
FLOAT
STRING

LONG

LONG

MEMCPY

ADbasic 4.20, Manual April 2006

ADwin

171

Example
DIM DATA_1[75], DATA_2[100] AS FLOAT

EVENT:
REM Copy 70 array elements from DATA_1 to DATA_2
MEMCPY (DATA_1[5], DATA_2[30], 70)

NOP

ADbasic 4.20, Manual April 2006

ADwin

172

NOP
The instrcution NOP (No OPeration) causes the processor to wait for one pro-
cessor cycle.

Syntax

NOP

Notes

The execution time of the instruction normally is one processor cycle:

With this instruction you can delay for a necessary waiting period (e.g.
after SET_MUX) if there is no other use of processing time.

See also

CPU_SLEEP, P1_SLEEP, P2_SLEEP, SLEEP

T9 25ns

T10 25ns

T11 3,3ns

NOT

ADbasic 4.20, Manual April 2006

ADwin

173

NOT
The operator NOT inverts the bits of an argument.

Syntax

ret_val = NOT(val)

Parameters

Notes

If possible, use this operator only with integer values (of the type
LONG).
Floating point values (of the type FLOAT) are converted into integer va-
lues before they are inserted: The decimal places are truncated and
the value rounded if necessary before the NOT operation.

NOT is a bit operator, not a Boolean operator. Therefore you cannot ne-
gate logic expressions (true / false). Not allowed: NOT(PAR_2 > 2).

See also

AND, IF … THEN … {ELSE …} ENDIF, OR, XOR

Example
DIM val1 AS LONG
DIM val2 AS LONG

val1 = -3 '-3 =
' 11111111111111111111111111111101b

val2 = NOT(val1) 'Result: val2=010b=2

val Value to be inverted (no logic expression).

ret_val Inverted argument.

LONG

LONG

OR

ADbasic 4.20, Manual April 2006

ADwin

174

OR
The operator OR combines two integer values bit wise or two Boolean expres-
sions as a Boolean operator.

Syntax

ret_val = val_1 OR val_2 …val_2 'bit wise operator

IF ((expr1 OR (expr2)) THEN 'Boolean operator

Parameters

Notes

With OR you can only combine expressions of the same type (integer
or Boolean) with each other, mixing them is not possible.

You can use Boolean operators only in statements such as IF … THEN
… ELSE or DO … UNTIL (variables cannot have Boolean values).

If you use several Boolean operators in one line, you have to put each
operation into parentheses. This is not necessary for combining of in-
teger values.

See also

AND, IF … THEN … {ELSE …} ENDIF, NOT, XOR

Example

Bit wise operator:
DIM val1, val2, val3 AS LONG

val1 = 0100b
val2 = 0110b
val3 = val1 OR val2 'Result: val3 = 0110b

val_1, val_2 Integer value.

expr1, expr2 Boolean expression with the value "true" or
"false".

LONG

LOGIC

OR

ADbasic 4.20, Manual April 2006

ADwin

175

Boolean operator:
DIM x AS LONG
DIM val4 AS LONG

INIT:
x = 15

EVENT:
IF ((x < 9) OR (x > 3)) THEN
val4 = 1

ELSE
val4 = 0

ENDIF 'Result: val4 = 1

P1_SLEEP

ADbasic 4.20, Manual April 2006

ADwin

176

P1_SLEEP
Processor T11 only: P1_SLEEP causes the Pro I bus to wait for a certain time.

Syntax

P1_SLEEP(val)

Parameters

Notes

Alternatively there are the instructions CPU_SLEEP and P2_SLEEP
(see also chapter 4.2.4 "Setting Waiting Times Exactly"). For proces-
sors up to T10 use the instruction SLEEP.

The instruction P1_SLEEP is used to wait a defined time between 2 ac-
cesses to modules on the Pro I bus.

The waiting time should always be smaller than the cycle time set with
PROCESSDELAY.

In a high-priority process the instruction P1_SLEEP cannot be interrup-
ted. Thus, very high values in high-priority processes can cause an in-
terruption in the communication to the PC.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array ele-
ments.

• The variable in the argument is declared in the memory area
DRAM_EXTERN. The time interval may vary because it depends
on several conditions.

• The argument is an array.
• The argument is a floating point value.

val Number of the time units to wait in
10ns:

with constants: 7…715827879 (≈ 230 / 1.5).
with variables: 9…715827879.

LONG

P1_SLEEP

ADbasic 4.20, Manual April 2006

ADwin

177

See also

CPU_SLEEP, NOP, P2_SLEEP, SLEEP

Example
EVENT:
SET_MUX(0) 'Set multiplexer
P1_SLEEP(250) 'wait 2.5 µs (=250*10ns)

'= Mux settling time
START_CONV(1) 'Start conversion
…

P2_SLEEP

ADbasic 4.20, Manual April 2006

ADwin

178

P2_SLEEP
Processor T11 only: P2_SLEEP causes the Pro II bus to wait for a certain time.

Syntax

P2_SLEEP(val)

Parameters

Notes

Alternatively there are the instructions CPU_SLEEP and P1_SLEEP
(see also chapter 4.2.4 "Setting Waiting Times Exactly"). For proces-
sors up to T10 use the instruction SLEEP.

The instruction P2_SLEEP is used to wait a defined time between 2 ac-
cesses to modules on the Pro II bus.

The waiting time should always be smaller than the cycle time set with
PROCESSDELAY.

In a high-priority process the instruction P2_SLEEP cannot be interrup-
ted. Thus, very high values in high-priority processes can cause an in-
terruption in the communication to the PC.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array ele-
ments.

• The variable in the argument is declared in the memory area
DRAM_EXTERN. The time interval may vary because it depends
on several conditions.

• The argument is an array.
• The argument is a floating point value.

See also

CPU_SLEEP, NOP, P1_SLEEP, SLEEP

val Even number (14…715827878 ≈ 230 / 1.5) of
the time units to wait in 10ns. An odd number
is not allowed.

LONG

P2_SLEEP

ADbasic 4.20, Manual April 2006

ADwin

179

Beispiel
EVENT:
P2_SET_MUX(0) 'Set multiplexer
P2_SLEEP(250) 'wait 2.1 µs (=210*10ns)

'= Mux settling time
P2_START_CONV(1) 'start conversion
…

PEEK

ADbasic 4.20, Manual April 2006

ADwin

180

PEEK
PEEK reads the contents of a specified memory location of the ADwin system.

Syntax

ret_val = PEEK(addr)

Parameters

Notes

You will find an overview of the register addresses (Gold and Light-16)
in your hardware documentation.

See also

POKE, READ_TIMER

Example

The instruction below reads the value of the memory address 30h,
which is the data register of the ADC1 on the ADwin-Gold system and
contains the converted analog value.
REM read out memory locations of an ADwin-Gold system
val = PEEK(30h)

addr Address of the memory location to be read
out.

ret_val Contents of the memory location.

LONG

LONG

POKE

ADbasic 4.20, Manual April 2006

ADwin

181

POKE
POKE writes a value into a specified memory location of the ADwin system.

Syntax

POKE(addr, value)

Parameters

Notes

With POKE you are overwriting the specified memory address. Informa-
tion stored there will be lost.

Do not write to memory addresses whose functions you do not know.
If you do, it is possible that important data, processes or even the ope-
rating system will be destroyed.
If this should happen, existing measurement data is lost. To recover,
you must reboot the ADwin system and reload the processes.

You will find an overview of the register addresses (Gold and Light-16)
in your hardware documentation.

See also

PEEK, READ_TIMER

Example
'Change memory location of an ADwin-Gold system
'Write into DAC register: 3072 (=+5V in the range of
'±10V)
POKE(50h, 3072)
POKE(50h, 011b) 'Start output on all DACs
POKE(0C0h, 111100b) 'Set DIGOUT bits 2 to 5

addr Address of the memory location into which
values are written.

value Value to be written.

LONG

LONG

PROCESSDELAY

ADbasic 4.20, Manual April 2006

ADwin

182

PROCESSDELAY
The system variable PROCESSDELAY defines the process delay (cycle time) of
a process.
PROCESSDELAY replaces the system variable GLOBALDELAY which is still
valid for reasons of compatibility.

Syntax

ret_val = PROCESSDELAY

or

PROCESSDELAY = expr

Parameters

Notes

In a time-controlled process the section EVENT: is called repeatedly
and in fixed time intervals by the internal counter. The time interval bet-
ween two cyclic calls is called process delay and is counted in clock cy-
cles.

The time interval of the processdelay depends on the process priority
and the processor type:

With high-priority processes select a sufficiently large process delay to
avoid overloading the ADwin system (see also chapter 5.1.4 on
page 84). As a rule of thumb the processor workload (display field:
"Busy x%" in the status bar) should be under 90 percent and must not
exceed 100 percent.
If the time needed for processing the section EVENT: is larger than the

ret_val Current cycle time in clock cycles.

expr Cycle time to be set: Number (≥1) of clock
cycles.

Processor Priority

High Low

T9 25ns 100µs

T10 25ns 50µs

T11 3,3ns 3,3ns = 0,003µs

LONG

LONG

PROCESSDELAY

ADbasic 4.20, Manual April 2006

ADwin

183

process delay, the next counter call and following will be delayed. If this
delay cannot be caught up within 250ms, the communication between
the ADwin system and the computer can be interrupted.

You may set a constant process delay by assigning a value to the va-
riable PROCESSDELAY in the section INIT: / LOWINIT:. You will then
overwrite the default value you have set in the dialog window "Opti-
ons / Process" under "Initial Processdelay".

You can use the variable only once in a section.

If the parameter PROCESSDELAY is changed in a process cycle in the
section EVENT:, the cycle time (processs delay) will be changed im-
mediately. This may be critical especially when the cycle time has been
shortened: Make sure that the execution time of the program remains
less than the newly set cycle time.

See also

READ_TIMER

Example
INIT:
REM Set cycle time
PROCESSDELAY = 40000
REM For T9 and T10, high priority: 1 ms
REM For T11, high+low priority: 0.133 ms
…

PROCESSDELAY

ADbasic 4.20, Manual April 2006

ADwin

184

If you need a longer cycle time than may be set with PROCESSDELAY
you can use an auxiliary variable:
INIT:
REM Set max. cycle time
PROCESSDELAY = 2147483647
REM For T9 und T10, high priority: 53.7s
REM For T11, high+low priority: 7.2s
REM initalize auxiliary variable
PAR_1 = 0

EVENT:
INC PAR_1
REM use 100fold cycle time
REM For T9 und T10, high priority: 89.5 min
REM For T11, high+low priority: 12min
IF (PAR_1 = 100) THEN
PAR_1 = 0
REM run program
…

ENDIF

PROZESSn_RUNNING

ADbasic 4.20, Manual April 2006

ADwin

185

PROZESSn_RUNNING
The system variable PROZESSn_RUNNING returns the current status of the
specified process.

Syntax

ret_val = PROZESSn_RUNNING

Parameters

Notes

The result is a read only value.

See also

END, EXIT, RESTART_PROCESS, START_PROCESS, START_
PROCESS_DELAYED, STOP_PROCESS

Example
EVENT:
REM Get the status of process 2
PAR_2 = PROZESS2_RUNNING

n Number of the requested process (0…12, 15).

ret_val Process status:
1 Process is running.
0 Process is stopped.
-1 Process is being stopped.

CONST
LONG

LONG

READ_TIMER

ADbasic 4.20, Manual April 2006

ADwin

186

READ_TIMER
READ_TIMER returns the current counter value of the ADwin system timer.

Syntax

ret_val = READ_TIMER()

Parameters

Notes

The system variable is read only.

There are 2 timers in an ADwin system (32-bit), which count in different
units of time:

You may determine a time interval from the difference of 2 timer values.
Please note that any read timer value will be reached again after a cer-
tain time interval, which depends on the units of time given above:

See also

PROCESSDELAY

Example
DIM timervalue AS LONG

EVENT:
timervalue = READ_TIMER()

ret_val Current counter value.

process priority T9 T10 T11

high 25ns 25ns 3,3ns

low 100µs 50µs 3,3ns

process priority T9 T10 T11

high 107.4s 107.4s 14.3s

low 119.3h 59.7h 14.3s

LONG

REM, '

ADbasic 4.20, Manual April 2006

ADwin

187

REM, '
The compiler instructions REM or "'" make it possible to insert comments into
the source code for a program. Any text in a program line following the instruc-
tion is ignored by the compiler.

Syntax

REM comment

instr : REM comment

instr 'comment

Parameters

Notes

The instruction only applies to the line in which it is used. If a comment
requires more than one text line, then you must begin each line with the
instructions REM or "'".

If you want to insert a REM comment after an instruction, separate it
fromt he instruction by a colon ":". If you use "'" a colon is not neces-
sary.

Example
REM This is a comment that needs more than
REM one text line
'This is a comment line, too
DIM min AS LONG: REM comment after an instruction
DIM max AS LONG 'Also a comment after an instruction

comment Any character strings.

instr ADbasic instruction.

RESET_EVENT

ADbasic 4.20, Manual April 2006

ADwin

188

RESET_EVENT
RESET_EVENT deletes all external event signals, which are to be processed.

Syntax

RESET_EVENT

Notes

The instruction is only valid for externally controlled processes and in
the INIT: section.

We recommend to run the instruction at the end of the INIT: section.
This prevents a too early event signal (coming up during initialization)
from starting the main program (EVENT: section) too early.

More about the operating mode of the opreating system for externally
controlled processes see section "Externally Controlled Process" on
page 89.

See also

END, EXIT, PROZESSn_RUNNING, START_PROCESS, STOP_
PROCESS

Example
INIT:
REM Initialization
…
RESET_EVENT 'Reset former EVENT signals

EVENT:
REM Any EVENT signal starts the main program
…

RESTART_PROCESS

ADbasic 4.20, Manual April 2006

ADwin

189

RESTART_PROCESS
Processor T11 only: RESTART_PROCESS starts the same process again.

Syntax

RESTART_PROCESS

Notes

The instruction is valid in the program section FINISH: only.

All lines of the program section after RESTART_PROCESS will be exe-
cuted, before the process starts anew. For better readability we recom-
mend put the instruction at the end of the program section.

The instruction may cause an endless loop. Prevent an endless loop by
using RESTART_PROCESS inside of a conditional block.

See also

END, EXIT, IF … THEN … {ELSE …} ENDIF, START_PROCESS,
START_PROCESS_DELAYED, STOP_PROCESS

Example
EVENT:
…

FINISH:
…
IF (cond = 2) THEN
REM If condition is true, the process is started anew
RESTART_PROCESS

ENDIF

SELECTCASE

ADbasic 4.20, Manual April 2006

ADwin

190

SELECTCASE
The SELECTCASE control structure is used to execute one of several instruc-
tion blocks depending on a given value.

Syntax

SELECTCASE var

CASE const1a{,const1b, …}

… 'Instruction block

CCASE const2a{,const2b, …}

… 'Instruction block

CASEELSE

… 'Instruction block

ENDSELECT

Parameters

Notes

This control structure cannot be used within a library function or sub-
routine.

You may nest several SELECTCASE structures; the only limit is the me-
mory size.

Depending on the argument you can replace multiple nested IF struc-
tures with SELECTCASE so that they will be more clearly structured;
another benefit is this structure is executed faster than several conse-
cutive IF structures.

If the argument to be evaluated does not correspond to one of the
CASE constants, only the CASEELSE instruction block is executed (if
there is any). This is also true when the argument to be evaluated is
beyond the value range of the constant.

var Argument to be evaluated (no expression).

const1a,
const1b,
const2a,
const2b

Value of var (0…255), where the following
instruction block will be executed.

LONG

CONST
LONG

SELECTCASE

ADbasic 4.20, Manual April 2006

ADwin

191

CCASE means "Continue Case": If a CASE or CCASE instruction block
has been executed, then a directly following CCASE instruction block is
executed, too.
In the example below not only the instruction ADC(5), but also ADC(7)
are executed. However, if PAR_1=3, then only ADC(7) will be execu-
ted.

If you change variables in the instruction blocks in such a manner that
the value of the argument is changed, this will only be considered at the
next SELECTCASE query.

The SELECTCASE structure creates an internal branch table, whose
memory requirements correspond to the greatest used CASE-/CCASE-
constant. In order to limit the memory requirements to a minimum, the
value range of constants is restricted to 0…255. There is:

Memory requirement in bytes = [(greatest constant value)+1] × 4

As an example the memory requirement with a max. CASE constant
200 is (200 + 1) × 4 = 804 Bytes; the maximum possible memory re-
quirement is 1kB.

See also

DO … UNTIL, FOR … TO … {STEP …} NEXT, IF … THEN … {ELSE
…} ENDIF

SELECTCASE

ADbasic 4.20, Manual April 2006

ADwin

192

Example
EVENT:
PAR_1=2
SELECTCASE PAR_1 'Evaluate PAR_1
CASE 0 'If PAR_1 = 0?

PAR_10 = ADC(1) 'Read out ADC(1)
CASE 1 'If PAR_1 = 1?

PAR_10 = ADC(3) 'Read out ADC(3)
CASE 2 'If PAR_1 = 2?

PAR_10 = ADC(5) 'read out ADC(5) and ADC(7), too
'(by CCASE)

CCASE 3 'If PAR_1 = 3?
PAR_11 = ADC(7) 'Read out ADC(7)

CASE 4,5,6,7,16 'If PAR_1 = 4, 5, 6, 7 or 16?
PAR_2 = DIGIN_WORD()'read digital inputs

CASEELSE 'PAR_1: other values
DIGOUT_WORD(PAR_10)'Output value of PAR_10 to the

'digital outputs
ENDSELECT 'End of selection

SHIFT_LEFT

ADbasic 4.20, Manual April 2006

ADwin

193

SHIFT_LEFT
The SHIFT_LEFT instruction shifts all bits of a value by a specified number of
places to the left. The empty bits at the right are filled with zeroes.

Syntax

ret_val = SHIFT_LEFT(val,num)

Parameters

Notes

Use only integer values for the argument if possible. Floating point va-
lues (of the type FLOAT) are converted into integer values before shif-
ting them. The decimal places are truncated and the value is rounded
if necessary.

Shifting the bits n places to the left corresponds to the multiplication
with 2n. A possible overflow is not taken into account, which means, a
set bit is lost if it is left-shifted beyond the length of an argument.

The execution time is similar to that one of a comparable multiplication
operator.

See also

SHIFT_RIGHT

Example
DIM val1, val2 AS LONG

EVENT:
val1 = 1024
val2 = SHIFT_LEFT(val1, 2)'Result: val2=4096

val Argument.

num Number of places the argument is shifted
(0…31).

ret_val Argument with shifted bits or.
0 for (num<0) and for (num>31).

LONG

LONG

LONG

SHIFT_RIGHT

ADbasic 4.20, Manual April 2006

ADwin

194

SHIFT_RIGHT
The SHIFT_RIGHT instruction shifts all bits of a value by a specified number
of places to the right. The empty bits at the left are filled with zeroes.

Syntax

ret_val = SHIFT_RIGHT(val,num)

Parameter

Notes

Use only integer values for the argument if possible. Floating point va-
lues (of the type FLOAT) are converted into integer values before shif-
ting them. The decimal places are truncated and the value is rounded.

If the argument val is a positive number, shifting it num places to the
right corresponds to a division by 2n. A possible division remainder is
not taken into account, which means, a set bit is lost if it is right-shifted
beyond the length of an argument.

The execution time is shorter than the execution time of a comparable
division. For instance val_2 = SHIFT_RIGHT(val_1,3) is faster
than val_2 = val_1 / 8.

See also:

SHIFT_LEFT

Example
DIM val1, val2 AS LONG

EVENT:
val1 = 1024
val2 = SHIFT_RIGHT(val1, 3)'Result: val2=128

val Argument.

num Number of places, which are shifted (0…31).

ret_val Argument with shifted bits or.
0 for (num<0) and for (num>31).

LONG

LONG

LONG

SIN

ADbasic 4.20, Manual April 2006

ADwin

195

SIN
SIN provides the sine of an angle.

Syntax

ret_val = SIN(angle)

Parameters

Notes

If you use input values which are not in the range of -π…+π, the calcu-
lation error grows with the increasing value.

The execution time of the function 1.25µs with a T9, 0.63µs with a T10,
0.28µs with a T11.

See also

COS, TAN, ARCSIN, ARCCOS, ARCTAN

Example
DIM val1, val2 AS FLOAT

EVENT:
val1 = -5.3

val2 = SIN(val1)'Result: val2=0.83…

angle Arc angle (-π…+π).

ret_val Sine of the angle (-1…1).

FLOAT

FLOAT

SLEEP

ADbasic 4.20, Manual April 2006

ADwin

196

SLEEP
Processors until T10 only: SLEEP causes the processor to wait for a certain
time.

Syntax

SLEEP(val)

Parameters

Notes

For processor T11 SLEEP must be replaced by one of the instructions
CPU_SLEEP, P1_SLEEP or P2_SLEEP (see also chapter 4.2.4 "Setting
Waiting Times Exactly"); mostly P1_SLEEP is best.

Since the instruction SLEEP is executed as a count loop, it cannot be
interrupted in high-priority process.

Please make sure (especially when using variables) that the argument
does not have a value less than 1, otherwise the ADwin system will be-
come unstable. And please consider that very high values in high-prio-
rity processes can cause an interruption in the communication to the
PC.

If possible, use a constant as argument. If the argument val requires
a calculation, it requires additional time; this time interval is constant
and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array ele-
ments.

• The variable in the argument is declared in the memory area
DRAM_EXTERN.

• The argument is an array.
• The argument is a floating point value.

See also

CPU_SLEEP, NOP, P1_SLEEP, P2_SLEEP

val Number of the time units to wait in
100ns (≥ 1).

LONG

SLEEP

ADbasic 4.20, Manual April 2006

ADwin

197

Example
EVENT:
SET_MUX(0) 'Set multiplexer
SLEEP(25) 'Wait 2.5 µs (=25*100ns) = settling

'time of the MUX
START_CONV(1) 'Start conversion
…

SQRT

ADbasic 4.20, Manual April 2006

ADwin

198

SQRT
SQRT returns the square root of a value.

Syntax

ret_val = SQRT(val)

Parameter

Notes

The execution time of the function 0.9µs with a T9, 0.45µs with a T10,
0.26µs with a T11.

Example
DIM val_1, val_2 AS FLOAT

EVENT:
val_1 = 16
val_2 = SQRT(val1) 'Result: val_2 = 4

val Argument.

ret_val Square root of the argument or.
0 for (val<0).

FLOAT

FLOAT

START_PROCESS

ADbasic 4.20, Manual April 2006

ADwin

199

START_PROCESS
START_PROCESS starts a specified process.

Syntax

START_PROCESS(processnum)

Parameters

Notes

Please assure, that the process is transferred to the ADwin system be-
fore you start it.

The instruction has no effect, if you indicate the number of a process,
which

• is already running or
• has the same number as the calling process.

You can start a process with START_PROCESS from another process
only (except for RESTART_PROCESS). It is not possible that a process
starts itself, for instance in the section FINISH:.

See also

END, EXIT, RESTART_PROCESS, START_PROCESS_DELAYED,
STOP_PROCESS

Example
EVENT:
IF (ADC(1) > 3072) THEN'threshold value exceeded?
START_PROCESS(2) 'Start measurement process 2
END

ENDIF

processnum Number of the process to be started (1…12,
15).

LONG

START_PROCESS_DELAYED

ADbasic 4.20, Manual April 2006

ADwin

200

START_PROCESS_DELAYED
Processor T11 only: START_PROCESS_DELAYED starts a specified process
(section EVENT:) with the defined delay.

Syntax

START_PROCESS_DELAYED(processnum, delay)

Parameters

Notes

{bml ICO-OnlHlp-Exclamation.wmf}Please assure, that the process is
transferred to the ADwin system before you start it.

The instruction may only start a time-controlled process with high pri-
ority; it has no effect, if you indicate the number of a process, where
one of the following is true:

• The process is externally controlled.
• The process has low priority.
• The process is running already.
• The process has the same number as the calling process.

You may start a process with START_PROCESS_DELAYED from a dif-
ferent process only (except for RESTART_PROCESS).

A delayed started process always begins with the EVENT: section, the
sections INIT: and LOWINIT: will not be executed.

These items apply to the wanted starting time:
• The delay until starting time starts being counted with proces-

sing the instruction START_PROCESS_DELAYED; the proces-
sing time of the instruction is 30 clock cycles.

• From a high-priority program section the starting time can only
be maintained, if the delay time delay is greater than the
remaining processing time for the rest of the section.
Any subsequent lines of the section must be processed, before
the selected process can start. The starting time therefore is
additionally delayed by a too long remaining processing time.

processnum Number of the process to be started (1…10).

delay Delay time (>30) in clock cycles of the timer.
With T11 one clock cycle takes 3,3ns.

LONG

LONG

START_PROCESS_DELAYED

ADbasic 4.20, Manual April 2006

ADwin

201

See also

RESTART_PROCESS, START_PROCESS, STOP_PROCESS

Example
EVENT:
…
IF (cond = 2) THEN
REM If condition is true, process 2 is started
REM with a delay of 100 clock cycles.
START_PROCESS_DELAYED(2,100)

ENDIF
REM There are NO MORE program lines here to surely maintain
REM the wanted starting time.

STOP_PROCESS

ADbasic 4.20, Manual April 2006

ADwin

202

STOP_PROCESS
STOP_PROCESS stops a specified process from another running process.

Syntax

STOP_PROCESS(processnum)

Parameters

Notes

The instruction has no effect, if you indicate the number of a process,
which

• has already been stopped,
• has not yet been loaded to the ADwin system.

Stopping the EVENT: section happens as follows:
• First the specified process gets the status "process is being

stopped" (see PROZESSn_RUNNING); with low priority proces-
ses this will take some time (time-out).

• If the EVENT: section is being processed when the stop signal
arrives, the execution of the EVENT: section is yet completed.

• Normally the EVENT: section is called and processed once
again.

• If existing, the FINISH: section is processed (always at low-
priority).

• When STOP_PROCESS has completed, the specified process is
inactive, but can be started at any time.

If you like the process to stop itself, use the instructions END or EXIT.

See also

END, EXIT, PROZESSn_RUNNING, RESTART_PROCESS, START_
PROCESS, START_PROCESS_DELAYED

processnum Number of the process to be stopped
(1…12,15).

LONG

STOP_PROCESS

ADbasic 4.20, Manual April 2006

ADwin

203

Example
EVENT:
IF (ADC(1) > 3072) THEN'threshold value exceeded?
STOP_PROCESS(2) 'stop measurement process 2
END

ENDIF

STRING ""

ADbasic 4.20, Manual April 2006

ADwin

204

STRING ""
Strings are put into quotes " ".

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

DIM text[length] AS STRING

text = "ADwin"

Parameters

Notes

Dimension text variables with DIM … AS STRING (see page 125). A
string you want to assign to a variable is put in quotes.

More information about text variables and the structure of strings can
be found under "Strings" on page 56.

Strings can be processed with the instructions mentioned below. Also,
you can add (concatenate) strings with the "+"-operator.

See also

+ String Addition, DIM, ASC, CHR, FLOTOSTR, FLO40TOSTR, LNG-
TOSTR, STRCOMP, STRLEFT, STRLEN, STRMID, STRRIGHT,
VALF, VALI

text[] Name of the text variable.

length Length of the text variable.

ARRAY
STRING

CONST
LONG

STRING ""

ADbasic 4.20, Manual April 2006

ADwin

205

Example
IMPORT STRING.LI9

REM Dimension strings with 3 and 1 characters
DIM chars[3] AS STRING
DIM char[1] AS STRING

INIT:
REM Transfer characters to the strings
chars = "ABC"
char = "z"

EVENT:
PAR_1 = chars[1] 'PAR_1 = 3 number of the characters
PAR_2 = chars[2] 'PAR_2 = 65 (= "A")
PAR_3 = chars[3] 'PAR_3 = 66 (= "B")
PAR_4 = chars[4] 'PAR_4 = 67 (= "C")
PAR_5 = chars[5] 'PAR_5 = 0 end of string

REM Conversion into upper case:
REM Lower case: a, b, c, ..., x, y, z?
PAR_6 = ASC(char)
IF (PAR_6>96 AND PAR_6<133) THEN
REM Subtract 32 in order to convert into upper cases
CHR(PAR_6-32,char)

ENDIF

STRCOMP

ADbasic 4.20, Manual April 2006

ADwin

206

STRCOMP
STRCOMP checks two strings to determine if they are identical.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = STRCOMP(string1[], string2[])

Parameters

Notes

If the strings do not have the same lengths, a negative value is re-
turned, even if the shorter string is included in the longer one.

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
LNGTOSTR, STRLEFT, STRLEN, STRMID, STRRIGHT, VALF, VALI

Example
IMPORT STRING.LI9

DIM text1[7], text2[7], text3[8] AS STRING

INIT:
text1 = "ADbasic" 'ADbasic correct writing
text2 = "ADbasci" 'ADbasic wrong writing
text3 = "ADbasica" 'ADbasic wrong writing

EVENT:
PAR_1 = STRCOMP(text1,text2) 'PAR_1=-1
PAR_2 = STRCOMP(text1,text3) 'PAR_2=-1

string1[],
string2[]

String.

ret_val 0: Strings are identical.
-1: Strings are different.

ARRAY
STRING
CONST

LONG

STRLEFT

ADbasic 4.20, Manual April 2006

ADwin

207

STRLEFT
STRLEFT returns a specified number of characters from the left end of a string
into a second string.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

STRLEFT(string1[], length, string2[])

Parameters

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
LNGTOSTR, STRCOMP, STRLEN, STRMID, STRRIGHT, VALF, VALI

string1[] String, from which is copied.

length Number of characters to be copied.

string2[] String, into which is copied.

ARRAY
STRING

LONG

ARRAY
STRING

STRLEFT

ADbasic 4.20, Manual April 2006

ADwin

208

Example
IMPORT STRING.LI9

REM Dimension the source and destination strings
DIM text1[32], text2[14] AS STRING

INIT:
REM Define source string
text1 = "MEGA real-time with ADwin systems"

EVENT:
REM Get 14 characters from the left from the string text1
STRLEFT(text1,14,text2)
PAR_1 = text2[1] 'String length = 14 characters
PAR_2 = text2[2] 'ASCII-character 4Dh = "M"
PAR_3 = text2[3] 'ASCII-character 45h = "E"
PAR_4 = text2[4] 'ASCII-character 47h = "G"
PAR_5 = text2[5] 'ASCII-character 41h = "A"
PAR_6 = text2[6] 'ASCII-character 20h = " "
PAR_7 = text2[7] 'ASCII-character 72h = "r"
PAR_8 = text2[8] 'ASCII-character 65h = "e"
PAR_9 = text2[9] 'ASCII-character 61h = "a"
PAR_10 = text2[10] 'ASCII-character 6Ch = "l"
PAR_11 = text2[11] 'ASCII-character 2Dh = "-"
PAR_12 = text2[12] 'ASCII-character 74h = "t"
PAR_13 = text2[13] 'ASCII-character 69h = "i"
PAR_14 = text2[14] 'ASCII-character 6Dh = "m"
PAR_15 = text2[15] 'ASCII-character 65h = "e"
PAR_16 = text2[16] 'End of string character = 0

STRLEN

ADbasic 4.20, Manual April 2006

ADwin

209

STRLEN
STRLEN returns the number of characters in a string.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = STRLEN(string[])

Parameters

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
LNGTOSTR, STRCOMP, STRLEFT, STRMID, STRRIGHT, VALF,
VALI

Example
IMPORT STRING.LI9
DIM text1[50] AS STRING

INIT:
text1 = "MEGA real-time with ADwin systems"

EVENT:
PAR_1 = STRLEN(text1) 'String length: PAR_1 = 33

string[] String whose length is determined .

ret_val Number of characters in the string.

ARRAY
STRING

LONG

STRMID

ADbasic 4.20, Manual April 2006

ADwin

210

STRMID
STRMID returns a specified number of characters from a string into a second
string, starting from a certain position in the string.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

STRMID(string1[], start, length, string2[])

Parameters

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
LNGTOSTR, STRCOMP, STRLEFT, STRLEN, STRRIGHT, VALF,
VALI

string1[] String from which is copied.

start Position of the first character which is copied.

length Number of characters to be copied.

string2[] String into which is copied.

ARRAY
STRING

LONG

LONG

ARRAY
STRING

STRMID

ADbasic 4.20, Manual April 2006

ADwin

211

Example
IMPORT STRING.LI9

REM Dimension source and destination strings:
DIM text1[32], text2[20] AS STRING

INIT:
REM Define source string
text1 = "MEGA real-time with ADwin systems"

EVENT:
REM Copy 20 characters beginning at the 6. character from
REM the string text1
STRMID(text1,6,18,text2)
PAR_1 = text2[1] 'String-length = 20 characters
PAR_2 = text2[2] 'ASCII-character 72h = "r"
PAR_3 = text2[3] 'ASCII-character 65h = "e"
PAR_4 = text2[4] 'ASCII-character 61h = "a"
PAR_5 = text2[5] 'ASCII-character 6Ch = "l"
PAR_6 = text2[6] 'ASCII-character 2Dh = "-"
PAR_7 = text2[7] 'ASCII-character 74h = "t"
PAR_8 = text2[8] 'ASCII-character 69h = "i"
PAR_9 = text2[9] 'ASCII-character 6Dh = "m"
PAR_10 = text2[10] 'ASCII-character 65h = "e"
PAR_11 = text2[11] 'ASCII-character 20h = " "
PAR_12 = text2[12] 'ASCII-character 77h = "w"
PAR_13 = text2[13] 'ASCII-character 69h = "i"
PAR_14 = text2[14] 'ASCII-character 74h = "t"
PAR_15 = text2[15] 'ASCII-character 68h = "h"
PAR_16 = text2[16] 'ASCII-character 20h = " "
PAR_17 = text2[17] 'ASCII-character 41h = "A"
PAR_18 = text2[18] 'ASCII-character 44h = "D"
PAR_19 = text2[19] 'ASCII-character 77h = "w"
PAR_20 = text2[20] 'ASCII-character 69h = "i"
PAR_21 = text2[21] 'ASCII-character 6Eh = "n"
PAR_22 = text2[22] 'End of string sign = 0

STRRIGHT

ADbasic 4.20, Manual April 2006

ADwin

212

STRRIGHT
STRRIGHT returns a specified number of characters from the right end of a
string into a second string.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

STRRIGHT(string1[], length, string2[])

Parameters

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
LNGTOSTR, STRCOMP, STRLEFT, STRLEN, STRMID, VALF, VALI

string1[] String from which it is copied.

length Number of the characters to copy.

string2[] String into which it is copied.

ARRAY
STRING

LONG

ARRAY
STRING

STRRIGHT

ADbasic 4.20, Manual April 2006

ADwin

213

Example
IMPORT STRING.LI9

REM Dimension the source and destination string:
DIM text1[32], text2[13] AS STRING

INIT:
REM Define the source string
text1 = "MEGA real-time and ADwin systems"

EVENT:
REM Get 13 characters from the string text1,
REM starting at right
STRRIGHT(text1,13,text2)
PAR_1 = text2[1] 'String-length = 13 characters
PAR_2 = text2[2] 'ASCII-character 41h = "A"
PAR_3 = text2[3] 'ASCII-character 44h = "D"
PAR_4 = text2[4] 'ASCII-character 77h = "w"
PAR_5 = text2[5] 'ASCII-character 69h = "i"
PAR_6 = text2[6] 'ASCII-character 6Eh = "n"
PAR_7 = text2[7] 'ASCII-character 2Dh = "-"
PAR_8 = text2[8] 'ASCII-character 53h = "S"
PAR_9 = text2[9] 'ASCII-character 79h = "y"
PAR_10 = text2[10] 'ASCII-character 73h = "s"
PAR_11 = text2[11] 'ASCII-character 74h = "t"
PAR_12 = text2[12] 'ASCII-character 65h = "e"
PAR_13 = text2[13] 'ASCII-character 6Dh = "m"
PAR_14 = text2[14] 'ASCII-character 73h = "s"
PAR_15 = text2[15] 'End of string sign = 0

SUB … ENDSUB

ADbasic 4.20, Manual April 2006

ADwin

214

SUB … ENDSUB
The SUB…ENDSUB commands are used to define a subroutine macro with
passed parameters.

Syntax

SUB macro_name({val_1, val_2, …})

{DIM var AS <VAR_TYPE>}

… 'Instruction block

ENDSUB

Parameters

Notes

You will find general information about macros in chapter 3.5.1 on
page 63.

This instruction defines a subroutine-macro, which means the whole
instruction block between SUB and ENDSUB is inserted in the place
where the macro is called.

Subroutines help to make your source code more clearly-structured.
Please note that each subroutine call will enlarge the compiled file.

You may insert subroutines at the following 3 places:

1. In front of the section INIT:/LOWINIT:

2. After the section FINISH:

3. In a separate file which you include with the instruction #INCLUDE
(only at the locations 1 and 2).

Be aware that in subroutines:
• no process sections such as LOWINIT:, INIT:, EVENT:, or

FINISH: can be defined,
• local variables can be defined at the beginning, which are only

available in the function and for the processing period.

macro_name Name of the subroutine.

val_1, val_2 Name of the passed parameter;
for arrays use the syntax with dimension
brackets: array[] or DATA_n[].

FLOAT
LONG

SUB … ENDSUB

ADbasic 4.20, Manual April 2006

ADwin

215

This is true even when a variable has the same name as a vari-
able outside the function.

• no values should be assigned to a passed parameter, unless
you make sure that the subroutine call uses a variable or single
array element as passed parameter.

If a passed parameter is part of an expression inside a subroutine the
parameter should be set in braces. This avoids problems with prece-
dence rules (e.g. BODMAS).

A subroutine is called with its name and with all its arguments you have
defined. Valid arguments include every expression (also arrays), as
long as it has the appropriate data type.
If you do not define arguments, you have to use the empty parentheses
when calling the subroutine: name().

If a value is assigned to a passed parameter within a subroutine, the
subroutine’s call must use a variable or a single array element as ar-
gument for this parameter.

If an array (not an array element) is used as a passed parameter the
syntax is different for definition and call:

• Subroutine definition with dimension brackets:
SUB subname(array[]) …

• Subroutine call without dimension brackets:
subname(array)

See also

#INCLUDE, FUNCTION … ENDFUNCTION, LIB_SUB … LIB_END-
SUB, LIB_FUNCTION … LIB_ENDFUNCTION

Example
SUB Fast_Dac1(val1)
REM Outputs val1 on the analog output 1 of an ADwin-Gold
POKE(20400050h, (val1))'Write value into the

'output register
POKE(20400010h, 11011b) 'Start conversion

ENDSUB

Calling the subroutine Fast_Dac1 is made with the program line:
Fast_Dac1(NewValue)

SUB … ENDSUB

ADbasic 4.20, Manual April 2006

ADwin

216

The same subroutine with an array as passed parameter:
SUB Fast_Dac1(array[]) AS FLOAT
REM Outputs element 3 of the array on the
REM analog output 1 of an ADwin-Gold
POKE(20400050h, (array[3]))'Write value to output
POKE(20400010h, 11011b) 'Start conversion

ENDFUNCTION

Calling this subroutine is made in a similar manner (but without dimen-
sion brackets):
Fast_Dac1(array)

For array you can indicate a global or a local array. Enter the array
name only, without element number and brackets.

TAN

ADbasic 4.20, Manual April 2006

ADwin

217

TAN
TAN returns the tangent of an argument.

Syntax

ret_val = TAN(angle)

Parameters

Notes

If you use input values which are not in the range of -π/2…+π/2, the cal-
culation error grows with the increasing value.

The execution time of the function 1.33µs with a T9, 0.67µs with a T10,
0.31µs with a T11.

See also

SIN, COS, ARCSIN, ARCCOS, ARCTAN

Example
DIM val1, val2 AS FLOAT

EVENT:
val1 = 5.3
val2 = TAN(val1) 'Result: val2 = -1.50...

angle Arc angle (-π/2…π/2).

ret_val Cosine of the angle (-1…1).

FLOAT

FLOAT

TRACE_MODE_PAUSE

ADbasic 4.20, Manual April 2006

ADwin

218

TRACE_MODE_PAUSE
TRACE_MODE_PAUSE disables the trace mode.

Syntax

TRACE_MODE_PAUSE

Notes

The instruction TRACE_MODE_PAUSE disables the trace mode from wi-
thin an ADbasic program. With TRACE_MODE_RESUME the trace mode
is enabled again. The disabling/enabling concerns trace-active pro-
gram lines only, which are marked with a ? (question mark).

Both instructions allow to enable or disable the trace mode for certain
program lines or program sections. Therefore the trace mode can be
activated e.g. as long as a specified condition is fulfilled.

The settings for the trace mode options is described on page 25 under
Enable Timing Analyzer Option; More information about applicati-
ons can be found in chapter 4.3.3 on page 77.

See also

TRACE_MODE_RESUME

Example
EVENT:
PAR_1 = ADC(1,4)
IF (PAR_1 > 32768) THEN
TRACE_MODE_RESUME 'Trace mode enabled

… 'For this program section the trace
… 'mode is continously activated

TRACE_MODE_PAUSE 'Trace mode disabled
ENDIF

TRACE_MODE_RESUME

ADbasic 4.20, Manual April 2006

ADwin

219

TRACE_MODE_RESUME
TRACE_MODE_RESUME activates the trace mode beginning in the next pro-
gram line.

Syntax

TRACE_MODE_RESUME

Notes

The instruction TRACE_MODE_RESUME enables the trace mode in an
ADbasic program again after it has been disabled with TRACE_MODE_
PAUSE. The disabling/enabling concerns trace-active program lines
only, which are marked with a ? (question mark).

Both instructions allow to enable or disable the trace mode for certain
program lines or program sections. Therefore the trace mode can be
activated e.g. as long as a specified condition is fulfilled.

The settings for the trace mode options is described on page 25 under
Enable Timing Analyzer Option; More information about applicati-
ons can be found in chapter 4.3.3 on page 77.

See also

TRACE_MODE_PAUSE

Example
EVENT:
PAR_1 = ADC(1,4)
IF (PAR_1 > 32768) THEN
TRACE_MODE_RESUME 'Trace mode enabled

… 'For this program section the trace
… 'is continously activated

TRACE_MODE_PAUSE 'Trace mode disabled
ENDIF

VALF

ADbasic 4.20, Manual April 2006

ADwin

220

VALF
VALF converts a string into a floating point number.

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = VALF(string[])

Parameters

Notes

If you do not indicate a sign, a positive sign will be assumed.

The character "E" divides mantissa from exponent. With T9 and T10,
in the mantissa only a maximum of 7 characters (pre-decimal and de-
cimal places) are evaluated, with T11 a maximum of 10 characters. If
you have more characters the last of them will be lost. As decimal se-
parator either the dot or the comma are allowed.

Please note the value range for float values in chapter 3.2.3 on
page 46. Values outside the value range are interpreted as "infinite" or
zero.

If you use illegal characters (characters other than indicated in the for-
mat above) only the strings up to the first illegal sign will be evaluated.

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
LNGTOSTR, STRCOMP, STRLEFT, STRLEN, STRMID, STRRIGHT,
VALI

string[] String which is to be converted, in the follow-
ing format:

Mantissa
(max. 10 characters)

Exponent
(0…99)

{+}
-

vvvvv .
,

nnnnn e
E

{+}
-

nn

ret_val Generated floating point value.

ARRAY
STRING

FLOAT

VALF

ADbasic 4.20, Manual April 2006

ADwin

221

Example
IMPORT STRING.LI9

DIM text[20] AS STRING

INIT:
text="-271.8282E-02" 'String to be converted
PAR_1 = text[1] 'String-length
PAR_2 = text[2] 'ASCII-character 2Dh = "-"
PAR_3 = text[3] 'ASCII-character 32h = "2"
PAR_4 = text[4] 'ASCII-character 37h = "7"
PAR_5 = text[5] 'ASCII-character 2Eh = "."
PAR_6 = text[6] 'ASCII-character 31h = "1"
PAR_7 = text[7] 'ASCII-character 34h = "4"
PAR_8 = text[8] 'ASCII-character 31h = "1"
PAR_9 = text[9] 'ASCII-character 35h = "5"
PAR_10 = text[10] 'ASCII-character 39h = "9"
PAR_11 = text[11] 'ASCII-character 45h = "E"
PAR_12 = text[12] 'ASCII-character 2Dh = "-"
PAR_13 = text[13] 'ASCII-character 31h = "1"
PAR_14 = text[14] 'ASCII-character 30h = "0"
PAR_15 = text[15] 'End of string sign

EVENT:
FPAR_1 = VALF(text) 'Convert string to float

VALI

ADbasic 4.20, Manual April 2006

ADwin

222

VALI
VALI converts a string into an integer number (Long).

Syntax

IMPORT STRING.LI* '*.LI9 for T9, *.LIA for T10,
'*.LIB for T11

ret_val = VALI(string[])

Parameters

Notes

If you do not indicate a sign, a positive sign will be assumed.

Please note the value range for long values:
-2147483648 to +2147483647
Values outside this range are interpreted as zero.

If you use illegal characters (characters other than indicated in the for-
mat above) the string up to the first illegal characters will be evaluated
only.

See also

STRING "", + String Addition, ASC, CHR, FLOTOSTR, FLO40TOSTR,
LNGTOSTR, STRCOMP, STRLEFT, STRLEN, STRMID, STRRIGHT,
VALF

string[] String to be converted in the format:
Sign: + (optional) or -.
Pre-decimal places: max. 10 characters.

{+}
-.

vvvvvvvvvv

ret_val Generated long value.

ARRAY
STRING

LONG

VALI

ADbasic 4.20, Manual April 2006

ADwin

223

Example
IMPORT STRING.LI9

DIM text[20] AS STRING

INIT:
text="-1234567890" 'String to be converted
PAR_1 = text[1] 'String-length = 11
PAR_2 = text[2] 'ASCII-character 2Dh = "-"
PAR_3 = text[3] 'ASCII-character 31h = "1"
PAR_4 = text[4] 'ASCII-character 32h = "2"
PAR_5 = text[5] 'ASCII-character 33h = "3"
PAR_6 = text[6] 'ASCII-character 34h = "4"
PAR_7 = text[7] 'ASCII-character 35h = "5"
PAR_8 = text[8] 'ASCII-character 36h = "6"
PAR_9 = text[9] 'ASCII-character 37h = "7"
PAR_10 = text[10] 'ASCII-character 38h = "8"
PAR_11 = text[11] 'ASCII-character 39h = "9"
PAR_12 = text[12] 'ASCII-character 30h = "0"
PAR_13 = text[13] 'End of string sign

EVENT:
PAR_20 = VALI(text) 'Convert string to long

XOR

ADbasic 4.20, Manual April 2006

ADwin

224

XOR
The operator XOR (Exclusive-Or) combines two integer values bitwise.

Syntax

… val_1 XOR val_2 …

Parameters

See also

AND, NOT, OR

Example
DIM value AS LONG
EVENT:
value = 0100b XOR 0110b'Result: value = 4 XOR 5 = 0010b = 2

val_1, val_2 Integer value. LONG

ADwin-Gold and ADwin-light-16

ADbasic 4.20, Manual April 2006

ADwin

225

6.3 ADwin-Gold and ADwin-light-16
Use the following instructions only with the systems ADwin-Gold and ADwin-
light-16, even if some of the instructions for the ADwin-Pro system are the
same or similar.
Use the instructions of this section without an include file.
For ADwin-light-16 (basic version) and the add-on ADwin-light-16-CO1 there
are additional counter instructions described in chapter 6.4:

– CNT_CLEAR, page 257

– CNT_ENABLE, page 261

– CNT_LATCH, page 268

– CNT_READ, page 272

– CNT_READLATCH, page 274

ADC

ADbasic 4.20, Manual April 2006

ADwin

226

ADC
The instruction ADC measures the voltage of an analog input via 16-bit con-
verter and returns the corresponding digital value, multiplied by a gain factor
if specified.
For the 12-/14-bit converter of the ADwin-Gold system use the instruction
ADC12.

Syntax

ret_val = ADC(input_ch{,gain})

Parameters

Notes

The instruction ADC is a combination of consecutive functions:
• Set the multiplexer to the specified input channel (SET_MUX).
• Wait for the settling of the multiplexer.
• Start the measurement: Convert the analog signal using the 16-bit

converter - considering the gain factor - to a digital value
(START_CONV).

• Wait for the end of conversion (WAIT_EOC).
• Read out the digital value from the register and return it.

(READADC).

The execution time for the instruction depends on the system you use.
You will find Information about the multiplexer settling time and the con-
version time in the hardware documentation of your system.

If you set the process cycle time (PROCESSDELAY) to a value less than
20 µs, the execution time of the instruction is only half as long. This is
possible, because the compiler skips the waiting time for the settling of
the multiplexer. It is assumed that you want to execute a measurement
without setting the multiplexer.
If (at such short cycle times) you require the first measurement to be

input_ch number of the analog input channel.
Gold: 1…16; L16: 1, 3, 5, …, 15.

gain gain factor (1, 2, 4, 8).

ret_val measurement value in digits (0…65535).

LONG

LONG
CONST

LONG

ADC

ADbasic 4.20, Manual April 2006

ADwin

227

correct, you have to set the multiplexer to the specified input channel
prior to using the instruction ADC with SET_MUX for the first time. This
time has to be at least as long as the multiplexer settling time.

In the following examples the instructions SET_MUX, START_CONV,
WAIT_EOC and READADC should be used instead of ADC in the follow-
ing cases:

• Very short cycle times: PROCESSDELAY < 240 (s.a.).
• High internal resistance (>3kΩ) of the voltage source of the

measurement signal: This increases the settling time of multiplexer.
• You want to use inevitable waiting times for additional program

tasks.

If you indicate a non-existing input channel the measurement result will
be undefined.

The measurement range depends on the gain factor:

With the following formula you can calculate the measured voltage
from the returned digital value.

The following values, shown in the table below, apply in case you have
chosen a gain of 1 (measurement range of 20 Volt):

See also

ADC12, READADC, SET_MUX, START_CONV, WAIT_EOC

Gain factor Input voltage
range

Measurement
range

1 -10V … 10V 20V

2 -5V … 5V 10V

4 -2.5V … 2.5V 5V

8 -1.25V … 1.25V 2.5V

Measurement
range

Return value of ADC 1 Digit
is0 32768 65535

20V -10V 0V +9.999695V 305.175µV

Voltage Digits 32768bipolar–() measurement range
65536

--⋅=

ADC

ADbasic 4.20, Manual April 2006

ADwin

228

Valid for

Gold, L16

Example
DIM iw AS LONG 'Declaration

EVENT:
'Measure analog input 1 with gain of 4
iw = ADC(1,4)
'Write measurement value into global variable, so
'that the computer can read it
PAR_1 = iw

ADC12

ADbasic 4.20, Manual April 2006

ADwin

229

ADC12
ADwin-Gold only: The instruction ADC12 measures the voltage of an analog
input via 12-bit or 14-bit converter (rev. A / B) and returns the corresponding
digital value, multiplied by a gain factor if specified.
For the 16-bit converter of the ADwin-Gold system use the instruction ADC.

Syntax

ret_val = ADC12(input_ch{,gain})

Parameters

Notes

The instruction ADC12 is a combination of consecutive functions:
• Set the multiplexer to the specified input channel (SET_MUX).
• Wait for the settling of the multiplexer.
• Start the measurement: Convert the analog value within the 12 or

14 bit converter - considering the gain factor - to a digital value
(START_CONV).

• Wait for the end of conversion (WAIT_EOC).
• Read out the digital value from the register and return it

(READADC12).

The execution time for the instruction depends on the system you use.
You will find Information about the multiplexer settling time and the con-
version time in the hardware documentation of your system.

The steps of 16 and 4 of the returned measurement values result from
the fact that the 12-bit and 14-bit conversion results are returned each
as a 16-bit value: The bits 0 to 3 are always 0 (zero) with 12-bit con-
verters and bits 0 and 1 with 14-bit converters.

input_ch number of the analog input channel (1…16).

gain gain factor(1, 2, 4, 8).

ret_val measurement result in digits:
12-bit: 0, 16, 32, …, 65520
14-bit: 0, 4, 8, …, 65532.

LONG

LONG

LONG

ADC12

ADbasic 4.20, Manual April 2006

ADwin

230

In the following examples you should use the instructions SET_MUX,
START_CONV, WAIT_EOC and READADC12 instead of ADC in the fol-
lowing cases:

• Very short cycle times: PROCESSDELAY < 200: The instruction
ADC12 cannot be executed during the cycle time.

• High internal resistance (>3k Ω) of the voltage source of the
measurement signal: This increases the settling time of multiplexer.

• You want to use inevitable waiting times for additional program
tasks.

If you indicate a non-existing input channel the measurement result will
be undefined.

The measurement range depends on the gain factor.

With the following formula you can calculate the measured voltage
from the returned digital value:

The following values, shown in the table below, apply in case you have
chosen a gain of 1 (measurement range of 20 Volt):

See also

ADC, SET_MUX, START_CONV, WAIT_EOC, READADC12

Valid for

Gold

Gain Input voltage range Meas. range

1 -10 V … 10 V 20V

2 -5 V … 5 V 10V

4 -2.5 V … 2.5 V 5V

8 -1.25 V … 1.25 V 2.5V

Measurement
range

Return value of ADC12 1 Digit
is0 32768 65535

20V -10V 0V +9.99512V 4.88mV

Voltage Digits 32768bipolar–() measurement range
65536

--⋅=

ADC12

ADbasic 4.20, Manual April 2006

ADwin

231

Example
DIM iw AS LONG 'Declaration

EVENT:
'Measure analog input 1 with a gain of 4
iw = ADC12(1,4)
'Write measurement value into global variable so that
'the computer can read it.
PAR_1 = iw

CLEAR_DIGOUT

ADbasic 4.20, Manual April 2006

ADwin

232

CLEAR_DIGOUT
The instruction CLEAR_DIGOUT sets one of the digital outputs to 0 (TTL low).

Syntax

CLEAR_DIGOUT(output_no)

Parameters

Notes

If you want to specify the output to be deleted using a variable, use the
instruction DIGOUT_WORD.

This instruction requires that you configure the relevant channel as out-
put. Otherwise the instruction has no effect.
With the instruction CONF_DIO you can configure the digital channels
in groups of 8 inputs or outputs. We recommend the digital channels be
configured with CONF_DIO(1100b): Channels 0…15 as inputs, chan-
nels 16…31 as outputs.

The instructions clears a bit in the output register of the channels
DIO16…DIO31. Therefore a TTL low is set at the corresponding chan-
nel, as long as it has been defined as output.

If you want to set one of the channels 0...15 to 0, clear the correspond-
ing bit in the output register of the channels DIO0…DIO15 (note: Con-
figure the channel as output first). Follow these steps (see example
below):

• Read out the register with PEEK. You will find the register number
in the hardware manual.

• Clear the bit belonging to the channel (AND masking).
• Write the value back into the register with POKE.

output_no Number which specifies the output to be
deleted:

bit_n 0 1 … 5 … 15

ADwin-Gold DIO16 DIO17 … DIO21 … DIO31

ADwin-light-16 0 1 … 5 – –

CONST
LONG

CLEAR_DIGOUT

ADbasic 4.20, Manual April 2006

ADwin

233

See also

CONF_DIO, DIGOUT_WORD, SET_DIGOUT

Valid for

Gold, L16, L16-CO1, L16-DIO1, L16-DIO2

Example
DIM val AS LONG 'Declaration

INIT:
SET_DIGOUT(0) 'Set digital output DIO16 to 0

EVENT:
val = ADC(1) 'Measurement data acquisition
IF (val > 3000) THEN
CLEAR_DIGOUT(0) 'Clear dig. output DIO16/0

ENDIF

ADwin-Gold only: A subroutine which sets a single bit of the DIO lines
0...15 to 0 could be as follows:
SUB CLEAR_DIGOUT_CONN1(bitno)
POKE(204001C0h,

PEEK(204001C0h) AND NOT(SHIFT_LEFT(1,bitno)))
ENDSUB

CONF_DIO

ADbasic 4.20, Manual April 2006

ADwin

234

CONF_DIO
ADwin-Gold only: The instruction CONF_DIO configures the 32 digital chan-
nels in groups of 8 as inputs or outputs.

Syntax

CONF_DIO(val)

Parameters

Notes

The digital channels of the ADwin-Gold system are initially configured
as inputs after power-up (and cannot be used as outputs). They can
only be configured in groups of 8 as inputs or outputs.

We recommend the use of the configuration CONF_DIO(1100b),
which specifies DIO00…DIO15 as inputs and DIO16…DIO31 as out-
puts.
The instructions CLEAR_DIGOUT, SET_DIGOUT, DIGIN_WORD,
DIGOUT_WORD, DIGIN are dependent on this configuration; a different
configuration can interfere with or prevent the proper operation of
these commands.

If you use a configuration other than the recommend configuration, you
can only set and process the digital channels if you read out or write
into the corresponding hardware registers with PEEK and POKE com-
mands (see ADwin-Gold hardware manual).

It is recommended that you use the binary representation (suffix "b").
It shows the allocation of bits to channel groups more clearly than dec-
imal or hexadecimal representations which can still be used if desired.

val Bit pattern that configures the digital channels
as inputs or outputs:

Bit=0: Channels as inputs.
Bit=1: Channels as outputs.

Bitno. in val 15…4 3 2 1 0

Channels – DIO31
…

DIO24

DIO23
…

DIO16

DIO15
…

DIO08

DIO07
…

DIO00

CONST
LONG

CONF_DIO

ADbasic 4.20, Manual April 2006

ADwin

235

See also

CLEAR_DIGOUT, DIGIN, DIGIN_WORD, DIGOUT_WORD,
SET_DIGOUT

Valid for

Gold, L16

Example
'Configure DIO00…DIO15 as inputs
'and DIO16…DIO31 as outputs
CONF_DIO(1100b)

DAC

ADbasic 4.20, Manual April 2006

ADwin

236

DAC
The instruction DAC outputs a defined voltage on a specified analog output.

Syntax

DAC(num,val)

Parameters

Notes

If you specify a value which is beyond the permissible value range, it
will automatically be set to the system-specific minimum or maximum
value.

Valid for

Gold, Gold-DA, L16

Example
REM Digital proportional controller
DIM set_to, gain, diff, out AS LONG'Declaration

EVENT:
set_to = PAR_1 'Setpoint
gain = PAR_2 'Dimension
diff = set_to - ADC(1)'Calculate control deviation
out = diff * gain 'Calculate actuating value
DAC(1, out) 'Output of the actuating value

num Number of the analog output (1…8).

val Value in digits, which defines the voltage
to be output (0…65535).

LONG

LONG

DIGIN

ADbasic 4.20, Manual April 2006

ADwin

237

DIGIN
The instruction DIGIN returns the value of one of the digital inputs
DIO00…DIO15.

Syntax

ret_val = DIGIN(channel_no)

Parameters

Notes

This instruction fits best for the reading of few bits. If several bits are to
be read (e.g. in a loop), the usage of the instruction DIGIN_WORD is
definitely quicker. Please remember this for time-critical applications in
particular.

The following notes refer to ADwin-Gold only:

The instruction requires that you configure the relevant channel as in-
put. If the channel is configured as output it will return an irrelevant val-
ue.
The instruction CONF_DIO can be used to configure the digital chan-
nels as inputs or outputs in groups of 8. We recommend that you con-
figure using CONF_DIO(1100b)which specifies: Channels 0…15 as
inputs and channels 16…31 as outputs.

channel_no Number which specifies the input
to be queried:

ADwin-Gold:

channel_no 0 1 … 14 15

Input No. DIO00 DIO01 … DIO14 DIO15

ADwin-light-16:

channel_no 0 1 … 5

Input No. 0 1 … 5

ret_val 1: TTL-level high.
0: TTL-level low.

LONG

DIGIN

ADbasic 4.20, Manual April 2006

ADwin

238

If you need the value of one of the channels DIO16…DIO31, then read
out the corresponding bit from the input register of these channels.
These channels must be configured as inputs first. Follow these steps
(see 2nd example DIGIN_CONN2):

• Read out the register with PEEK. The register number can be found
in the hardware manual.

• Clear all bits except the one belonging to the channel
(AND-masking).

See also

CONF_DIO (ADwin-Gold only), DIGIN_WORD, DIGOUT_WORD

Valid for

Gold, L16

Example
REM Example for Gold and L16
DIM DATA_1[10000] AS LONG AS FIFO

EVENT:
'Is digital input 0 set?
IF (DIGIN(0) = 1) THEN
DATA_1 = ADC(1) 'Measurement data acquisition

ENDIF

ADwin-Gold only: A function returning the value of one of the channels
DIO16...DIO31 could be as follows:
FUNCTION DIGIN_CONN2(bitno) AS LONG
DIGIN_CONN2=SHIFT_RIGHT(PEEK(204001B0h), bitno) AND 1

ENDFUNCTION

DIGIN_WORD

ADbasic 4.20, Manual April 2006

ADwin

239

DIGIN_WORD
The instruction DIGIN_WORD returns the values of all digital inputs at the same
time.

Syntax

ret_val = DIGIN_WORD()

Parameters

Notes (ADwin-Gold only)

This instruction requires that you have configured the channels
DIO00...DIO15 as inputs. If these channels are configured as output
channels, no useful value is returned.
With the instruction CONF_DIO you can configure the digital channels
as inputs or outputs in groups of 8. We recommend that you configure
them using CONF_DIO(1100b)which specifies: Channels 0…15 as
inputs, channels 16…31 as outputs.

If you need the values of the channels DIO16…DIO31, read out the in-
put register of these channels (please note: Configure the channels as
outputs first); see also 2nd example DIGIN_WORD_CONN2. These
channels must be configured as inputs first. The register number can
be found in the hardware manual. The bits in this return value are al-
located to the channels as follows:

ret_val Bit pattern that corresponds to the TTL-levels
at the digital inputs (allocation s.b.).

1: TTL-level high .
0: TTL-level low .

ADwin-Gold:

Bit number in
ret_val

31 … 16 15 14 … 1 0

Input No. – DIO15 DIO14 … DIO01 DIO00

ADwin-light-16:

Bit number in
ret_val

31 …6 5 … 0

Input No. – 5 … 0

LONG

DIGIN_WORD

ADbasic 4.20, Manual April 2006

ADwin

240

See also

CONF_DIO (ADwin-Gold only), DIGOUT_WORD

Valid for

Gold, L16

Example
REM Example for Gold and L16
DIM DATA_1[10000] AS LONG AS FIFO

EVENT:
'Querying if the inputs 0 and 1 are set
IF ((DIGIN_WORD() AND 11b) = 11b) THEN
DATA_1 = ADC(1) 'Measurement data acquisition

ENDIF

ADwin-Gold only: A function which returns the value of the channels
DIO16...DIO31, could be as follows:
FUNCTION DIGIN_WORD_CONN2() AS LONG
DIGIN_WORD_CONN2=PEEK(204001B0h)

ENDFUNCTION

Bit No. 31…16 15 … 1 0

Input No. – DIO31 … DIO17 DIO16

DIGOUT_WORD

ADbasic 4.20, Manual April 2006

ADwin

241

DIGOUT_WORD
The instruction DIGOUT_WORD sets with a bit pattern all digital outputs to
defined TTL-levels.

Syntax

DIGOUT_WORD(val)

Parameters

Notes (ADwin-Gold only)

This instruction requires that you have configured the channels
DIO16...DIO31 as outputs. Otherwise it has no effect.

With the instruction CONF_DIO you can configure the digital channels
as inputs our outputs in groups of 8. We recommend that you configure
using CONF_DIO(1100b)which specifies: Channels 0…15 as inputs,
channels 16…31 as outputs.

If you want to set the outputs of the channels DIO16…DIO31, write the
corresponding bit pattern to the output register of these channels
(please note: Configure the channels as outputs first); see also 2nd ex-
ample DIGIN_WORD_CONN1. The register number can be found in the
hardware manual.

val Bit pattern that corresponds to the TTL-levels
at the digital outputs (allocation s.b.).

1: Set to TTL-level high.
0: Set to TTL-level low.

ADwin-Gold:

Bit no. in val 31 … 16 15 14 … 1 0

Output No. – DIO31 DIO30 … DIO17 DIO16

ADwin-light-16:

Bit no. in val 31 … 6 5 … 0

Output No. – 5 … 0

LONG

DIGOUT_WORD

ADbasic 4.20, Manual April 2006

ADwin

242

See also

CONF_DIO (ADwin-Gold only), DIGIN_WORD, CLEAR_DIGOUT,
SET_DIGOUT

Valid for

Gold, L16

Example
REM Example for Gold and L16
DIM value AS LONG

INIT:
'Configure inputs and output (for ADwin-Gold only)
CONF_DIO(1100b)

EVENT:
value = ADC(1) 'Measurement data acquisition
IF (value > 3000) THEN'Is the limit value exceeded?
DIGOUT_WORD(101b) 'Set outputs 0 and 2, all other

'outputs are cleared!
ENDIF

ADwin-Gold only: A subroutine setting the TTL-levels of the channels
DIO00...DIO15, could be as follows:
SUB DIGOUT_WORD_CONN1(value)
POKE(204001C0h,value)

ENDSUB

READADC

ADbasic 4.20, Manual April 2006

ADwin

243

READADC
The instruction READADC returns a converted value from a 16-bit A/D-con-
verter.

Syntax

ret_val = READADC(num)

Parameters

Notes

When using an ADwin-Gold system you read out the converted values
of the 12-bit or 14-bit A/D converter using the instruction READADC12.

See also

ADC, READADC12, SET_MUX, START_CONV, WAIT_EOC

Valid for

Gold, L16

Example
EVENT:
'Set multiplexer: ADC1 to channel 3, ADC2
'to channel 4 (without gain)
SET_MUX(1001b)
… 'Wait for MUX settling time
START_CONV(11b) 'Start conversion for both ADCs
WAIT_EOC(11b) 'Wait for end of conversion
PAR_1 = READADC(1) 'Read value of ADC1
PAR_2 = READADC(2) 'Read value of ADC2

num Number (1, 2) of the 16-bit converter
to read.

ret_val Measurement value in digits which corre-
sponds to the voltage at the converter’s
input.

LONG

LONG

READADC12

ADbasic 4.20, Manual April 2006

ADwin

244

READADC12
ADwin-Gold only: The instruction READADC12 returns a converted value from
one of the two 12-bit/14-bit A/D converters.

Syntax

ret_val = READADC12(num)

Parameters

Notes

Read out the converted value of the 16-bit A/D converter with the in-
struction READADC.

The A/D converters (ADC) divide the measurement range of 20 Volts
into equal steps (digits), these are 4096 digits with 12-bit ADC and
16384 with 14-bit ADC.

In order to make comparing these values to the measurement values
of the 16-bit ADC’s easier, the instruction READADC12 returns the re-
sult "left-aligned" descending from bit 31; the bits 3…0 (12-bit ADC) or
1…0 (14-bit ADC) have always the value 0.
Therefore using the instructions READADC and READADC12 to mea-
sure the same voltage always return the same result in bits 31…4 or
31…2.

See also

ADC12, SET_MUX, START_CONV, WAIT_EOC

Valid for

Gold

num Number (1, 2) of the 12-bit converter
to read.

ret_val Measurement value in digits, which corre-
sponds to the voltage at the converter’s input.

LONG

LONG

READADC12

ADbasic 4.20, Manual April 2006

ADwin

245

Example
DIM val1, val2 AS LONG

EVENT:
'Set multiplexer: ADC12-1 to channel 3, ADC12-2
'to channel 4 (without gain)
SET_MUX(1001b)
… 'Wait for MUX settling time
START_CONV(11000b) 'Start conversion for both ADCs
WAIT_EOC(11000b) 'Wait for end of conversion
val1 = READADC12(1) 'Read value of ADC12-1
val2 = READADC12(2) 'Read value of ADC12-2

SET_DIGOUT

ADbasic 4.20, Manual April 2006

ADwin

246

SET_DIGOUT
The instruction SET_DIGOUT sets one of the digital outputs to 1 (TTL-level
high).

Syntax

SET_DIGOUT(channelno)

Parameters

Notes

This instruction fits best for the setting of few bits. If several bits are to
be set (e.g. in a loop), the usage of the instruction DIGOUT_WORD is
definitely quicker. Please remember this for time-critical applications in
particular.

The following notes refer to ADwin-Gold only:

If you want to set the output using a variable, use the instruction
DIGOUT_WORD.

This instruction requires that you have previously configured the cor-
responding channel as an output. Otherwise it performs no action.
With the instruction CONF_DIO you can configure the digital channels
as inputs or outputs in groups of 8. We recommend that you configure
them using CONF_DIO(1100b)which specifies: Channels 0…15 as
inputs, channels 16…31 as outputs.

This instruction sets one bit in the output register of the channels
DIO16…DIO31. If you have set the corresponding channel as output
it will generate a TTL-level high.

If you want to set one of the channels 0...15 to 1, set the corresponding
bit in the output register of the channels DIO0…DIO15 using the POKE

channelno Number which specifies the output to be set:

channelno 0 1 … 5 … 15

ADwin-Gold DIO16 DIO17 … DIO21 … DIO31

ADwin-light-16 0 1 … 5 – –

CONST
LONG

SET_DIGOUT

ADbasic 4.20, Manual April 2006

ADwin

247

command (note: Configure the channel as output first). Follow these
steps (see 2nd example SET_DIGOUT_CONN1):

• Read out the register with PEEK. The register number can be found
in the hardware manual.

• Set the bit belonging to the channel (OR-masking).
• Write the value with POKE into the register.

See also

CONF_DIO (ADwin-Gold only), CLEAR_DIGOUT, DIGOUT_WORD

Valid for

Gold, L16

Example
REM Example for Gold and L16
DIM val AS LONG

INIT:
'Configure digital inputs/output (ADwin-Gold only)
CONF_DIO(1100b)

EVENT:
val = ADC(1) 'Measurement data acquisition
IF (val > 3000) THEN
SET_DIGOUT(0) 'Set digital output DIO16 / 0

ENDIF

ADwin-Gold only: A subroutine which sets a single bit of the DIO-lines
0...15 to 1 could be as follows:
SUB SET_DIGOUT_CONN1(bitno)
POKE(204001C0h, PEEK(204001C0h) OR SHIFT_LEFT(1,bitno))

ENDSUB

SET_MUX

ADbasic 4.20, Manual April 2006

ADwin

248

SET_MUX
The instruction SET_MUX sets one or more A/D input multiplexers and (ADwin-
Gold only) the corresponding gain for the specified measurement channel.

Syntax

SET_MUX(pattern)

Parameters

Notes

Please consider that when setting the multiplexer to another channel
a specified settling time is required. You should only start the conver-
sion after this settling time has elapsed. Please use the necessary

pattern Bit pattern for the allocation of measurement
channels and gain.

Bitno. 9 8 7 6 5 4 3 2 1 0

PGA 2 PGA 1 MUX 2 MUX 1

PGA 1 / 2 ADwin-Gold only: With 2 bits (6…7 / 8…9) each you
determine the gain factor of the multiplexer:

2 Bits
00:
01:
10:
11:

PGA 1 / PGA 2
Factor 1
Factor 2
Factor 4
Factor 8

MUX 1 / 2 With 3 bits each (0…2 / 3…5) you determine the chan-
nel to which the multiplexer is set:

3 bits
000:
001:
010:
011:
100:
101:
110:
111:

MUX 2
channel 2
channel 4
channel 6
channel 8
channel 10
channel 12
channel 14
channel 16

MUX 1
channel 1
channel 3
channel 5
channel 7
channel 9
channel 11
channel 13
channel 15

LONG

SET_MUX

ADbasic 4.20, Manual April 2006

ADwin

249

settling time (as well as the conversion time) from the hardware docu-
mentation of your system.

It is preferable to use a binary code (suffix "b") for the bit pattern. This
will make it easier to display the bit pattern than if you use a decimal
or hexadecimal representation although it is still possible to use these.

See also

ADC, ADC12, READADC, READADC12, START_CONV,
START_CONV

Valid for

Gold, L16

Example

To set the multiplexer of ADC1 to channel 5 and to gain 8 and at the
same time the multiplexer of ADC2 to channel 10 and gain 2, you need
the bit pattern: 0111100010b (decimal: 482).

With ADwin-light-16, gain cannot be set, so a shorter bit pattern must
be used: 011010b (decimal: 26).

DIM val AS LONG

EVENT:
SET_MUX(0111100010b)'Set multiplexer (s.a.)
'Wait here for the settling time of the multiplexer
'by inserting some instructions.
START_CONV(1) 'Start AD-conversion ADC1
WAIT_EOC(1) 'Wait for end of conversion of

'ADC1
val = READADC(1) 'Read value of ADC1

START_CONV

ADbasic 4.20, Manual April 2006

ADwin

250

START_CONV
The instruction START_CONV is used to start the conversion of one or more
A/D converters as well as all the D/A converters.

Syntax

START_CONV(pattern)

Parameters

Notes

Please note that ADC1 and ADC2 can either be 12-bit, 14-bit or 16-bit
analog-to-digital converters. For more information see your hardware
manual.

Also note that you can only use constants as parameters, variables are
not allowed as an argument.

It is preferable to use a binary code (suffix "b") for the bit pattern. This
will make it easier to display the bit pattern than if you use a decimal
or hexadecimal representation although it is still possible to use these.

See also

ADC, ADC12, READADC, READADC12, SET_MUX, WAIT_EOC

pattern Bit pattern that specifies which converters
should be started
(only bits 0…4 can be used).

Bit no. 4 3 2 1 0 Systems

ADC1, 16-bit – – – – x Gold, L16

ADC2, 16-bit – – – x – Gold

all DACs – – x – – Gold, L16

ADC1, 12-bit
ADC1, 14-bit

– x – – – Gold

ADC2, 12-bit
ADC2, 14-bit

x – – – – Gold

CONST
LONG

START_CONV

ADbasic 4.20, Manual April 2006

ADwin

251

Valid for

Gold, L16

Example
DIM val1 AS LONG

EVENT:
SET_MUX(0) 'Set multiplexer to channel 1
'Bypass the settling time with command lines
START_CONV(1) 'Start ADC1 A/D-conversion
WAIT_EOC(1) 'Wait for end of conversion
val1 = READADC(1) 'Read out value

WAIT_EOC

ADbasic 4.20, Manual April 2006

ADwin

252

WAIT_EOC
The instruction WAIT_EOC waits for the end of the conversion cycle of a spec-
ified A/D-converter.

Syntax

WAIT_EOC(pattern)

Parameters

Notes

If you set more than one of the bits, you have to wait for the conversion
to finished for all of the relevant ADCs.

Always select the bits of existing ADCs. Otherwise the communication
in a high-priority process between ADwin system and computer will be
interrupted.

See also

ADC, ADC12, READADC, READADC12, SET_MUX, START_CONV

Valid for

Gold, L16

pattern Bit pattern that specifies which converters
are to be waited for
(only bits 0…4 can be used).

Bit no. 4 3 2 1 0 Systems

ADC1, 16-bit – – – – x Gold, L16

ADC2, 16-bit – – – x – Gold

ADC1, 12/14-bit – x – – – Gold

ADC2, 12/14-bit x – – – – Gold

CONST
LONG

WAIT_EOC

ADbasic 4.20, Manual April 2006

ADwin

253

Example
DIM val AS LONG

EVENT:
SET_MUX(001000b) 'Set MUX of ADC2 to channel 4
'Bypass the settling time of the multiplexer with
'command lines
START_CONV(2) 'Start A/D-conversion ADC2
WAIT_EOC(2) 'Wait for end of conversion at 'ADC2
val = READADC(2) 'Read out value

WAIT_EOC

ADbasic 4.20, Manual April 2006

ADwin

254

ADwin-light-16 DIO1/2 / ADwin-Gold

ADbasic 4.20, Manual April 2006

ADwin

255

6.4 ADwin-light-16 DIO1/2 / ADwin-Gold CO1
The instructions of this section are divided into groups:

– counter instructions (CNT_…; page 257 ff)
for ADwin-light-16 (basic, CO1, DIO1, DIO2) and ADwin-Gold (CO1).

The counters are numbered ascending from 1. Some instructions use
a bit pattern where counters are allocated to bits as is illustrated below:

Use for the bit pattern preferably the binary code (suffix "b"). The indi-
cation "10b" or "1100b" illustrates more clearly which counter is ac-
cessed and which is not, than in decimal or hexadecimal code which
you may of course equally use.

– digital channel instructions (DIG_…; page 284 ff)
applicable for ADwin-light-16 DIO1 and DIO2 only.

– CAN bus instructions (page 300 ff)
applicable for ADwin-light-16 DIO1 only.

Inside these groups instructions be sorted alphabetically.
Please keep in mind to include the relevant include file (ADWGCNT.INC or
ADWL16.INC) for each system.
For ADwin-light-16 DIO2 the following instructions are available in addition:

Bit no. 31…4 3 2 1 0

Counter no. – 4a

a. for ADwin-Gold CO1 only

3a 2b

b. not with ADwin-light-16 CO1 add-on.

1

SSI_MODE page 346

SSI_READ page 348

SSI_SET_BITS page 350

SSI_SET_CLOCK page 352

SSI_START page 354

SSI_STATUS page 356

ADwin-light-16 DIO1/2 / ADwin-Gold

ADbasic 4.20, Manual April 2006

ADwin

256

Instructions in this section
The instructions in this section are valid for the following ADwin systems:

Instruction Gold L16

CO1 Basis CO1 DIO1 DIO2

CNT_CLEAR (page 255) x x x x x

CNT_CLEARENABLE (page 259) – – – x x

CNT_ENABLE (page 261) x x x x x

CNT_GETSTATUS (page 263) x – – x x

CNT_INPUTMODE (page 266) x – – x x

CNT_LATCH (page 268) x x x x x

CNT_MODE (page 270) x – – x x

CNT_READ (page 272) x x x x x

CNT_READLATCH (page 274) x x x x x

CNT_READFLATCH (page 276) x – – x x

CNT_RESETSTATUS (page 278) x – – – –

CNT_SE_DIFF (page 280) x – – – –

CNT_SET (page 282) x – – x x

CONF_DIO_E (page 284 ff)
DIGIN_WORD1_E, DIGIN_WORD2_E
DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_RESET1_E, DIGOUT_RESET2_E
DIGOUT_WORD1_E, DIGOUT_WORD2_E

– – – x x

DIGIN_LONG_E, DIGOUT_LONG_E – – – – x

INIT_CAN (page 300 ff)
EN_INTERRUPT, EN_RECEIVE,
EN_TRANSMIT
CAN_MSG, READ_MSG, TRANSMIT
SET_CAN_BAUDRATE, GET_CAN_REG,
SET_CAN_REG

– – – x –

CNT_CLEAR

ADbasic 4.20, Manual April 2006

ADwin

257

CNT_CLEAR
The instruction CNT_CLEAR sets one or more counters to zero, according to
the bit pattern in pattern.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

CNT_CLEAR(pattern)

Parameters

Notes

After the instruction has been executed the bit pattern is automatically
reset to 0 (zero), so the counters start counting from 0.

See also

CNT_CLEARENABLE, CNT_ENABLE, CNT_GETSTATUS,
CNT_INPUTMODE, CNT_LATCH, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold, L16, L16-CO1, L16-DIO1, L16-DIO2

pattern Bit pattern.
Bit = 0: no influence.
Bit = 1: set counter to zero.

Bit no. 31…4 3 2 1 0

Counter no. – 4a

a. for ADwin-Gold CO1 only

3a 2b

b. not with ADwin-light-16 CO1 add-on.

1

LONG

CNT_CLEAR

ADbasic 4.20, Manual April 2006

ADwin

258

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

DIM old_1, new_1 AS LONG'Dimension
DIM old_2, new_2 AS LONG'the variables

INIT:
old_1 = 0 'Initialize
old_2 = 0 'the variables
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(0) 'All counters on external clock input
CNT_SET(11b) 'counters 1+2 with clock (CLK) and

'direction (DIR) input
CNT_INPUTMODE(0) 'Determine functionality CLR/LATCH:

'All as CLR input
CNT_CLEARENABLE(11b) 'Enables the CLR function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(11b) 'Start counters 1+2

EVENT:
CNT_LATCH(11b) 'Latch counters 1+2 simultaneously
new_1 = CNT_READLATCH(1)'read out Latch A counter 1 and...
new_2 = CNT_READLATCH(2)'Latch A counter 2.
PAR_1 = new_1 - old_1'Calculate the difference

'(f = impulses / time)
PAR_2 = new_2 - old_2' -"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 ' -"-

CNT_CLEARENABLE

ADbasic 4.20, Manual April 2006

ADwin

259

CNT_CLEARENABLE
L16-DIO1 only: CNT_CLEARENABLE disables or enables the CLR input of one
or more counters according to the bit pattern in pattern.

Syntax

#INCLUDE ADWL16.INC 'ADwin-light-16 only

CNT_CLEARENABLE(pattern)

Parameters

Notes

This instruction affects all counters at the same time. It only works if the
CLR mode is set by CNT_INPUTMODE.

Use this instruction only if the counter is disabled.

See also

CNT_CLEAR, CNT_ENABLE, CNT_GETSTATUS,
CNT_INPUTMODE, CNT_LATCH, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_SET

Valid for

L16-DIO1, L16-DIO2

pattern Bit pattern.
Bit = 0: disable CLR input at the counter.
Bit = 1: enable CLR input at the counter.

Bit no. 31…2 1 0

Counter no. – 2 1

LONG

CNT_CLEARENABLE

ADbasic 4.20, Manual April 2006

ADwin

260

Example
#INCLUDE ADWL16.INC

DIM old_1, new_1 AS LONG'Dimension
DIM old_2, new_2 AS LONG' the variables

INIT:
old_1 = 0 'Initialize
old_2 = 0 ' the vaiables
CNT_MODE(0) 'All counters on external clock input
CNT_SET(11b) 'counters 1+2 with clock (CLK) and

'direction (DIR) input
CNT_INPUTMODE(0) 'Determine functionality CLR/LATCH:

'All with CLR intput
CNT_CLEARENABLE(11b) 'Enables the CLR-function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(11b) 'Start counters 1+2

EVENT:
CNT_LATCH(11b) 'Latch counters 1+2 at the same time
new_1 = CNT_READLATCH(1)'read out Latch A counter 1 and...
new_2 = CNT_READLATCH(2)'Latch A counter 2.
PAR_1 = new_1 - old_1 'Calculate the difference

'(f = impulses / time)
PAR_2 = new_2 - old_2 ' -"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 ' -"-

CNT_ENABLE

ADbasic 4.20, Manual April 2006

ADwin

261

CNT_ENABLE
The instruction CNT_ENABLE disables or enables the counters set by pat-
tern, to count incoming impulses.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

CNT_ENABLE(pattern)

Parameters

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_GETSTATUS,
CNT_INPUTMODE, CNT_LATCH, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16, L16-CO1, L16-DIO1, L16-DIO2

pattern Bit pattern.
Bit = 0: stop counter.
Bit = 1: enable counter.

Bit no. 31…4 3 2 1 0

Counter no. – 4a

a. for ADwin-Gold CO1 only

3a 2b

b. not with ADwin-light-16 CO1 add-on.

1

LONG

CNT_ENABLE

ADbasic 4.20, Manual April 2006

ADwin

262

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

DIM old_1, new_1 AS LONG'Dimension
DIM old_2, new_2 AS LONG' the variables

INIT:
old_1 = 0 'Initialize
old_2 = 0 ' the variables
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(0) 'All counters on external clock input
CNT_SET(11b) 'Counters 1+2 with clock (CLK) and

'direction (DIR) inputs
CNT_INPUTMODE(0) 'Determine functionality: At all

'counters as CLR-input
CNT_CLEARENABLE(11b) 'Enables the CLR-function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(11b) 'Start counters 1+2

EVENT:
CNT_LATCH(11b) 'Latch counters 1+2 simultaneously
new_1 = CNT_READLATCH(1)'read out Latch A counter 1 and...
new_2 = CNT_READLATCH(2)'Latch A counter 2.
PAR_1 = new_1 - old_1 'Calculate the difference

'(f = impulses / time)
PAR_2 = new_2 - old_2 '-"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 '-"-

CNT_GETSTATUS

ADbasic 4.20, Manual April 2006

ADwin

263

CNT_GETSTATUS
CNT_GETSTATUS reads out and returns the counter status register.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

ret_val = CNT_GETSTATUS()

Parameters

Table ADwin-Gold

ret_val Contents of the status register:
In case of error, refer to the table for the
meaning of the individual bits.

Bit Nr. 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Signal - - - - - - - - N
4

N
3

N
2

N
1 - - - -

Bit Nr. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Signal L4 C
4 L3 C

3 L2 C
2 L1 C

1
B
4

A
4

B
3

A
3

B
2

A
2

B
1

A
1

 - :don't care (signal status is not defined (mask out with 0F 0F 00 33h)
Ax:Signal A (signal is not changing states)
Bx: Signal B (signal is not changing states)
Cx:Correlation error (signals A and B are identical, they are not phase-shifted
by approx. 90°)
Lx: Line error (cable not connected or the line is broken)
Nx:CLR-/LATCH-input (signal is not changing state)
x:Counter number (1, 2, 3 or 4)

LONG

CNT_GETSTATUS

ADbasic 4.20, Manual April 2006

ADwin

264

Table ADwin-light-16

Notes

A line error (Lx) can only be detected at differential inputs! For TTL-in-
puts these bits are always 0.

ADwin-Gold only: The status register is not reset by reading it; use the
instruction CNT_RESETSTATUS instead.

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_INPUTMODE, CNT_LATCH, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16-DIO1, L16-DIO2

Bit no.
31…2

8
2
7

2
6

2
5

2
4

23…2
0

1
9

1
8

1
7

1
6

15…0
6

0
5

0
4

03…0
2

0
1

0
0

Signal
- L

2
C
2

L
1

C
1

- B
2

A
2

B
1

A
1

- N
2

N
1

- R
2

R
1

 - :don't care (signal status is not defined (mask out with 0F 0F 00 33h)
Ax:Signal A (signal is not changing states)
Bx: Signal B (signal is not changing states)
Cx:Correlation error* (signals A and B are identical, they are not phase-shifted by approx. 90°)
Lx: Line error* (cable not connected or the line is broken)
Nx:CLR-/LATCH-input (signal is not changing states)
Rx:Reset-Enable (value which was set by CNT_CLEARENABLE)
x:Counter number (1 or 2)

* Auto-Reset (is reset during reading out)

CNT_GETSTATUS

ADbasic 4.20, Manual April 2006

ADwin

265

Example (ADwin-light-16 DIO1 only)
#INCLUDE ADWL16.INC
DIM error AS LONG

INIT:
CNT_MODE(0) 'All counters at external clock input
CNT_SET(0) 'All counters with A/B-input (for

'instance for incremental encoder)
CNT_INPUTMODE(0) 'Determine functionality CLR/LATCH: At

'all counters as CLR-input
CNT_CLEARENABLE(11b) 'Enables the CLR-function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(1) 'Start counter 1
error = 0 'Reset error indicator

EVENT:
PAR_1 = CNT_READ(1) 'Read out counter 1
PAR_2 = CNT_GETSTATUS(1) AND 0F0F0033h'Read out status

'register counter 1
IF (PAR_2 AND 2000000h = 2000000h) THEN'Line or cable error

'counter 1?
INC PAR_3 'Number of line or cable errors until

'now...
error = 1 'Set error indicator

ENDIF
IF (PAR_2 AND 1000000h = 1000000h) THEN'Correlation error

'counter 1?
INC PAR_4 'Number of correlation errors until

'now...
error = 1 'Set error indicator

ENDIF
PAR_5 = SHIFT_RIGHT(PAR_2 AND 10h,4)

'current status of CLR-input
PAR_6 = SHIFT_RIGHT(PAR_2 AND 10000h,16)

'current status of input A.
PAR_7 = SHIFT_RIGHT(PAR_2 AND 20000h,17)

'current status of input B.

CNT_INPUTMODE

ADbasic 4.20, Manual April 2006

ADwin

266

CNT_INPUTMODE
The instruction CNT_INPUTMODE sets the function of the CLR/LATCH input of
one or more counters.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

CNT_INPUTMODE(pattern)

Parameters

Notes

Use this instruction only when the counter is not enabled.

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_GETSTATUS, CNT_LATCH, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16-DIO1, L16-DIO2

pattern Bit pattern.
Bit = 0: Set CLR-mode.
Bit = 1: Set LATCH-mode.

LONG

CNT_INPUTMODE

ADbasic 4.20, Manual April 2006

ADwin

267

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

DIM old_1, new_1 AS LONG'Dimension...
DIM old_2, new_2 AS LONG'variables

INIT:
old_1 = 0 'Initialize...
old_2 = 0 'variables
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(0) 'All counters on external clock input
CNT_SET(11b) 'Counters 1+2 with clock (CLK) and

'direction (DIR) input
CNT_INPUTMODE(0) 'Determine functionality CLR/LATCH: As

'CLR-input at all counters
CNT_CLEARENABLE(11b) 'Enables the CLR-function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(11b) 'Start counters 1+2

EVENT:
CNT_LATCH(11b) 'Latch counters 1+2 simultaneously
new_1 = CNT_READLATCH(1)'Read out latch A counter 1 and...
new_2 = CNT_READLATCH(2)'latch A counter 2.
PAR_1 = new_1 - old_1 'Calculate the difference

'(f = impulses / time)
PAR_2 = new_2 - old_2 ' -"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 ' -"-

CNT_LATCH

ADbasic 4.20, Manual April 2006

ADwin

268

CNT_LATCH
The instruction CNT_LATCH transfers the current counter values of one or
more counters into the relevant Latch A, depending on the bit pattern in pat-
tern.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

CNT_LATCH(pattern)

Parameters

Notes

After the instruction has been executed the bit pattern is automatically
reset to 0 (zero).

Latch A is read out into a variable with CNT_READLATCH command.

Valid for

Gold-CO1, L16, L16-CO1, L16-DIO1, L16-DIO2

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_GETSTATUS, CNT_INPUTMODE, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

pattern Bit pattern.
Bit = 0: no function.
Bit = 1: transfer counter values into Latch A .

Bit no. 31…4 3 2 1 0

Counter no. – 4a

a. for ADwin-Gold CO1 only

3a 2b

b. not with ADwin-light-16 CO1 add-on.

1

LONG

CNT_LATCH

ADbasic 4.20, Manual April 2006

ADwin

269

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

DIM old_1, new_1 AS LONG'Dimension...
DIM old_2, new_2 AS LONG'the variables

INIT:
old_1 = 0 'Initialize
old_2 = 0 'the variables
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(0) 'All counters on external clock input
CNT_SET(11b) 'Counters 1+2 with clock (CLK) and

'direction (DIR) input
CNT_INPUTMODE(0) 'Determine functionality CLR/LATCH: As

'CLR-input at all counters
CNT_CLEARENABLE(11b) 'Enables the CLR-function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(11b) 'Start counters 1+2

EVENT:
CNT_LATCH(11b) 'Latch counters 1+2 simultaneously

'and then...
new_1 = CNT_READLATCH(1)'read out Latch A counter 1 and...
new_2 = CNT_READLATCH(2)'Latch A counter 2.
PAR_1 = new_1 - old_1 'Calculate the difference

' (f = impulses / time)
PAR_2 = new_2 - old_2 '-"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 '-"-

CNT_MODE

ADbasic 4.20, Manual April 2006

ADwin

270

CNT_MODE
The instruction CNT_MODE defines the operating mode of all counters by
selecting which clock input they use according to the bit pattern in pattern.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

CNT_MODE(pattern)

Parameters

Notes

Determine the mode of the selected clock input with CNT_SET.

Please use this instruction only when the counter is disabled.

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_GETSTATUS, CNT_INPUTMODE, CNT_LATCH, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16-DIO1, L16-DIO2

pattern Bit pattern.
Bit = 0: external clock input (CLK/DIR or A/B).
Bit = 1: internal clock input (5 MHz or

20 MHz).

Bit no. 31…4 3 2 1 0

Counter no. – 4a

a. for ADwin-Gold CO1 only

3a 2 1

LONG

CNT_MODE

ADbasic 4.20, Manual April 2006

ADwin

271

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

DIM old_1, new_1 AS LONG'Dimension
DIM old_2, new_2 AS LONG'the variables

INIT:
old_1 = 0 'Initialize
old_2 = 0 'the variables
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(0) 'All counters on external clock input
CNT_SET(1) 'Counter 1 with 20 MHz
CNT_INPUTMODE(0) 'Determine the functionality CLR/LATCH

' As CLR-input at all counters
CNT_CLEARENABLE(11b) 'Enables the CLR-function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(11b) 'Start counters 1+2

EVENT:
CNT_LATCH(11b) 'Latch counters 1+2 simultaneously

'and then...
new_1 = CNT_READLATCH(1)'Read out Latch A counter 1 and...
new_2 = CNT_READLATCH(2)'Latch A counter 2.
PAR_1 = new_1 - old_1 'Calculate the difference

' (f = impulses / time)
PAR_2 = new_2 - old_2 '-"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 '-"-

CNT_READ

ADbasic 4.20, Manual April 2006

ADwin

272

CNT_READ
CNT_READ transfers current counter values into Latch A and returns them as
return value.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

ret_val = CNT_READ(CounterNo)

Parameters

Notes

Use the return value in calculations only with variables of the type
LONG (e.g. differences or count direction).

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_GETSTATUS, CNT_INPUTMODE, CNT_LATCH, CNT_MODE,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16, L16-CO1, L16-DIO1, L16-DIO2

CounterNo Counter number (L16, L16-DIO1: 1…2,
L16-CO1: 1; Gold-CO1: 1…4).

ret_val Counter values.

LONG

LONG

CNT_READ

ADbasic 4.20, Manual April 2006

ADwin

273

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

DIM old_1, new_1 AS LONG'Dimension...
DIM old_2, new_2 AS LONG'the variables

INIT:
old_1 = 0 'Initialize...
old_2 = 0 'the variables
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(0) 'All counters on external clock input
CNT_SET(11b) 'Counters 1+2 with clock (CLK) and

'direction (DIR) inputs
CNT_INPUTMODE(0) 'Determine functionality CLR/LATCH: At

'all as CLR-input
CNT_CLEARENABLE(11b) 'Enables the CLR-function of

'counters 1+2
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(11b) 'Start counters 1+2

EVENT:
new_1 = CNT_READ(1) 'Latch counter 1 and read out Latch A

'afterward
new_2 = CNT_READ(2) 'Latch counter 2 and read out Latch A

'afterward
PAR_1 = new_1 - old_1 'Calculate the difference

'(f = impulses / time)
PAR_2 = new_2 - old_2 ' -"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 ' -"-

CNT_READLATCH

ADbasic 4.20, Manual April 2006

ADwin

274

CNT_READLATCH
CNT_READLATCH returns the value of a counter previously stored in Latch A.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

ret_val = CNT_READLATCH(CounterNo)

Parameters

Notes

Use the return value in calculations only with variables of the type
LONG (e.g. differences or count direction).

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_GETSTATUS, CNT_INPUTMODE, CNT_LATCH, CNT_MODE,
CNT_READ, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16, L16-CO1, L16-DIO1, L16-DIO2

Notes

The point of time when the current counter value is latched depends on
the CNT_MODE settings:

• External clock input (CNT_MODE bit = 0): Only the instruction
CNT_LATCH latches the counter.

• Internal clock input (CNT_MODE bit = 1): Any edge of the external
measurement signal latches the counter.
At a positive edge of the input signal the counter values are latched
into Latch A, whereas at a negative edge of the input signal the
counter values are latched into Latch B.

CounterNo Counter number (L16, L16-DIO1: 1…2,
L16-CO1: 1, Gold-CO1: 1…4).

ret_val Contents of Latch A .

LONG

LONG

CNT_READLATCH

ADbasic 4.20, Manual April 2006

ADwin

275

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only
DIM rise, rise_old, fall, fall_old AS LONG
#DEFINE high PAR_1
#DEFINE low PAR_2
#DEFINE T PAR_9
#DEFINE f PAR_10

INIT:
rise_old = 0 'Initialize the variables
fall_old = 0
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(11b) 'Counters 1+2 on internal clock input
CNT_SET(0) 'All counters with 20 MHz internal

'reference clock
CNT_INPUTMODE(11b) 'Determine functionality CLR/LATCH: At

'counters 1+2 as LATCH input
CNT_CLEARENABLE(0) 'Disables the CLR-function of all

'counters
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(1) 'Start couner 1

EVENT:
rise = CNT_READLATCH(1)'Read out Latch A counter 1
fall = CNT_READFLATCH(1)'Read out Latch B counter 1
IF (rise <> rise_old) THEN'Is a rising edge detected?
T = rise - rise_old 'Period duration in nanoseconds
f = 1E9 / T 'Frequency in Hertz
IF (fall <> fall_old) THEN'Is a falling edge detected?
 high = (fall - rise) * 25'Impulse duration in nanoseconds
 low = (rise - fall_old) * 25'Pause duration in

'nanoseconds
ELSE 'No falling edge is detected
 high = (fall - rise_old) * 25'Impulse duration in

'nanoseconds
 low = (rise - fall) * 25'Pause duration in nanoseconds
ENDIF

ENDIF
rise_old = rise 'Save contents of the latch
fall_old = fall 'Save contents of the latch

CNT_READFLATCH

ADbasic 4.20, Manual April 2006

ADwin

276

CNT_READFLATCH
CNT_READFLATCH returns the value of a counter previously stored in Latch B.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

ret_val = CNT_READFLATCH(CounterNo)

Parameters

Comment

Use the return value in calculations only with variables of the type
LONG (e.g. differences or count direction).

The point of time when the current counter value is latched depends on
the CNT_MODE settings:

• External clock input (CNT_MODE bit = 0): Only the instruction
CNT_LATCH latches the counter.

• Internal clock input (CNT_MODE bit = 1): Any edge of the external
measurement signal latches the counter.

At a positive edge of the input signal the counter values are latched into
Latch A, whereas at a negative edge of the input signal the counter val-
ues are latched into Latch B.

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_GETSTATUS, CNT_INPUTMODE, CNT_LATCH, CNT_MODE,
CNT_READ, CNT_READLATCH, CNT_RESETSTATUS,
CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16-DIO1, L16-DIO2

CounterNo Counter number
(L16-DIO1: 1…2, Gold-CO1: 1…4).

ret_val Contents of Latch B.

LONG

LONG

CNT_READFLATCH

ADbasic 4.20, Manual April 2006

ADwin

277

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only
DIM rise, rise_old, fall, fall_old AS LONG
#DEFINE high PAR_1
#DEFINE low PAR_2
#DEFINE T PAR_9
#DEFINE f PAR_10

INIT:
rise_old = 0 'Initialize...
fall_old = 0 ' the variables
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(11b) 'Counters 1+2 on internal clock input
CNT_SET(0) 'All counters with 20 MHz internal

'clock reference
CNT_INPUTMODE(11b) 'Determine functionality CLR/LATCH: At

'counters 1+2 as LATCH inputs
CNT_CLEARENABLE(0) 'Disables the CLR-function of all

'counters
CNT_CLEAR(11b) 'Reset counters 1+2 to 0
CNT_ENABLE(1) 'Start counter 1

EVENT:
rise = CNT_READLATCH(1)'Read out Latch A counter 1
fall = CNT_READFLATCH(1)'Read out Latch B counter 1
IF (rise <> rise_old) THEN'Is a rising edge detected?
T = rise - rise_old 'Period duration in nanoseconds
f = 1E9 / T 'Frequency in Hertz
IF (fall <> fall_old) THEN'Is a falling edge detected?
 high = (fall - rise) * 25'Impulse duration in nanoseconds
 low = (rise - fall_old) * 25'Pause duration in

'nanoseconds
ELSE 'No falling edge detected
 high = (fall - rise_old) * 25'Impulse duration in

'nanoseconds
 low = (rise - fall) * 25'Pause duration in nanoseconds
ENDIF

ENDIF
rise_old = rise 'Save contents of the latch
fall_old = fall 'Save contents of the latch

CNT_RESETSTATUS

ADbasic 4.20, Manual April 2006

ADwin

278

CNT_RESETSTATUS
ADwin-Gold only: The instruction CNT_RESETSTATUS clears the status regis-
ter of all four 32 bit-counters.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
CNT_RESETSTATUS()

Comment

The status register is read out with the instruction CNT_GETSTATUS.

See also

CNT_CLEAR, CNT_ENABLE, CNT_GETSTATUS,
CNT_INPUTMODE, CNT_LATCH, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1

CNT_RESETSTATUS

ADbasic 4.20, Manual April 2006

ADwin

279

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only

DIM error AS LONG

DIM old_1, new_1 AS LONG 'Dimensioning…
DIM old_2, new_2 AS LONG ' variables

INIT:
CNT_ENABLE(0) 'Stop all counters
CNT_CLEAR(1111b) 'Clear all counters
CNT_SE_DIFF(11b) 'Set all counters to diff. inputs
CNT_MODE(0) 'Set external event input
CNT_SET(0) 'Set mode 4 edge evaluation
CNT_INPUTMODE(0) 'Enable CLR counter input
CNT_ENABLE(1111b) 'Start all counters
old_1 = 0 'Initialize…
old_2 = 0 ' variables
error = 0 'Initialize error flag

EVENT:
PAR_1 = CNT_READ(1) 'Read out counter 1
PAR_2 = CNT_GETSTATUS(1) AND 0FFFF00F0h 'Read out and mask

'status register counter 1
IF (PAR_2 AND 2000000h = 2000000h) THEN'Line or cable error

'counter 1?
INC PAR_3 'Number of line or cable errors until

'now...
error = 1 'Set error flag

ENDIF
IF (PAR_2 AND 1000000h = 1000000h) THEN'Correlation error

'counter 1?
INC PAR_4 'Number of correlation errors until

'now...
error = 1 'Set error flag

ENDIF
CNT_RESETSTATUS() 'Clear bits of line and correlation

'errors
PAR_5 = SHIFT_RIGHT(PAR_2 AND 10h,4) 'status of CLR-input
PAR_6 = SHIFT_RIGHT(PAR_2 AND 10000h,16) 'status of input A
PAR_7 = SHIFT_RIGHT(PAR_2 AND 20000h,17) 'status of input B

CNT_SE_DIFF

ADbasic 4.20, Manual April 2006

ADwin

280

CNT_SE_DIFF
ADwin-Gold only: The instruction CNT_SE_DIFF sets counter inputs to the
input mode single-ended or differential as pairs.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
CNT_SE_DIFF(CounterNo)

Parameter

Comment

After start-up of an ADwin-Gold, the operating mode of the counter in-
puts is undefined; all of the counter inputs have to be set to the desired
operating mode.

See also

CNT_CLEAR, CNT_ENABLE, CNT_GETSTATUS,
CNT_INPUTMODE, CNT_LATCH, CNT_MODE, CNT_READ,
CNT_READLATCH, CNT_READFLATCH, CNT_RESETSTATUS,
CNT_SET

Valid for

Gold-CO1

CounterNo Bit pattern to choose the counter pairs (see
table) and set the input mode:

Bit = 0: Run inputs single-ended.
Bit = 1: Run inputs differential.

Bit no. in CounterNo 31 … 2 1 0

Inputs of counters no. – 3 + 4 1 + 2

LONG

CNT_SE_DIFF

ADbasic 4.20, Manual April 2006

ADwin

281

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only

DIM error AS LONG 'Dimensioning…
DIM old_1, new_1 AS LONG' variables
DIM old_2, new_2 AS LONG

INIT:
CNT_ENABLE(0) 'Stop all counters
CNT_CLEAR(1111b) 'Clear all counters
CNT_SE_DIFF(11b) 'Set all counters to diff. inputs
CNT_MODE(0) 'Set external event input
CNT_SET(0) 'Set mode 4 edge evaluation
CNT_INPUTMODE(0) 'Enable CLR counter input
CNT_ENABLE(1111b) 'Start all counters
old_1 = 0 'Initialize…
old_2 = 0 ' variables
error = 0 'Initialize error flag

EVENT:
PAR_1 = CNT_READ(1) 'Read out counter 1
PAR_2 = CNT_GETSTATUS(1) AND 0FFFF00F0h'Read out and mask

'status register counter 1
IF (PAR_2 AND 2000000h = 2000000h) THEN'Line or cable error

'counter 1?
INC PAR_3 'Number of line or cable errors until

'now...
error = 1 'Set error flag

ENDIF
IF (PAR_2 AND 1000000h = 1000000h) THEN'Correlation error

'counter 1?
INC PAR_4 'Number of correlation errors until

'now...
error = 1 'Set error flag

ENDIF
CNT_RESETSTATUS() 'Clear bits of line and correlation

'errors
PAR_5 = SHIFT_RIGHT(PAR_2 AND 10h,4)

'current status of CLR-input
PAR_6 = SHIFT_RIGHT(PAR_2 AND 10000h,16)

'current status of input A.
PAR_7 = SHIFT_RIGHT(PAR_2 AND 20000h,17)

'current status of input B.

CNT_SET

ADbasic 4.20, Manual April 2006

ADwin

282

CNT_SET
The instruction CNT_SET defines the operating mode for all counters (depend-
ing on CNT_MODE) according to the bit pattern in pattern.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

CNT_SET(pattern)

Parameters

Comment

Please use this instruction only when the counter is disabled.

See also

CNT_CLEAR, CNT_CLEARENABLE, CNT_ENABLE,
CNT_GETSTATUS, CNT_INPUTMODE, CNT_LATCH, CNT_MODE,
CNT_READ, CNT_READLATCH, CNT_READFLATCH,
CNT_RESETSTATUS, CNT_SE_DIFF, CNT_SET

Valid for

Gold-CO1, L16-DIO1, L16-DIO2

pattern Bit pattern, for the meaning of the bits
see table below.

Bit value in
pattern

External clock input
Bit = 0 in CNT_MODE

Internal clock input
Bit = 1 in CNT_MODE

Bit = 0 4-edge evaluation Reference clock 20 MHz

Bit = 1 Clock and direction input Reference clock 5 MHz

Bit no. 31…4 3 2 1 0

Counter no. – 4a

a. for ADwin-Gold CO1 only

3a 2 1

LONG

CNT_SET

ADbasic 4.20, Manual April 2006

ADwin

283

Example
#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

INIT:
CNT_SE_DIFF(11b) 'ADwin-Gold only:

'All counter inputs differential
CNT_MODE(0) 'All counters on external clock input
CNT_SET(11100b) 'Counters 3+4 (Gold only) with clock/

'direction evaluation, Counters 1+2
'with 4 edge evaluation

CNT_CLEAR(11100b) 'Set counters 3+4 (Gold only) to 0
CNT_ENABLE(11100b) 'Enable counters 3+4 (Gold only),

'disable counters 1+2

CONF_DIO_E

ADbasic 4.20, Manual April 2006

ADwin

284

CONF_DIO_E
The instruction CONF_DIO_E configures the digital channels as inputs or out-
puts in groups of 8.

Syntax

#INCLUDE ADWL16.INC

CONF_DIO_E(setup)

Parameters

Comment

After power-up all digital I/O-lines are configured as inputs.

See also

DIGIN_WORD1_E, DIGIN_WORD2_E, DIGOUT_RESET1_E,
DIGOUT_RESET2_E, DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(1100b) 'Configures DIOs 15:00 as inputs and

'DIOs 31:16 as outputs.

setup Bit pattern, that configures
the digital channels as inputs or outputs:

Bit=0: Channels as inputs.
Bit=1: Channels as outputs.

Bit no. in val 15…4 3 2 1 0

Channels – DIO31
…

DIO24

DIO23
…

DIO16

DIO15
…

DIO08

DIO07
…

DIO00

LONG

DIGIN_WORD1_E

ADbasic 4.20, Manual April 2006

ADwin

285

DIGIN_WORD1_E
The instruction DIGIN_WORD1_E returns the values of the digital inputs 0...15
at the same time.

Syntax

#INCLUDE ADWL16.INC

ret_val = DIGIN_WORD1_E()

Parameters

Comment

If you have configured the channels as outputs, the contents of the out-
put register of these bits is returned.

See also

CONF_DIO_E, DIGIN_WORD2_E, DIGOUT_RESET1_E,
DIGOUT_RESET2_E, DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

ret_val Bit pattern, that corresponds to
the TTL-level at the digital inputs.

1: TTL-level high.
0: TTL-level low.

Bit number in
ret_val

31 … 16 15 14 … 1 0

Input No. – DIO15 DIO14 … DIO01 DIO00

LONG

DIGIN_WORD1_E

ADbasic 4.20, Manual April 2006

ADwin

286

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(1100b) 'Configures DIOs 15:00 as inputs and

'DIOs 31:16 as outputs

EVENT:
PAR_1 = DIGIN_WORD1_E()'Read low-word (bits 15:00)

DIGIN_WORD2_E

ADbasic 4.20, Manual April 2006

ADwin

287

DIGIN_WORD2_E
The instruction DIGIN_WORD2_E returns the values of the digital inputs
16...31 at the same time.

Syntax

#INCLUDE ADWL16.INC

ret_val = DIGIN_WORD2_E()

Parameters

Comment

If you have configured the channels as outputs, the contents of the out-
put register of these bits is returned.

See also

CONF_DIO_E, DIGIN_WORD1_E, DIGOUT_RESET1_E,
DIGOUT_RESET2_E, DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

ret_val Bit pattern, that corresponds to
the TTL-level at the digital inputs.

1: TTL-level high.
0: TTL-level low.

Bit number in
ret_val

31 … 16 15 14 … 1 0

Input No. – DIO31 DIO30 … DIO17 DIO16

LONG

DIGIN_WORD2_E

ADbasic 4.20, Manual April 2006

ADwin

288

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(0) 'Configures DIOs 31:00 as inputs(also

'in the power-up status!)

EVENT:
PAR_1 = DIGIN_WORD1_E()'Read low-word (bits 15:00)
PAR_2 = DIGIN_WORD2_E()'Read high-word (bits 31:16)

DIGIN_LONG_E

ADbasic 4.20, Manual April 2006

ADwin

289

DIGIN_LONG_E
The instruction DIGIN_LONG_E returns the values of the digital inputs 0...31
at the same time.

Syntax

#INCLUDE ADWL16.INC

ret_val = DIGIN_LONG_E()

Parameters

Comment

If you have configured the channels as outputs, the contents of the out-
put register of these bits is returned.

See also

CONF_DIO_E, DIGIN_WORD1_E, DIGOUT_RESET1_E,
DIGOUT_RESET2_E, DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO2

ret_val Bit pattern, that corresponds to
the TTL-level at the digital inputs.

1: TTL-level high.
0: TTL-level low.

Bit number in
ret_val

31 30 … 1 0

Input No. DIO31 DIO30 … DIO01 DIO00

LONG

DIGIN_LONG_E

ADbasic 4.20, Manual April 2006

ADwin

290

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(0) 'Configures DIOs 31:00 as inputs(also

'in the power-up status!)

EVENT:
PAR_1 = DIGIN_WORD1_E()'Read low-word (bits 15:00)
PAR_2 = DIGIN_LONG_E()'Read high-word (bits 31:16)

DIGOUT_RESET1_E

ADbasic 4.20, Manual April 2006

ADwin

291

DIGOUT_RESET1_E
The instruction DIGOUT_RESET1_E sets the selected digital outputs 0...15 to
TTL-level low.

Syntax

#INCLUDE ADWL16.INC

DIGOUT_RESET1_E(setup)

Parameters

See also

CONF_DIO_E, D IGIN_WORD1_E, D IGIN_WORD2_E,
DIGOUT_RESET2_E, DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

setup Bit pattern for setting specified outputs:
Bit = 1: Set to TTL-level low.
Bit = 0: no influence.

Bit number
in setup

31 … 16 15 14 … 1 0

Input No. – DIO15 DIO14 … DIO01 DIO00

LONG

DIGOUT_RESET1_E

ADbasic 4.20, Manual April 2006

ADwin

292

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(11b) 'Configures DIOs 15:00 as outputs and

'DIOs 31:16 as inputs

INIT:
PAR_1 = 5555h 'Delete all odd-numbered bits of the

'low-word upon output.
DIGOUT_WORD1_E(0FFFFh)'Output DIO-bits 15:00

EVENT:
DIGOUT_RESET1_E(PAR_1)'Delete DIO-bits equivalent to PAR_1
PAR_1 = PAR_1 XOR 0FFFFh'Invert output-word
DIGOUT_WORD1_E(PAR_1)'Output DIO-bits 15:00

DIGOUT_RESET2_E

ADbasic 4.20, Manual April 2006

ADwin

293

DIGOUT_RESET2_E
The instruction DIGOUT_RESET2_E sets the selected digital outputs 16…31
to TTL-level low.

Syntax

#INCLUDE ADWL16.INC

DIGOUT_RESET2_E(setup)

Parameters

See also

CONF_DIO_E, D IGIN_WORD1_E, D IGIN_WORD2_E,
DIGOUT_RESET1_E, DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

setup Bit pattern for setting specified outputs:
Bit = 1: Set to TTL-level low.
Bit = 0: no influence.

Bit number
in setup

31 … 16 15 14 … 1 0

Input No. – DIO31 DIO30 … DIO17 DIO16

LONG

DIGOUT_RESET2_E

ADbasic 4.20, Manual April 2006

ADwin

294

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(1100b) 'Configures DIOs 15:00 as inputs and

'DIOs 31:16 as outputs

INIT:
PAR_2 = 5555h 'Clear all odd-numbered bits of the

'high-word during output.
DIGOUT_WORD1_E(0FFFFh)'Output the DIO bits 15:00

EVENT:
DIGOUT_RESET2_E(PAR_2)'Clear the DIO bits according to

'PAR_2.
PAR_2 = PAR_2 XOR 0FFFFh'Invert ouput-word
DIGOUT_WORD2_E(PAR_2)'Output the DIO bits 31:16

DIGOUT_SET1_E

ADbasic 4.20, Manual April 2006

ADwin

295

DIGOUT_SET1_E
The instruction DIGOUT_SET1_E sets the selected digital ouptuts 0...15 to
TTL-level high.

Syntax

#INCLUDE ADWL16.INC

DIGOUT_SET1_E(setup)

Parameters

See also

CONF_DIO_E, D IGIN_WORD1_E, D IGIN_WORD2_E,
DIGOUT_RESET1_E, DIGOUT_RESET2_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(1100b) 'Configures DIOs 15:00 as outputs and

'DIOs 31:16 as input
PAR_1 = 0AAAAh 'Set all even-numbered bits of the

'low-word during the output
DIGOUT_WORD1_E(0) 'Output the DIO bits 15:00

EVENT:
DIGOUT_SET1_E(PAR_1) 'Set the DIO bits according to PAR_1
PAR_1 = PAR_1 XOR 0FFFFh'Invert output-word
DIGOUT_WORD1_E(PAR_1)'Output the DIO bits 15:00

setup Bit pattern to set specified ouputs:
Bit = 1: Set to TTL-level high.
Bit = 0: No change.

Bit number
in setup

31 … 16 15 14 … 1 0

Input No. – DIO15 DIO14 … DIO01 DIO00

LONG

DIGOUT_SET2_E

ADbasic 4.20, Manual April 2006

ADwin

296

DIGOUT_SET2_E
The instruction DIGOUT_SET2_E sets the selected digital outputs 16...31 to
TTL-level high.

Syntax

#INCLUDE ADWL16.INC

DIGOUT_SET2_E(setup)

Parameters

See also

CONF_DIO_E, D IGIN_WORD1_E, D IGIN_WORD2_E,
DIGOUT_RESET1_E, DIGOUT_SET1_E, DIGOUT_SET2_E,
DIGOUT_WORD1_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(1100b) 'Configures DIOs 15:00 as outputs and

'the DIOs 31:16 as inputs
PAR_1 = 0AAAAh 'Set all even-numbered bits of the

'low-word during the output
DIGOUT_WORD2_E(0) 'Output the DIO bits 15:00

EVENT:
DIGOUT_SET2_E(PAR_2) 'Set the DIO bits according to PAR_1
PAR_2 = PAR_2 XOR 0FFFFh'Invert output-word
DIGOUT_WORD2_E(PAR_2)'Output the DIO bits 15:00

setup Bit pattern to set specified outputs:
Bit = 1: Set to TTL-level high.
Bit = 0: No change.

Bit number
in setup

31 … 16 15 14 … 1 0

Input No. – DIO31 DIO30 … DIO17 DIO16

LONG

DIGOUT_WORD1_E

ADbasic 4.20, Manual April 2006

ADwin

297

DIGOUT_WORD1_E
The instruction DIGOUT_WORD1_E sets all digital outputs 0...15 to specified
TTL-levels using a bit pattern.

Syntax

#INCLUDE ADWL16.INC

DIGOUT_WORD1_E(setup)

Parameters

See also

CONF_DIO_E, D IGIN_WORD1_E, D IGIN_WORD2_E,
DIGOUT_RESET1_E,DIGOUT_RESET2_E, DIGOUT_SET1_E,
DIGOUT_SET2_E, DIGOUT_WORD2_E

Valid for

L16-DIO1, L16-DIO2

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(0011b) 'Conigures DIOs 15:00 as outputs and

'DIOs 31:16 as inputs
PAR_1 = 5555h 'Set all odd-numbered bits of the

'low-word

EVENT:
DIGOUT_WORD1_E(PAR_1) 'Output the DIO bits 15:00

setup Bit pattern, corresponding to the
TTL level desired at the digital outputs.

Bit = 1: Set to TTL-level high.
Bit = 0: Set to TTL-level low.

Bit number
in setup

31 … 16 15 14 … 1 0

Input No. – DIO15 DIO14 … DIO01 DIO00

LONG

DIGOUT_WORD2_E

ADbasic 4.20, Manual April 2006

ADwin

298

DIGOUT_WORD2_E
The instruction DIGOUT_WORD2_E sets all the digital outputs 16…31 to spec-
ified TTL-levels using a bit pattern.

Syntax

#INCLUDE ADWL16.INC

DIGOUT_WORD2_E(setup)

Parameters

See also

CONF_DIO_E, D IGIN_WORD1_E, D IGIN_WORD2_E,
DIGOUT_RESET1_E, DIGOUT_RESET2_E, DIGOUT_SET1_E,
DIGOUT_SET2_E, DIGOUT_WORD1_E

Valid for

L16-DIO1, L16-DIO2

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(12) 'Configures DIOs 15:00 as inputs and

'DIOs 31:16 as outputs
PAR_2 = 0AAAAh 'Set all even-numbered bits of the

'low-word.

EVENT:
DIGOUT_WORD2_E(PAR_2) 'Output the DIO bits 31:16

setup Bit pattern, corresponding to the
TTL level desired at the digital outputs.

Bit = 1:Set to TTL-level high.
Bit = 0: Set to TTL-level low.

Bit number
in setup

31 … 16 15 14 … 1 0

Input No. – DIO31 DIO30 … DIO17 DIO16

LONG

DIGOUT_LONG_E

ADbasic 4.20, Manual April 2006

ADwin

299

DIGOUT_LONG_E
The instruction DIGOUT_LONG_E sets all the digital outputs 0…31 to specified
TTL-levels using a bit pattern.

Syntax

#INCLUDE ADWL16.INC

DIGOUT_LONG_E(setup)

Parameters

See also

CONF_DIO_E, D IGIN_WORD1_E, D IGIN_WORD2_E,
DIGIN_LONG_E, DIGOUT_RESET1_E, DIGOUT_RESET2_E,
DIGOUT_SET1_E, DIGOUT_SET2_E, DIGOUT_WORD1_E

Valid for

L16-DIO2

Example
#INCLUDE ADWL16.INC

INIT:
CONF_DIO_E(12) 'Configures DIOs 15:00 as inputs and

'DIOs 31:16 as outputs
PAR_2 = 0AAAAh 'Set all even-numbered bits of the

'low-word.

EVENT:
DIGOUT_LONG_E(PAR_2) 'Output the DIO bits 31:16

setup Bit pattern, corresponding to the
TTL level desired at the digital outputs.

Bit = 1:Set to TTL-level high.
Bit = 0: Set to TTL-level low.

Bit number
in setup

31 30 … 1 0

Input No. DIO31 DIO30 … DIO01 DIO00

LONG

CAN_MSG

ADbasic 4.20, Manual April 2006

ADwin

300

CAN_MSG
CAN_MSG[] is a one-dimensional array, consisting of 9 elements, where the
message objects are stored.

Syntax

#INCLUDE ADWL16.INC

CAN_MSG[n] = value

or

value = CAN_MSG[n]

Parameters

Comment

The elements of the array CAN_MSG[] have the following functions:

Enter the values to be transferred into the field CAN_MSG[], before
transferring them with TRANSMIT.

See also

EN_INTERRUPT, EN_RECEIVE, EN_TRANSMIT, GET_CAN_REG,
INIT_CAN, READ_MSG, SET_CAN_BAUDRATE, SET_CAN_REG,
TRANSMIT

Valid for

L16-DIO1

n Element number in the field CAN_MSG (1…9).

value Value (8 bit), which is to be written into or
read from the message object.

Element no. in CAN_MSG 1…8 9

Contents Message
object(s) =
databyte(s)

Number (0…8) of allo-
cated databytes

LONG

LONG

CAN_MSG

ADbasic 4.20, Manual April 2006

ADwin

301

Example
REM Sends a 32 Bit FLOAT-value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see example at READ_MSG)

#INCLUDE ADWL16.INC
#DEFINE pi 3.14159265
DIM i AS LONG

INIT:
INIT_CAN() 'Initialize CAN controller

REM Enable message object 6
REM for sending with the identifier 40 (11 bit)
EN_TRANSMIT(6,40,0)

REM Create bit pattern of Pi with data type Long
PAR_1 = CAST_FLOATTOLONG(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_MSG[4] = PAR_1 AND 0FFh 'assign LSB
FOR i = 1 TO 3
CAN_MSG[4-i] = SHIFT_RIGHT(PAR_1,8*i) AND 0FFh

NEXT i
CAN_MSG[9] = 4 'message length in bytes

EVENT:
TRANSMIT(6) 'Send the message object 6

EN_INTERRUPT

ADbasic 4.20, Manual April 2006

ADwin

302

EN_INTERRUPT
CAN bus: The instruction EN_INTERRUPT configures a specified message
object in such a manner that an external event is generated when the mes-
sage arrives.

Syntax

#INCLUDE ADWL16.INC

EN_INTERRUPT(objectno)

Parameters

See also

CAN_MSG, EN_RECEIVE, GET_CAN_REG

Valid for

L16-DIO1

Example
#INCLUDE ADWL16.INC

INIT:
INIT_CAN() 'Initialization of the CAN controller
EN_RECEIVE(1200,0) 'Initialize the message object 1 to

'receive CAN messages with the
'identifier 200

EN_INTERRUPT(1) 'Enables the triggering of interrupts
'(ext. EVENT) when receiving the
'message object 1

objectno Number (1…15) of the message object. LONG

EN_RECEIVE

ADbasic 4.20, Manual April 2006

ADwin

303

EN_RECEIVE
CAN bus: The instruction EN_RECEIVE enables a specified message object
to receive messages.

Syntax

#INCLUDE ADWL16.INC

EN_RECEIVE(objectno, id, extend)

Parameters

Notes

A message object can only receive messages from the CAN bus when
you have previously enabled it to receive with EN_RECEIVE.

The message object only receives messages with the identifier you
have specified.

See also

CAN_MSG, EN_TRANSMIT, GET_CAN_REG

Valid for

L16-DIO1

objectno Number (1…15) of the message object.

id Identifier (0…211 or 0…229) of the messages,
which can be received in this message
object.

extend Length of the identifer:
0: 11 bits.
1: 29 bits.

LONG

LONG

LONG

EN_RECEIVE

ADbasic 4.20, Manual April 2006

ADwin

304

Example
#INCLUDE ADWL16.INC

INIT:
INIT_CAN() 'Initialization of the CAN controller
EN_RECEIVE(1200,0) 'Initialize the message object 1 to

'receive CAN messages with the
'identifier 200

EN_TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

305

EN_TRANSMIT
CAN bus: The instruction EN_TRANSMIT enables a specified message object
to send messages.

Syntax

#INCLUDE ADWL16.INC

EN_TRANSMIT(objectno, id, extend)

Parameters

Notes

A message object can only send messages to the CAN bus when you
have it previously enabled to send with EN_TRANSMIT.

See also

CAN_MSG, EN_RECEIVE, GET_CAN_REG

Valid for

L16-DIO1

Example
#INCLUDE ADWL16.INC

INIT:
INIT_CAN() 'Initialization of the CAN controller
EN_TRANSMIT(6,40,0) 'Initialize the message object 6 to

'send CAN messages with identifier 40

objectno Number (1…14) of the message object.

id Identifier which is sent with the messages of
this message object.

extend Length of the identifier:
0: 11 bits.
1: 29 bits.

LONG

LONG

LONG

GET_CAN_REG

ADbasic 4.20, Manual April 2006

ADwin

306

GET_CAN_REG
CAN bus: The instruction GET_CAN_REG reads the value of a specified reg-
ister in the CAN controller.

Syntax

#INCLUDE ADWL16.INC

ret_val = GET_CAN_REG(regno)

Parameters

Notes

You will find the register list of the CAN controller in the Intel® AN82527
datasheet.

See also

SET_CAN_BAUDRATE, SET_CAN_REG

Valid for

L16-DIO1

Example
#INCLUDE ADWL16.INC
INIT:
INIT_CAN() 'Initialization of the CAN controller
PAR_1 = GET_CAN_REG(0)'Read out the control register

regno Register number in the CAN controller
(0…255).

ret_val Contents of the register
(transfer to the lower 8 bits).

LONG

LONG

INIT_CAN

ADbasic 4.20, Manual April 2006

ADwin

307

INIT_CAN
CAN bus: The instruction INIT_CAN initializes the CAN controller.

Syntax

#INCLUDE ADWL16.INC

INIT_CAN()

Notes

The instruction carries out the following steps:
• Reset (hardware reset of the CAN controller)
• All filters are set to "must match".
• Clockout register is set to 0 (= the external frequency is not

divided).
• The register "Bus Configuration" is set to 0.
• The transfer rate for the CAN bus is set to 1 MBit/s.
• All message objects are disabled.

You have to execute this instruction before you access the CAN con-
troller with other instructions. We recommend you place this instruction
in the process section LOWINIT: or INIT:

See also

CAN_MSG, EN_RECEIVE, EN_TRANSMIT, GET_CAN_REG

Valid for

L16-DIO1

Example
#INCLUDE ADWL16.INC

INIT:
INIT_CAN() 'Initialize the CAN controller 1 on CAN

'module 1

READ_MSG

ADbasic 4.20, Manual April 2006

ADwin

308

READ_MSG
CAN bus: The instruction READ_MSG checks if new messages have been
received in a specified message object. If so, the message is saved in
CAN_MSG and the identifier of the message is returned.

Syntax

#INCLUDE ADWL16.INC

ret_val = READ_MSG(msgno)

Parameters

Notes

You can read out a message you have received only once.

You have to enable the message object you want to read out with
EN_RECEIVE before, so that it will be able to receive.

See also

CAN_MSG, EN_RECEIVE, EN_TRANSMIT, GET_CAN_REG

Valid for

L16-DIO1

msgno Number (1…15) of the message object.

ret_val -1: No new message.
>0: New message; value = identifier of the

message.

LONG

LONG

READ_MSG

ADbasic 4.20, Manual April 2006

ADwin

309

Example
REM If a new message with the correct identifier is received
REM the data is read out. The first 4 bytes of the message are
REM combined to a float value of length 32 bit. (Sending a
REM float value see example of TRANSMIT).
#INCLUDE ADWL16.INC
DIM n AS LONG

INIT:
PAR_1 = 0
INIT_CAN() 'Initialize the CAN controller
EN_RECEIVE(1,1,40,0) 'Initialize the message object 1

'to receive CAN messages with
'identifier 40

EVENT:
REM If the message is changed, read out the received data
REM from object 1 and transfer the identifier to parameter 9.
REM The data bytes are in the array CAN_MSG[].
PAR_9 = READ_MSG(1)

IF (PAR_9 = 40) THEN
REM New message for message object with the identifier 40
REM has arrived
PAR_1 = CAN_MSG[1] 'Read out high-byte
FOR n = 2 TO 4 'Combine with remaining 3 bytes to
 PAR_1 = SHIFT_LEFT(PAR_1,8) + CAN_MSG[n]'a 32-bit value
NEXT n
REM Convert the bit pattern in PAR_1 to data type FLOAT and
REM assign to the variable FPAR_1.
FPAR_1 = CAST_LONGTOFLOAT(PAR_1)

ENDIF

SET_CAN_BAUDRATE

ADbasic 4.20, Manual April 2006

ADwin

310

SET_CAN_BAUDRATE
CAN bus: The instruction SET_CAN_BAUDRATE sets the Baud rate of the CAN
controller.

Syntax

#INCLUDE ADWL16.INC

ret_val = SET_CAN_BAUDRATE(rate)

Parameters

Notes

The available baud rates (bus frequencies) are given in the table "Baud
rates for the CAN Bus" (Annex, page A-3). Please use the table’s no-
tation exactly, i.e. non-integer baud rates with 4 decimal places; values
with different notation will be rejected as not allowed.

The instruction executes the following actions:
• Checks if the transferred Baud rate is allowed. If not then set the

return value to 1 and stop processing.
• Set the registers of the CAN controller for the Baud rate.
• Set sampling mode to 0: One sample per bit.
• Select the settings in such a way that the sample point is always

between 60% and 72% of the total bit length.
• Set the jump width for synchroniziation to 1.

In special cases it may be of interest to set a baud rate in a different
way than the instruction works. The hardware manual gives an expla-
nation how to do this.

The instruction should be called in the program sections LOWINIT: or
INIT:, after the instruction INIT_CAN, because otherwise the set
Baud rate will be overwritten by the default setting (1MBit/s).

See also

GET_CAN_REG, SET_CAN_REG

rate Baud rate in bits/second.

ret_val 0: Baud rate is set.
1: Baud rate invalid.

LONG

LONG

SET_CAN_BAUDRATE

ADbasic 4.20, Manual April 2006

ADwin

311

Valid for

L16-DIO1

Example
#INCLUDE ADWL16.INC

INIT:
INIT_CAN() 'Initialization of the CAN controller
SET_CAN_BAUDRATE(125000)'Set the Baud rate of 125 kBit/s

SET_CAN_REG

ADbasic 4.20, Manual April 2006

ADwin

312

SET_CAN_REG
CAN bus: The instruction SET_CAN_REG writes a value into a specified regis-
ter of the CAN controller.

Syntax

#INCLUDE ADWL16.INC

SET_CAN_REG(regno, value)

Parameters

Notes

The register list of the CAN controller can be found in the Intel®
AN82527 datasheet.

See also

SET_CAN_BAUDRATE, GET_CAN_REG

Valid for

L16-DIO1

Example
#INCLUDE ADWL16.INC

INIT:
INIT_CAN() 'Initialization of the CAN controller
SET_CAN_REG(0,1) 'Set control register to the value 1

regno Register number in the CAN controller
(0…255).

value Value (8 bits), which is written into the regis-
ter.

LONG

LONG

TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

313

TRANSMIT
CAN bus: The instruction TRANSMIT sends the message in CAN_MSG via the
specified message object.

Syntax

#INCLUDE ADWL16.INC

TRANSMIT(msgno)

Parameters

Notes

Enter the message - data bytes and number of data bytes - into the ar-
ray CAN_MSG, before you start sending.

You have to enable the message object with EN_TRANSMIT, so that it
will be able to send messages.

With this instruction the message is sent as soon as the message ob-
ject has received access rights to the CAN bus.

See also

INIT_CAN, READ_MSG, EN_TRANSMIT

Valid for

L16-DIO1

msgno Number (1…14) of the message object. LONG

TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

314

Example
REM Sends a 32 Bit FLOAT-value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see example at READ_MSG)

#INCLUDE ADWL16.INC
#DEFINE pi 3.14159265
DIM i AS LONG

INIT:
INIT_CAN() 'Initialize CAN controller

REM Enable message object 6
REM for sending with the identifier 40 (11 bit)
EN_TRANSMIT(6,40,0)

REM Create bit pattern of Pi with data type Long
PAR_1 = CAST_FLOATTOLONG(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_MSG[4] = PAR_1 AND 0FFh 'assign LSB
FOR i = 1 TO 3
CAN_MSG[4-i] = SHIFT_RIGHT(PAR_1,8*i) AND 0FFh

NEXT i
CAN_MSG[9] = 4 'message length in bytes

EVENT:
TRANSMIT(6) 'Send the message object 6

TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

315

ADbasic 4.20, Manual April 2006

ADwin

316

ADwin-Gold-CAN

ADbasic 4.20, Manual April 2006

ADwin

317

6.5 ADwin-Gold-CAN
This section describes the instructions of the CAN add-on of the ADwin-Gold
system.
Use the instructions of this section with the include file ADWGCAN.inc.
The CAN add-on is equipped with 4 SSI decoder interfaces, 2 CAN interfaces
and 2 RSxxx interfaces. The following instructions are available:

CAN interfaces

RSxxx interfaces

SSI decoders

CAN_MSG page 318

EN_CAN_INTERRUPT page 320

EN_RECEIVE page 321

EN_TRANSMIT page 323

GET_CAN_REG page 325

INIT_CAN page 326

READ_MSG page 327

SET_CAN_BAUDRATE page 329

SET_CAN_REG page 331

TRANSMIT page 332

CHECK_SHIFT_REG page 334

GET_RS page 337

READ_FIFO page 337

RS_INIT page 338

RS_RESET page 341

RS485_SEND page 342

SET_RS page 343

WRITE_FIFO page 344

SSI_MODE page 346

SSI_READ page 348

SSI_SET_BITS page 350

SSI_SET_CLOCK page 352

SSI_START page 354

SSI_STATUS page 356

CAN_MSG

ADbasic 4.20, Manual April 2006

ADwin

318

CAN_MSG
CAN_MSG[] is a one-dimensional array, consisting of 9 elements, where the
message objects are stored.

Syntax

#INCLUDE ADWGCAN.INC

CAN_MSG[n] = value

or

value = CAN_MSG[n]

Parameters

Notes

The elements of the array CAN_MSG[] have the following functions:

Enter the values to be transferred into the field CAN_MSG[], before
transferring them with TRANSMIT.

See also

EN_CAN_INTERRUPT, EN_RECEIVE, EN_TRANSMIT,
GET_CAN_REG, INIT_CAN, READ_MSG, SET_CAN_BAUDRATE,
SET_CAN_REG, TRANSMIT

Valid for

Gold-CAN

n Element number in the field CAN_MSG (1…9).

value Value (8 bit), which is to be written into or
read from the message object.

Element no. 1…8 9

Contents Message objects =
data bytes

Number (0…8)
of allocated data bytes

LONG

LONG

CAN_MSG

ADbasic 4.20, Manual April 2006

ADwin

319

Example
REM Sends a 32 Bit FLOAT-value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see Example at READ_MSG)

#INCLUDE ADWGCAN.INC
#DEFINE pi 3.14159265
DIM i AS LONG

INIT:
INIT_CAN(2) 'Initialize CAN controller 2

REM Enable message object 6 of controller 2 with the
REM for sending with the identifier 40 (11 bit)
EN_TRANSMIT(2, 6,40,0)

REM Create bit pattern of Pi with data type Long
PAR_1 = CAST_FLOATTOLONG(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_MSG[4] = PAR_1 AND 0FFh 'assign LSB
FOR i = 1 TO 3
CAN_MSG[4-i] = SHIFT_RIGHT(PAR_1,8*i) AND 0FFh

NEXT i
CAN_MSG[9] = 4 'message length in bytes

EVENT:
TRANSMIT(2,6) 'Sends the message object 6

EN_CAN_INTERRUPT

ADbasic 4.20, Manual April 2006

ADwin

320

EN_CAN_INTERRUPT
CAN bus: The instruction EN_CAN_INTERRUPT configures a specified mes-
sage object of a CAN interface in such a manner that an external event is
generated when the message arrives.

Syntax

#INCLUDE ADWGCAN.INC

EN_CAN_INTERRUPT(Can_No, objectno)

Parameters

See also

CAN_MSG, EN_RECEIVE, EN_TRANSMIT

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC

INIT:
INIT_CAN(1) 'Initialization of CAN controller 1
EN_RECEIVE(1,1,1200,0)'Initialize the message object 1 of

'controller 1 to receive CAN messages
'with the identifier 200

EN_CAN_INTERRUPT(1,1) 'Enables the triggering of interrupts
'(ext. EVENT) when receiving the
'message object 1

Can_No Number (1, 2) of the CAN interface.

objectno Number (1…15) of the message object.

LONG

LONG

EN_RECEIVE

ADbasic 4.20, Manual April 2006

ADwin

321

EN_RECEIVE
CAN bus: The instruction EN_RECEIVE enables a specified message object
of a CAN inteface to receive messages.

Syntax

#INCLUDE ADWGCAN.INC

EN_RECEIVE(Can_No, objectno, id, extend)

Parameters

See also

CAN_MSG, EN_CAN_INTERRUPT, EN_TRANSMIT,
GET_CAN_REG

Notes

A message object can only receive messages from the CAN bus when
you have previously enabled it to receive with EN_RECEIVE.

The message object only receives messages with the identifier you
have specified.

Valid for

Gold-CAN

Can_No Number (1, 2) of the CAN interface.

objectno Number (1…15) of the message object.

id Identifier (0…211 or 0…229) of the messages,
which can be received in this message
object.

extend Length of the identifer:
0: 11 bits.
1: 29 bits.

LONG

LONG

LONG

LONG

EN_RECEIVE

ADbasic 4.20, Manual April 2006

ADwin

322

Example
#INCLUDE ADWGCAN.INC

INIT:
INIT_CAN(1) 'Initialization of CAN controller 1
EN_RECEIVE(1,1,1200,0)'Initialize the message object 1 of

'controller 1 to receive CAN messages
'with the identifier 200

EN_TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

323

EN_TRANSMIT
CAN bus: The instruction EN_TRANSMIT enables a specified message object
of a CAN inteface to send messages.

Syntax

#INCLUDE ADWGCAN.INC

EN_TRANSMIT(Can_No, objectno, id, extend)

Parameters

See also

CAN_MSG, EN_RECEIVE, GET_CAN_REG, TRANSMIT

Notes

A message object can only send messages to the CAN bus when you
have it previously enabled to send with EN_TRANSMIT.

Valid for

Gold-CAN

Can_No Number (1, 2) of the CAN interface.

objectno Number (1…14) of the message object.

id Identifier which is sent with the messages of
this message object.

extend Length of the identifier:
0: 11 bits.
1: 29 bits.

LONG

LONG

LONG

LONG

EN_TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

324

Example
#INCLUDE ADWGCAN.INC

INIT:
INIT_CAN(1) 'Initialization of CAN controller 1
REM Initialize message objects 6 of controller 1:
REM Object 1 to receive with identifier 200
REM Object 1 to send with identifier 40
EN_RECEIVE(1,1,200,0)
EN_TRANSMIT(1,6,40,0)

GET_CAN_REG

ADbasic 4.20, Manual April 2006

ADwin

325

GET_CAN_REG
CAN bus: The instruction GET_CAN_REG reads the value of a specified regi-
ster in one of the CAN controllers.

Syntax

#INCLUDE ADWGCAN.INC

ret_val = GET_CAN_REG(Can_No, regno)

Parameters

See also

INIT_CAN, SET_CAN_BAUDRATE, SET_CAN_REG

Notes

You will find the register list of the CAN controller in the Intel® AN82527
data sheet.

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC
INIT:
INIT_CAN(1) 'Initialization of CAN controller 1
PAR_1 = GET_CAN_REG(1,0)'Read out the control register

Can_No Number (1, 2) of the CAN interface.

regno Register number in the CAN controller
(0…255).

ret_val Contents of the register
(transferred in the lower 8 bits).

LONG

LONG

LONG

INIT_CAN

ADbasic 4.20, Manual April 2006

ADwin

326

INIT_CAN
CAN bus: The instruction INIT_CAN initializes one of the CAN controllers.

Syntax

#INCLUDE ADWGCAN.INC

INIT_CAN(Can_No)

Parameters

Notes

The instruction carries out the following steps:
• Reset (hardware reset of the CAN controller)
• All filters are set to "must match".
• Clockout register is set to 0 (= the external frequency is not

divided).
• The register "Bus Configuration" is set to 0.
• The transfer rate for the CAN bus is set to 1 MBit/s.
• All message objects are disabled.

You have to execute this instruction before you access the CAN con-
troller with other instructions. We recommend you place this instruction
in the process section LOWINIT: or INIT:

See also

CAN_MSG, EN_RECEIVE, EN_TRANSMIT, GET_CAN_REG

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC

INIT:
INIT_CAN(1) 'Initialize CAN controller 1

Can_No Number (1, 2) of the CAN interface. LONG

READ_MSG

ADbasic 4.20, Manual April 2006

ADwin

327

READ_MSG
CAN bus: The instruction READ_MSG checks if new messages have been
received in a specified message object of the CAN interface.
If so, the message is saved in CAN_MSG and the identifier of the message is
returned.

Syntax

#INCLUDE ADWGCAN.INC

ret_val = READ_MSG(Can_No, msgno)

Parameters

Notes

To receive a message you have to follow the correct order:
• Enable the message object with EN_RECEIVE for receiving (only

once).
• Check for a received message and save to CAN_MSG with

READ_MSG.

You can read a received message only once.

See also

CAN_MSG, EN_RECEIVE, EN_TRANSMIT, GET_CAN_REG

Valid for

Gold-CAN

Can_No Number (1, 2) of the CAN interface.

msgno Number (1…15) of the message object.

ret_val -1: No new message.
>0: New message received; value = identifier

of the message.

LONG

LONG

LONG

READ_MSG

ADbasic 4.20, Manual April 2006

ADwin

328

Example
REM If a new message with the correct identifier is received
REM the data is read out. The first 4 bytes of the message are
REM combined to a float value of length 32 bit. (Sending a
REM float value see example of TRANSMIT).
#INCLUDE ADWGCAN.INC
DIM n AS LONG

INIT:
PAR_1 = 0
INIT_CAN(1) 'Initialization of CAN controller 1
EN_RECEIVE(1,1,40,0) 'Initialize the message object 1 of

'controller 1 to receive CAN messages
'with identifier 40

EVENT:
REM If the message is changed, read out the received data
REM from object 1 and save the identifier to parameter 9.
REM The data bytes are in the array CAN_MSG[].
PAR_9 = READ_MSG(1,1)

IF (PAR_9 = 40) THEN
REM New message for message object with the identifier 40
REM has arrived
PAR_1 = CAN_MSG[1] 'Read out high-byte
FOR n = 2 TO 4 'Combine with remaining 3 bytes to
 PAR_1 = SHIFT_LEFT(PAR_1,8) + CAN_MSG[n]'a 32-bit value
NEXT n
REM Convert the bit pattern in PAR_1 to data type FLOAT and
REM assign to the variable FPAR_1.
FPAR_1 = CAST_LONGTOFLOAT(PAR_1)

ENDIF

SET_CAN_BAUDRATE

ADbasic 4.20, Manual April 2006

ADwin

329

SET_CAN_BAUDRATE
CAN bus: The instruction SET_CAN_BAUDRATE sets the Baud rate of one of
the CAN controllers.

Syntax

#INCLUDE ADWGCAN.INC

ret_val = SET_CAN_BAUDRATE(Can_No, rate)

Parameters

Notes

The available baud rates (bus frequencies) are given in the table "Baud
rates for the CAN Bus" (Annex, page A-3). Please use the table’s no-
tation exactly, i.e. non-integer baud rates with 4 decimal places; values
with different notation will be rejected as not allowed.

The instruction executes the following actions:
• Checks if the transferred Baud rate is allowed. If not then set the

return value to 1 and stop processing.
• Set the registers of the CAN controller for the Baud rate.
• Set sampling mode to 0: One sample per bit.
• Select the settings in such a way that the sample point is always

between 60% and 72% of the total bit length.
• Set the jump width for synchroniziation to 1.

In special cases it may be of interest to set a baud rate in a different
way than the instruction works. The hardware manual gives an expla-
nation how to do this.

The instruction should be called in the program sections LOWINIT: or
INIT:, after the instruction INIT_CAN, because otherwise the set
Baud rate will be overwritten by the default setting (1MBit/s).

Can_No Number (1, 2) of the CAN interface.

rate Baud rate in bits/second.

ret_val 0: Baud rate is set.
1: Baud rate invalid.

LONG

LONG

LONG

SET_CAN_BAUDRATE

ADbasic 4.20, Manual April 2006

ADwin

330

See also

GET_CAN_REG, SET_CAN_REG

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC

INIT:
INIT_CAN(1) 'Initialization of CAN controller 1
SET_CAN_BAUDRATE(1,125000)'Set the Baud rate of 125 kBit/s

SET_CAN_REG

ADbasic 4.20, Manual April 2006

ADwin

331

SET_CAN_REG
CAN bus: The instruction SET_CAN_REG writes a value into a specified regi-
ster of one of the CAN controllers.

Syntax

#INCLUDE ADWGCAN.INC

SET_CAN_REG(Can_No, regno, value)

Parameters

Notes

The register list of the CAN controller can be found in the Intel®
AN82527 datasheet.

See also

SET_CAN_BAUDRATE, GET_CAN_REG

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC

INIT:
INIT_CAN(1) 'Initialization of CAN controller 1
SET_CAN_REG(1,0,1) 'Set control register to the value 1

Can_No Number (1, 2) of the CAN interface.

regno Register number in the CAN controller
(0…255).

value Value (8 bits), which is written into the regis-
ter.

LONG

LONG

LONG

TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

332

TRANSMIT
CAN bus: The instruction TRANSMIT sends the message in CAN_MSG via the
specified message object of a CAN controller.

Syntax

#INCLUDE ADWGCAN.INC

TRANSMIT(Can_No, msgno)

Parameters

Notes

To send a message you have to follow the correct order:
• Enable the message object with EN_TRANSMIT for sending (only

once).
• Enter the message into the array CAN_MSG: Data bytes and

number of data bytes.
• Send the message with TRANSMIT.

The CAN interface will send the message as soon as the message ob-
ject has received access rights to the CAN bus.

See also

CAN_MSG, INIT_CAN, READ_MSG, EN_TRANSMIT

Valid for

Gold-CAN

Can_No Number (1, 2) of the CAN interface.

msgno Number (1…14) of the message object.

LONG

LONG

TRANSMIT

ADbasic 4.20, Manual April 2006

ADwin

333

Example
REM Sends a 32 bit FLOAT value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see Example of READ_MSG)

#INCLUDE ADWGCAN.INC
#DEFINE pi 3.14159265
DIM i AS LONG

INIT:
INIT_CAN(2) 'Initialize CAN-Controller 2

REM Initialize message object 6 of controller 2
REM for sending of CAN messages with the identifier 40
EN_TRANSMIT(2, 6,40,0)

REM Create bit pattern of Pi with data type Long
PAR_1 = CAST_FLOATTOLONG(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_MSG[4] = PAR_1 AND 0FFh 'assign LSB
FOR i = 1 TO 3
CAN_MSG[4-i] = SHIFT_RIGHT(PAR_1,8*i) AND 0FFh

NEXT i
CAN_MSG[9] = 4 'message length in bytes

EVENT:
TRANSMIT(2,6) 'Sends the message object 6

CHECK_SHIFT_REG

ADbasic 4.20, Manual April 2006

ADwin

334

CHECK_SHIFT_REG
RSxxx: The instruction CHECK_SHIFT_REG returns, if all data has been sent,
which was written into the send-FIFO of the RSxxx interface.

Syntax

#INCLUDE ADWGCAN.INC

ret_val = CHECK_SHIFT_REG(interface)

Parameters

Notes

With the return value 0 both the send FIFO and the output shift register
are empty. With the return value 1 there is at least one bit to be sent.

We recommend to use this instruction only after you have more expe-
rience about how the controller operates (data-sheet of the manufac-
turer Texas Instruments). For more common applications more
comfortable instructions are availabe in the include file.

See also

GET_RS, RS_INIT, RS_RESET, WRITE_FIFO

Valid for

Gold-CAN

interface number (1, 2) of the RSxxx interface that is to
be read out.

ret_val Sending status:
0: Data has been sent (= no more data in the

send-FIFO).
1: Not yet all data sent (= the send-FIFO still

contains data).

LONG

LONG

CHECK_SHIFT_REG

ADbasic 4.20, Manual April 2006

ADwin

335

Example
#INCLUDE ADWGCAN.INC

EVENT:
…
PAR_1 = CHECK_SHIFT_REG(1)'Check if RSxxx interface 1 still

'has data to send
…

GET_RS

ADbasic 4.20, Manual April 2006

ADwin

336

GET_RS
RSxxx: The instruction GET_RS reads out a specified controller register.

Syntax

#INCLUDE ADWGCAN.INC

ret_val = GET_RS(reg_addr)

Parameters

Notes

We recommend to use this instruction only after you have more expe-
rience about how the controller operates (data-sheet of the manufac-
turer Texas Instruments). For more common applications more
comfortable instructions are availabe in the include file.

See also

CHECK_SHIFT_REG, RS_INIT, RS_RESET, SET_RS

Valid for

Gold-CAN

Example
-/-

reg_addr Address of the controller register to read.

ret_val Contents of the controller register.

LONG

LONG

READ_FIFO

ADbasic 4.20, Manual April 2006

ADwin

337

READ_FIFO
RSxxx: The instruction READ_FIFO reads a value from the input FIFO of a
specified RSxxx interface.

Syntax

#INCLUDE ADWGCAN.INC

ret_val = READ_FIFO(interface)

Parameters

Notes

-/-

See also

RS_INIT, RS_RESET, RS485_SEND, WRITE_FIFO

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC

INIT:
RS_RESET()
RS_INIT(1,9600,0,8,0,1)'Initialization of RSxxx interface 1

'with 9600 Baud, without parity,
'8 data bits, 1 stop bit and
'hardware handshake.

EVENT:
PAR_1 = READ_FIFO(1) 'Get a value from the FIFO. If

'the FIFO is empty, -1 is returned.

interface number (1, 2) of the RSxxx interface that is to
be read out.

ret_val Contents of the input FIFO:
-1: FIFO is empty.
≥0: Transferred value.

LONG

LONG

RS_INIT

ADbasic 4.20, Manual April 2006

ADwin

338

RS_INIT
RSxxx: The instruction RS_INIT initializes one RSxxx interface.
The following parameters are set:

• Transfer rate in Baud
• Use of test bits
• Data length
• Amount of stop bits
• Transfer protocol (handshake)

RS_INIT

ADbasic 4.20, Manual April 2006

ADwin

339

Syntax

#INCLUDE ADWGCAN.INC

RS_INIT(interface,baud,parity,bits,stop,
handshake)

Parameters

Notes
This instruction is necessary before working first with the selected RSxxx
interface, in order to set the interface parameters. They must be identical to
the remote station, in order to verify a correct transfer.
The initialization is necessary after you have executed a hardware reset with
the instruction RS_RESET.
If transfer protocol RS485 is set, the tansfer direction must be set, too (with
RS485_SEND).

interface Number of RSxxx interface (1, 2), which is to
be initialized.

baud Transfer rate in Baud.

parity Use of test bits:
0: without parity bit.
1: even parity.
2: odd parity.

bits Amount of data bits (5, 6, 7 or 8).

stop Amount of stop bits.
0: 1 stop bit.
1: 1½ stop bits at 5 data bits;

2 stop bits at 6, 7 or 8 data bits.

handshake Transfer protocol:
0: RS232, No handshake.
1: RS232, Hardware handshake

(RTS/CTS).
2: RS232, Software handshake (Xon/Xoff).
3: RS485 (default).

LONG

LONG

LONG

LONG

LONG

LONG

RS_INIT

ADbasic 4.20, Manual April 2006

ADwin

340

See also

CHECK_SHIFT_REG, GET_RS, RS485_SEND, RS_RESET,
SET_RS

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC

INIT:
RS_RESET() 'Reset RSxxx controller
RS_INIT(1,9600,0,8,0,1)'Initialization of RSxxx interface 1

'with 9600 Baud, without parity,
'8 data bits, 1 stop bit and
'hardware handshake.

RS_RESET

ADbasic 4.20, Manual April 2006

ADwin

341

RS_RESET
RSxxx: The instruction RS_RESET executes a hardware reset and deletes the
settings for all RSxxx interfaces.

Syntax

#INCLUDE ADWGCAN.INC

RS_RESET()

Notes

The instruction sends a reset impulse to the input of the controller
TL16C754. In the data-sheet of the controller 16C754 from Texas In-
struments it is described, to which values the registers have been set
after the hardware reset.

After a hardware reset an initialization with RS_INIT must follow, in or-
der to initialize the controller and to set the interface parameters.

See also

CHECK_SHIFT_REG, GET_RS, RS_INIT, SET_RS

Valid for

Gold-CAN

Example
#INCLUDE ADWGCAN.INC

INIT:
RS_RESET() 'Reset RSxxx controller
RS_INIT(1,9600,0,8,0,1)'Initialization of RSxxx interface 1

'with 9600 Baud, without parity,
'8 data bits, 1 stop bit and
'hardware handshake.

RS485_SEND

ADbasic 4.20, Manual April 2006

ADwin

342

RS485_SEND
RSxxx: The instruction RS485_SEND determines the transfer direction for a
specified RSxxx interface.

Syntax

#INCLUDE ADWGCAN.INC

RS485_SEND(interface,dir)

Parameters

Notes

Setting the transfer direction means:
• Receiver: The RSxxx interface can only read data, even if data are

in the output FIFO of the controller for this RSxxx interface.
• Sender: The RSxxx interface transfers data to the bus which are

read by other devices.
• Sender/receiver: The RSxxx interface can transfer data to the bus

and back at the same time. Thus, the sent data can be checked.

See also

CHECK_SHIFT_REG, GET_RS, RS_INIT, RS_RESET, SET_RS

Valid for

Gold-CAN

Example
-/-

interface RSxxx interface to be set (1, 2).

dir Tranfer direction of the RSxxx interface:
0: Set RSxxx interface to receive.
1: Set RSxxx interface to send.
2: Set RSxxx interface to send and to receive

its sent data.
3: Mute RSxxx interface, i.e. the interface

works as receiver but doesn’t put data into
the input FIFO.

LONG

LONG

SET_RS

ADbasic 4.20, Manual April 2006

ADwin

343

SET_RS
RSxxx: The instruction SET_RS writes a value into a specified register of the
controller.

Syntax

#INCLUDE ADWGCAN.INC

SET_RS(reg_addr,value)

Parameters

Notes

We recommend to use this instruction only after you have more expe-
rience about how the controller operates (data-sheet of the manufac-
turer: TL16C754 from Texas Instruments). For more common
applications more comfortable instructions are availabe in the include
file.

See also

GET_RS, RS_INIT, RS_RESET

Valid for

Gold-CAN

Example
-/-

reg_addr Number of the register, into which data are
written.

value Value to be written into the register.

LONG

LONG

WRITE_FIFO

ADbasic 4.20, Manual April 2006

ADwin

344

WRITE_FIFO
RSxxx: The instruction WRITE_FIFO writes a value into the send-FIFO of a
specified RSxxx interface.

Syntax

#INCLUDE ADWGCAN.INC

ret_val = WRITE_FIFO(interface,value)

Parameters

Notes

The instruction checks first if there is at least one free memory cell in
the send-FIFO. If so, the transferred value is written into the FIFO (re-
turn value 0); otherwise a 1 is returned, indicating that the FIFO is full
and writing is not possible.

See also

CHECK_SHIFT_REG, READ_FIFO, RS_INIT, RS_RESET,
RS485_SEND

Valid for

Gold-CAN

interface RSxxx interface number (1, 2) to whose send-
FIFO data are transferred.

value Value to be written into the send-FIFO.

ret_val Status message:
0: Data are transferred successfully.
1: Data were not transferred, send-FIFO is

full.

LONG

LONG

LONG

WRITE_FIFO

ADbasic 4.20, Manual April 2006

ADwin

345

Example
#INCLUDE ADWGCAN.INC
DIM val AS LONG

INIT:
RS_RESET()
RS_INIT(1,9600,0,8,0,1)'Initialization of RSxxx interface 1

'with 9600 Baud, no parity,
'8 data bits, 1 stop bit and
'hardware handshake.

EVENT:
PAR_1 = WRITE_FIFO(1,val)'If the FIFO is not full, [val]

'is written into the FIFO. Otherwise
'a 1 in PAR_1 indicates that writing
'into the FIFO ist not possible
'(FIFO full).

SSI_MODE

ADbasic 4.20, Manual April 2006

ADwin

346

SSI_MODE
SSI: The instruction SSI_MODE sets the modes of all SSI decoders, either
"single shot" (read out once) or "continuous" (read out continuously).

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

SSI_MODE(pattern)

Parameters

Notes

If you select the mode "continuous", reading the encoder is started im-
mediately. The instruction SSI_START is not necessary for this.

Using the "continuous" mode, some encoder types occasionally return
the wrong counter value 0 (zero) instead of the corrct counter value.
This error does not occur with the "single shot" mode.

See also

SSI_READ, SSI_SET_BITS, SSI_SET_CLOCK, SSI_START,
SSI_STATUS

Valid for

Gold-CAN, L16-DIO2

pattern Operation mode of the SSI decoders, indi-
cated as bit pattern. A bit is assigned to
each of the decoders (see table).

Bit = 0: "Single shot" mode, the encoder is
read out once.

Bit = 1: "Continuous" mode, the encoder is
read out continuously.

Bit no. 31:2 3 2 1 0

SSI decoder – 4 3 2 1

LONG

SSI_MODE

ADbasic 4.20, Manual April 2006

ADwin

347

Example
#INCLUDE ADWGCAN.INC

INIT:
SSI_SET_CLOCK(1,200) 'clock rate for decoder 1 = 50 kHz
SSI_SET_CLOCK(2,200) 'clock rate for decoder 2= 50 kHz
SSI_MODE(11b) 'Set continuous-mode

'(for encoders 1+2)
SSI_SET_BITS(1,23) '23 encoder bits for encoder 1
SSI_SET_BITS(2,23) '23 encoder bits for encoder 2

EVENT:
PAR_1 = SSI_READ(1) 'Read out position value (encoder 1)
PAR_2 = SSI_READ(2) 'Read out position value (encoder 2)

SSI_READ

ADbasic 4.20, Manual April 2006

ADwin

348

SSI_READ
SSI: The instruction SSI_READ returns the last saved counter value of a spe-
cified SSI counter.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

ret_val = SSI_READ(dcdr_no)

Parameters

Notes

An encoder value is saved when the bits indicated by SSI_SET_BITS
are read.

See also

SSI_MODE, SSI_SET_BITS, SSI_SET_CLOCK, SSI_START,
SSI_STATUS

Valid for

Gold-CAN, L16-DIO2

dcdr_no Number (1…4) of the SSI decoder whose
counter value is to be read.

ret_val Last counter value of the SSI counter (= abso-
lute value position of the encoder).

LONG

LONG

SSI_READ

ADbasic 4.20, Manual April 2006

ADwin

349

Example
#INCLUDE ADWGCAN.INC
DIM m, n, y AS LONG

INIT:
SSI_SET_CLOCK(1,50) 'clock rate for decoder 1 = 200 kHz
SSI_MODE(1) 'Set continuous-mode (encoder 1)
SSI_SET_BITS(1,23) '23 encoder bits for encoder 1

EVENT:
PAR_1 = SSI_READ(1) 'Read out position value (encoder 1)

REM Change value from Gray-code into a binary value:
m = 0 'delete value of the last conversion
y = 0 ' -"-
FOR n = 1 TO 32 'Check all 32 possible bits
m = (SHIFT_RIGHT(PAR_1,(32 - n)) AND 1) XOR m
y = (SHIFT_LEFT(m,(32 - n))) OR y

NEXT n
PAR_9 = y 'The result of the Gray/binary

'conversion in PAR_9

SSI_SET_BITS

ADbasic 4.20, Manual April 2006

ADwin

350

SSI_SET_BITS
SSI: The instruction SSI_SET_BITS sets for an SSI counter the amount of
bits which generate a complete encoder value.
The number of bits should be equal to the resolution of the encoder.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

SSI_SET_BITS(dcdr_no,bit_no)

Parameters

Notes

The resolution (amount of bits) of the SSI encoder should be similar to
the amount of bits which are transferred.

See also

SSI_MODE, SSI_READ, SSI_SET_CLOCK, SSI_START,
SSI_STATUS

Valid for

Gold-CAN, L16-DIO2

dcdr_no Number (1…4) of the SSI decoder whose res-
olution is to be set.

bit_no Amount of bits (1…32) of the bits which are to
be read for the encoder (corresponds to
the encoder resolution).

LONG

LONG

SSI_SET_BITS

ADbasic 4.20, Manual April 2006

ADwin

351

Example
#INCLUDE ADWGCAN.INC

INIT:
SSI_SET_CLOCK(1,50) 'clock rate for decoder 1 = 200 kHz
SSI_SET_CLOCK(2,50) 'clock rate for decoder 2= 200 kHz
SSI_MODE(11b) 'Set continuous-mode (encoders 1+2)
SSI_SET_BITS(1,10) '10 encoder bits for encoder 1
SSI_SET_BITS(2,25) '25 encoder bits for encoder 2

EVENT:
PAR_1 = SSI_READ(1) 'Read out position value (encoder 1)
PAR_2 = SSI_READ(2) 'Read out position value (encoder 2)

SSI_SET_CLOCK

ADbasic 4.20, Manual April 2006

ADwin

352

SSI_SET_CLOCK
SSI: The instruction SSI_SET_CLOCK sets the clock rate (approx. 40kHz to
1MHz) , with which the encoder is clocked.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

SSI_SET_CLOCK(dcdr_no,prescale)

Parameters

Notes

Scale factors < 10 are automatically corrected to the value 10; from val-
ues > 255 only the least significant 8 bits are used as scale factor.

The possible clock frequency depends on the length of the cable, cable
type, and the send and receive components of the encoder or decoder.
Basically the following rule applies: The higher the clock frequency the
shorter the cable length.

See also

SSI_MODE, SSI_READ, SSI_SET_BITS, SSI_START, SSI_STATUS

Valid for

Gold-CAN, L16-DIO2

dcdr_no Number (1…4) of the SSI decoder whose
clock rate is to be set.

prescale scale factor (10…255) for setting the clock
rate according to the equation:
Clock rate = 10MHz / prescale.

LONG

LONG

SSI_SET_CLOCK

ADbasic 4.20, Manual April 2006

ADwin

353

Example
#INCLUDE ADWGCAN.INC

INIT:
SSI_SET_CLOCK(1,10) 'clock rate for decoder 1 = 1 MHz
SSI_SET_CLOCK(2,20) 'clock rate for decoder 2 = 0,5 MHz
SSI_MODE(11b) 'Set continuous-mode for encoder 1+2
SSI_SET_BITS(1,10) '10 encoder bits for encoder 1
SSI_SET_BITS(2,25) '25 encoder bits for encoder 2

EVENT:
PAR_1 = SSI_READ(1) 'Read out position value (encoder 1)
PAR_2 = SSI_READ(2) 'Read out position value (encoder 2)

SSI_START

ADbasic 4.20, Manual April 2006

ADwin

354

SSI_START
SSI: The instruction SSI_START starts the reading of one or both SSI enco-
ders (only in mode "single shot").

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

SSI_START(dcdr_no)

Parameters

Notes

In the continuous mode this instruction has no function, because the
encoder values are nevertheless read out continuously.

An encoder value will be saved only when the amount of bits is read
which is set by SSI_SET_BITS.

A complete encoder value is always transferred, even if the operation
mode is changing meanwhile.

See also

SSI_MODE, SSI_READ, SSI_SET_BITS, SSI_SET_CLOCK,
SSI_STATUS

Valid for

Gold-CAN, L16-DIO2

dcdr_no Bit pattern for selecting the SSI decoders
which are to be started:

Bit = 0: No function.
Bit = 1: Start reading of the SSI decoder.

Bit no. 31:2 3 2 1 0

SSI decoder – 4 3 2 1

LONG

SSI_START

ADbasic 4.20, Manual April 2006

ADwin

355

Example
#INCLUDE ADWGCAN.INC

INIT:
SSI_SET_CLOCK(1,250) 'clock rate for decoder 1 = 40 kHz
SSI_SET_CLOCK(2,250) 'clock rate for decoder 2= 40 kHz
SSI_MODE(0) 'Set single shot-mode (all counters)
SSI_SET_BITS(1,23) '23 encoder bits for encoder 1
SSI_SET_BITS(2,23) '23 encoder bits for encoder 2

EVENT:
SSI_START(11b) 'Read position value of encoders 1 & 2
DO 'for encoder 1:
UNTIL (SSI_STATUS(1) = 0)'If position value is read

'completely, then …
PAR_1 = SSI_READ(1) 'read out and display position value
DO 'For encoder 2:
UNTIL (SSI_STATUS(2) = 0)'If position value is read

'completely, then …
PAR_1 = SSI_READ(2) 'read out and display position value

SSI_STATUS

ADbasic 4.20, Manual April 2006

ADwin

356

SSI_STATUS
SSI: The instruction SSI_STATUS returns the current read-status on the spei-
cified module for a specified decoder.

Syntax

#INCLUDE ADWGCNT.INC 'ADwin-Gold only
#INCLUDE ADWL16.INC 'ADwin-light-16 only

ret_val = SSI_STATUS(dcdr_no)

Parameters

Notes

Use the status query only in the SSI mode "single shot". In the mode
"continuous" querying the status is not useful.

See also

SSI_MODE, SSI_READ, SSI_SET_BITS, SSI_SET_CLOCK,
SSI_START

Valid for

Gold-CAN, L16-DIO2

dcdr_no Number (1…4) of the SSI decoder whose sta-
tus is to be queried.

ret_val Read-status of the decoder:
0: Decoder is ready, that is a complete value

was has been read.
1: Decoder is reading an encoder value.

LONG

LONG

SSI_STATUS

ADbasic 4.20, Manual April 2006

ADwin

357

Example
#INCLUDE ADWGCAN.INC

INIT:
SSI_SET_CLOCK(1,250) 'clock rate for decoder 1 = 40 kHz
SSI_SET_CLOCK(2,250) 'clock rate for decoder 2= 40 kHz
SSI_MODE(0) 'Set single shot-mode (all counters)
SSI_SET_BITS(1,23) '23 encoder bits for encoder 1
SSI_SET_BITS(2,23) '23 encoder bits for encoder 2

EVENT:
SSI_START(11b) 'Read position value of encoders 1 & 2
DO 'For encoder 1:
UNTIL (SSI_STATUS(1) = 0)'If position value is completely

'read, then …
PAR_1 = SSI_READ(1) 'Read out and display position value
DO 'For encoder 2:
UNTIL (SSI_STATUS(2) = 0)'If position value is completely

'read, then …
PAR_1 = SSI_READ(2) 'Read out and display position value

ADbasic 4.20, Manual April 2006

ADwin

358

ADwin-light-16 Rev. B

ADbasic 4.20, Manual April 2006

ADwin

359

6.6 ADwin-light-16 Rev. B
This section describes additional instructions for ADwin-light-16 Rev. B. For
use of the instructions of this section the include file ADWL16.INC is needed.
For ADwin-light-16 Rev. B the instructions of the following sections are appli-
cable, too: chapter 6.3 (from page 225) and chapter 6.4 (from page 255).

L16_MODE

ADbasic 4.20, Manual April 2006

ADwin

360

L16_MODE
L16_MODE sets the operating mode of ADwin-light-16 Rev. B.

Syntax

L16_MODE(mode)

Parameters

Notes

In standard mode the device runs fully compatible to revision A. After
power-up the device is always set to standard mode.

In fast mode the A/D converter runs with maximum sampling rate of
500kHz.

See also

-/-

Valid for

L16 Rev. B

Example
INIT:
REM activate fast mode
L16_MODE(1)

mode Bit pattern to set the operating mode.

Bits in mode Meaning

Bit 0: Bit = 0: Standard operation (default).
Bit = 1: Fast operation.

Bits 1…31: Reserved

LONG

SEQ_INIT

ADbasic 4.20, Manual April 2006

ADwin

361

SEQ_INIT
SEQ_INIT initializes the sequential control.
These settings are done: Operating mode, gain factor, channel selection and
muliplexer settling time.

Syntax

#INCLUDE ADWL16.inc

SEQ_INIT(mode, gain, channels, muxtime)

Parameters

Notes

After power-up mode 0 is active.

Modes 1 … 3 activate the sequential control, which converts several
channels consecutively; according to the mode the conversion cycle is

mode Operating mode of the sequential control:
0: Standard mode (default), single conversion.
1: Mode "single shot", single conversion cycle.
2: Mode "continuous", continuous conversion.
3: Mode "continuous max" using max. speed.

gain Gain factor (Modes 1 … 3 only):
0 factor = 1, voltage range -10V…+10V.
1 factor = 2, voltage range -5V…+5V.
2 factor = 4, voltage range -2.5V…+2.5V.
3 factor = 8, voltage range -1.25V…+1.25V.

channels Bit pattern to select the channels for conversion.
Bit = 0: No conversion.
Bit = 1: Do conversion.

Bit no. 31:15 14 13 12 … 3 2 1 0

Channel no. – 15 – 11 … – 3 – 1

muxtime Number of time units, which sets the settling time of the
sequential control:
0: Standard waiting time (200 5µs).
200…2^31: Waiting time in units of 25ns.

LONG

LONG

LONG

=̂

LONG

SEQ_INIT

ADbasic 4.20, Manual April 2006

ADwin

362

done once or cyclic. The sequential control is always related to those
channels being selected by channels.

The modes differ in the following items:

The multiplexer settling time (parameter muxtime) sets the time be-
tween 2 conversions of the sequential control. We recommend, not to
underrun the given range of values, because a shorter settling time
leads to more imprecise or even wrong measurement values.

If the internal resistance of the voltage source of the measurement sig-
nal is too high, the predefined settling time of the multiplexer will not be
sufficient for an exact measurement. You can then raise the multiplexer
settling time with a higher value of the parameter muxtime.

Mode Kind of conversion

0 Standard: Single conversion of one channel, see ADC.

1 Single shot: The sequential control is started by START_CONV; it
ends as soon as each of the selected channels is
converted once.
The end of the sequential control is queried with
WAIT_EOC and measurement values are read with
SEQ_READ.

2 continuous: The sequential control converts all selected chan-
nels for each process cycle.
The conversion is started with START_CONV as last
instruction in section INIT:. The end of conversion
(for all channels) is automatically synchronized with
the beginning of the next process cycle. Therefore
all measurement values can–and should be–read
with SEQ_READ at the beginning of each process
cycle .

3 continuous
max:

The sequential control converts the selected chan-
nels continuously with maximum speed, providing
new measurement values all the time. That is, con-
version and process cycle run non-synchronously.
The conversion is started with START_CONV in sec-
tion INIT:. Inside a process cycle, SEQ_READ just
reads the newest measurement value.

SEQ_INIT

ADbasic 4.20, Manual April 2006

ADwin

363

See also

ADC, SEQ_READ, START_CONV, WAIT_EOC

Valid for

L16 Rev. B

Example
#INCLUDE ADWL16.inc

DIM DATA_1[8] AS LONG AT DM_LOCAL
DIM i AS LONG

INIT:
REM Sequential control: Continuous Mode, gain 2
REM channels 1, 3, ..., 15, standard settling time
SEQ_INIT(3,1,5555h,0)
START_CONV(1) 'Start conversion cycle

EVENT:
REM The conversion of all selected channels has just
REM ended, so measurement values are read.
FOR i = 1 TO 8
DATA_1[i] = SEQ_READ(i*2-1) read values

NEXT i
REM process values

SEQ_READ

ADbasic 4.20, Manual April 2006

ADwin

364

SEQ_READ
SEQ_READ returns the last saved measurement value of the selected channel.

Syntax

#INCLUDE ADWL16.inc

ret_val = SEQ_READ(channel)

Parameters

Notes

You can only reasonably use this instruction if the sequential control of
the module has been activated before with SEQ_INIT and if the given
channel has been selected, too.

In "single shot" mode the end of conversion must be queried with
WAIT_EOC, before reading the measurement values.

See also

SEQ_INIT, START_CONV, WAIT_EOC

Valid for

L16 Rev. B

channel Channel no. (1, 3, …, 15).

ret_val Measurement value (0…65535) of the selected chan-
nel.

LONG

LONG

SEQ_READ

ADbasic 4.20, Manual April 2006

ADwin

365

Example
#INCLUDE ADWL16.inc

DIM DATA_1[400] AS LONG AT DM_LOCAL

INIT:
REM sequential control: Single shot, gain 1
REM channels 5, 7, 13, 15, standard settling time
SEQ_INIT(1,0,101000001010000b,0)
START_CONV(1) 'start conversion cycle

EVENT:
WAIT_EOC(1) 'wait for end of conversion
REM read channels 5, 7, 13, 15
DATA_1[1] = SEQ_READ(5)
DATA_1[2] = SEQ_READ(7)
DATA_1[3] = SEQ_READ(13)
DATA_1[4] = SEQ_READ(15)
START_CONV(1) 'start next conversion cycle

SEQ_READ

ADbasic 4.20, Manual April 2006

ADwin

366

FFT Library

ADbasic 4.20, Manual April 2006

ADwin

367

6.7 FFT Library
The FFT library contains ADbasic instructions for Fast Fourier Transformation.
The library runs with processor type T9 or later.

Notes for the use of the library
If arrays are declared in the internal memory (AT DM_LOCAL), the processing
time is clearly smaller. Thus, a calculation of an FFT with 1024 values takes
about 23ms in spite of 35ms (using a T9 processor).
Only use the instructions of the FFT library in a process of low priority or in a
process section LOWINIT: or INIT:. If the calculation of an FFT in a high
priority process takes very long, the PC assumes an error and aborts the com-
munication to the ADwin system with an appropriate error message.
The folder <C:\ADwin\ADbasic\lib\FFT_doc+demo> contains all
examples for the library instructions.

Fast-Fourier Transformations
The Fast Fourier Transformation (FFT) is an algorithm for fast calculation of a
discrete Fourier transformation. The FFT is applicable for a lot of tasks in sig-
nal processing, e.g. to

– Calculate a signal’s frequency spectrum.

– Get the frequency response from an impulse response

– Derive an FIR-filter kernel from the frequency response.

– digital filters.

– Convert a time based signal in vibration technology into a frequency
based state.

– Approximate identification of frequencies in a sampled signal.

Table of contents

Name Function

FFT The instruction FFT performs a complex Fast Fourier
Transformation with complex input and output data.

369

FFT_MAG The instruction FFT_MAG returns the magnitudes
(modulus) of complex data.

373

FFT Library

ADbasic 4.20, Manual April 2006

ADwin

368

FFT_SCALE The instruction FFT_SCALE scales the result of an
FFT calculation to the size of the components of the
source data.

371

FFT_PHASE The instruction FFT_PHASE returns the phase of
complex data.

375

FFT_MAG_
SCALE

The instruction FFT_MAG_SCALE returns the scaled
magnitudes (modulus) of complex data.

377

FFT_INIT The instruction FFT_INIT initializes 2 auxiliary
arrays for the calculation of Fast Fourier Transforma-
tions.

378

FFT_CALC The instruction FFT_CALC calculates a Fast Fourier
Transformation after previous initialization.

379

FFT_CALC_DM The instruction FFT_CALC_DM calculates a Fast
Fourier Transformation after previous initialization
and is optimized for processor T10.

381

FFT_CALC_DX The instruction FFT_CALC_DX calculates a Fast
Fourier Transformation after previous initialization
and is optimized for processor T10.

383

Name Function

FFT

ADbasic 4.20, Manual April 2006

ADwin

369

FFT
The instruction FFT performs a complex Fast Fourier Transformation with
complex input and output data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10

FFT(src_re[],src_im[],res_re[],res_im[],
array1[],array2[],pts)

Parameters

Notes

The Fourier transformation returns a correct result, if the frequency
components fi of the source data remain inside the following range (re-
ferring to the sampling frequency fsample):

 and

The transformed data, the complex amplitudes of the frequency spec-
trum, is returned in the elements 1…pts / 2 of the arrays res_re and
res_im. The surplus array elements (up to 4 ×pts) are required for in-
ternal calculations and hold intermediate results.

src_re[] Real part of source data.

src_im[] Imaginary part of source data.

res_re[] Result: Real parts (index 1…n / 2) of the trans-
formed data. Array size: 4 ×pts.

res_im[] Result: Imaginary parts (index 1…n / 2) of the
transformed data. Array size: 4 ×pts.

array1[],
array2[]

Arrays for internal calculations.
Array size: 4 ×pts.

pts Number (≥ 2) of source data points. The num-
ber of points must be a power of 2.

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

LONG

0 fi≤ fi fsample 2⁄<

FFT

ADbasic 4.20, Manual April 2006

ADwin

370

The result of the transformation is not scaled to the size of the com-
ponents of the source data. If scaling is required the transformed data
can be scaled with the instruction FFT_SCALE.

The following table shows how the calculated frequency spectrum re-
fers to the element index of the arrays res_re and res_im (normali-
zation of the frequency axis), with ttotal as total sampling time.
The example below has a sampling time ttotal = 0.1s; thus, the element
index [1024] refers to the frequency (1024-1) / 0.1s = 10230Hz.

If you need to calculate several FFTs with the same number of source
data, the processing time can be reduced: Instead of FFT, call FFT_
INIT first and then several times the instruction FFT_CALC.

See also

FFT_MAG, FFT_SCALE, FFT_PHASE, FFT_MAG_SCALE,
FFT_INIT, FFT_CALC, FFT_CALC_DM, FFT_CALC_DX

Example

The Example program (for ADwin-Gold and ADwin-light-16)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_demo.bas>

reads the analog signal at input 1 (2048 samples in 0.1s) and calcula-
tes an FFT from it. If for example the signal is a sine of 1000Hz, the ma-
ximum values are stored in DATA_3[101] (real part) and DATA_
4[101] (imaginary part).

Element index [] [] … [] … []

Frequency [Hz] … …

1 2 i pts 2⁄

0 1
ttotal
---------- i 1–

ttotal
---------- pts 2⁄ 1–

ttotal

FFT_SCALE

ADbasic 4.20, Manual April 2006

ADwin

371

FFT_SCALE
The instruction FFT_SCALE scales the result of an FFT calculation to the size
of the components of the source data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10

FFT_SCALE(data[],data_scal[],n)

Parameters

Notes

The instruction runs according to the formula:

If FFT_SCALE uses the resulting arrays of the instruction FFT, you
have to set n = pts / 2 (with pts is a parameter of FFT).

FFT_SCALE scales the result of an FFT calculation to the size of the
components of the source data. It does not scale the frequency axis of
the spectrum (see the notes of FFT).

See also

FFT, FFT_MAG, FFT_PHASE, FFT_MAG_SCALE

Example

The example program (for all ADwin systems)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_scale_demo.bas>

creates a signal from some sine signals, samples the signal, calculates
the FFT, the magnitude and scales the magnitude.

data[] Unscaled data from an FFT calculation.

data_scal[] Result: Scaled data.

n Number of data.

FLOAT
ARRAY

FLOAT
ARRAY

LONG

data_scal[i] i 1:≠ data_scal[i] data[i] n⁄=

i 1:= data_scal[i] data[i] n 2⋅()⁄=⎩
⎨
⎧

=

FFT_SCALE

ADbasic 4.20, Manual April 2006

ADwin

372

The source signal results from:
• a sine signal of 60 Hz and the amplitude 0.7
• a sine signal of 30 Hz and the amplitude 1.0
• a DC signal with the amplitude 1.5

The amplitudes of the scaled frequency spectrum (see graphic below)
exactly show the size of the superposed source signals:
DATA_6[7] = 1 Index 7: 60 Hz
DATA_6[4] = 0.7 Index 4: 30 Hz
DATA_6[1] = 1.5 Index 1: DC signal

All other amplitudes have the value 0 or close to 0 caused by round-
off noise.

FFT_MAG

ADbasic 4.20, Manual April 2006

ADwin

373

FFT_MAG
The instruction FFT_MAG returns the magnitudes (modulus) of complex data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10

FFT_MAG(cmplx_re[],cmplx_im[],magnitude[],n)

Parameters

Notes

The magnitude of a complex value is calculated with the formula:

The instruction FFT calculates the amplitudes of a frequency spectrum
as complex values. The instructions FFT_MAG and FFT_PHASE con-
vert the complex amplitudes into magnitude and phase.

If FFT_MAG uses the resulting arrays of the instruction FFT, you have
to set n = pts / 2 (with pts is a parameter of FFT).

See also

FFT, FFT_PHASE, FFT_MAG_SCALE

Example

The example program (for ADwin-Gold oder ADwin-light-16)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_mag_demo.bas>

cmplx_re[] Real part of the complex data.

cmplx_im[] Imaginary part of the complex data.

magnitude[] Result: Magnitudes of the complex data.

n Number of complex data.

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

LONG

magnitude[i] cmplx_re[i]2 cmplx_im[i]2+=

FFT_MAG

ADbasic 4.20, Manual April 2006

ADwin

374

samples the analog signal at input 1 (2048 samples in 0.1s), calculates
the FFT and the magnitudes. If for example the signal is a sine of
1500Hz, the maximum absoute value is stored in DATA_5[151].

FFT_PHASE

ADbasic 4.20, Manual April 2006

ADwin

375

FFT_PHASE
The instruction FFT_PHASE returns the phase of complex data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10

FFT_PHASE(cmplx_re[],cmplx_im[],phase[],n)

Parameters

Notes

The phase of a complex value is calculated with the formula (see also
<math.inc>):

The instruction FFT calculates the amplitudes of a frequency spectrum
as complex values. The instructions FFT_MAG and FFT_PHASE con-
vert the complex amplitudes into magnitude and phase.

If FFT_PHASE uses the resulting arrays of the instruction FFT, you
have to set n = pts / 2 (with pts is a parameter of FFT).

See also

FFT, FFT_MAG, FFT_MAG_SCALE

Example

The example program (for all ADwin systems)

<C:\ADwin\ADbasic\lib\FFT_doc+demo\FFT_phase_demo.bas>

cmplx_re[] Real part of the complex data.

cmplx_im[] Imaginary part of the complex data.

phase[] Result: Phase of the complex data.

n Number of complex data.

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

LONG

phase[i] cmplx_re[i] 0:≠ phase[i] cmplx_im[i] cmplx_re[i]⁄()atan=

cmplx_re[i] 0:= phase[i] cmplx_im[i]()sgn π 2⁄⋅=⎩
⎨
⎧

=

FFT_PHASE

ADbasic 4.20, Manual April 2006

ADwin

376

creates 2 phase-delayed sine signals (by π/2), samples the signals,
calulates the FFT, the scaled magnitudes and the phase values.

The calculated frequency spectrum has the following values:
DATA_6[4] = 1 Index 4: 30 Hz
DATA_7[4] = -0.018410 Phase about 0

DATA_26[4] = 1 Index 4: 30 Hz
DATA_27[4] = 1.552389 Phase about π/2

All other amplitudes have the value 0 and the referring phase values
are undefined.

FFT_MAG_SCALE

ADbasic 4.20, Manual April 2006

ADwin

377

FFT_MAG_SCALE
The instruction FFT_MAG_SCALE returns the scaled magnitudes (modulus) of
complex data.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10

FFT_MAG_SCALE(cmplx_re[],cmplx_im[],mag_scal[],n)

Parameters

Notes

The instruction FFT_MAG_SCALE returns the same result as the call of
FFT_MAG and FFT_SCALE, but it is processed faster.

If FFT_MAG_SCALE uses the resulting arrays of the instruction FFT,
you have to set n = pts / 2 (with pts is a parameter of FFT).

See also

FFT, FFT_MAG, FFT_SCALE

Example

The example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) is similar to the example <FFT_scale_demo.bas> (see
page 371), but uses FFT_MAG_SCALE instead.

cmplx_re[] Real part of the complex data.

cmplx_im[] Imaginary part of the complex data.

mag_scal[] Result: Scaled magnitudes of the complex
data.

n Number of complex data.

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

LONG

FFT_INIT

ADbasic 4.20, Manual April 2006

ADwin

378

FFT_INIT
The instruction FFT_INIT initializes 2 auxiliary arrays for the calculation of
Fast Fourier Transformations.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10

FFT_INIT(array1[],array2[],pts)

Parameters

Notes

The instruction FFT_INIT is onyl required and useful, if one of the in-
structions FFT_CALC, FFT_CALC_DM or FFT_CALC_DX is called next.

If you need to calculate several FFT with the same number of source
data, the processing time can be reduced: Instead of FFT, call FFT_
INIT first and then several times the instruction FFT_CALC.

See also

FFT, FFT_CALC, FFT_CALC_DM, FFT_CALC_DX

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

array1[],
array2[]

Result: Auxiliary values for internal calculati-
ons. Array size: 4 ×pts.

pts Number (≥ 2) of source data points. The num-
ber of points must be a power of 2.

FLOAT
ARRAY

LONG

FFT_CALC

ADbasic 4.20, Manual April 2006

ADwin

379

FFT_CALC
The instruction FFT_CALC calculates a Fast Fourier Transformation after pre-
vious initialization.

Syntax

IMPORT FFT.LI* '*.LI9 for T9, *.LIA for T10

FFT_CALC(src_re[],src_im[],res_re[],res_im[],
array1[],array2[],pts)

Parameters

Notes

The instruction is useful only, if FFT_INIT was called before.

If you need to calculate several FFT with the same number of source
data, the processing time can be reduced: Instead of FFT, call FFT_
INIT first and then several times the instruction FFT_CALC.

Prczessor T10 only: Instead of FFT_CALC, the instruction FFT_CALC_
DM or FFT_CALC_DX may be used to calculate an FFT in shorter time.

See also

FFT, FFT_INIT, FFT_CALC_DM, FFT_CALC_DX

src_re[] Real part of source data.

src_im[] Imaginary part of source data.

res_re[] Result: Real parts (index 1…n / 2) of transfor-
med data. Array size: 4 ×pts.

res_im[] Result: Imaginary parts (index 1…n / 2) of
transformed data. Array size: 4 ×pts.

array1[],
array2[]

Arrays for internal calculations.
Array size: 4 ×pts.

pts Number (≥ 2) of source data points. The num-
ber of points must be a power of 2.

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

LONG

FFT_CALC

ADbasic 4.20, Manual April 2006

ADwin

380

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

FFT_CALC_DM

ADbasic 4.20, Manual April 2006

ADwin

381

FFT_CALC_DM
The instruction FFT_CALC_DM calculates a Fast Fourier Transformation after
previous initialization and is optimized for processor T10.

Syntax

IMPORT FFT.LIA

FFT_CALC_DM(src_re[],src_im[],res_re[],res_im[],
array1[],array2[],pts)

Parameters

Notes

The instruction is useful only, if FFT_INIT was called before.

FFT_CALC_DM has the same function as FFT_CALC (and FFT_CALC_
DX), but calculates an FFT faster when using the processor T10. This
optimization is not possible for processors T9 or T11.

FFT_CALC_DM may only be used, if the arrays are declared in the in-
ternal memory.
Using the processor T10, the calculation of an FFT with 1024 samples

src_re[] Real part of source data. The array must be
declared AT DM_LOCAL.

src_im[] Imaginary part of source data. The array must
be declared AT DM_LOCAL.

res_re[] Result: Real parts (index 1…n / 2) of transfor-
med data. The array must be declared AT DM_
LOCAL with array size: 4 ×pts.

res_im[] Result: Imaginary parts (Index 1…n / 2) of
transformed data. The array must be declared
AT DM_LOCAL with array size: 4 ×pts.

array1[],
array2[]

Arrays for internal calculations. The arrays
must be declared AT DM_LOCAL with array
size: 4 ×pts.

pts Number (≥ 2) of source data points. The num-
ber of points must be a power of 2.

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

LONG

FFT_CALC_DM

ADbasic 4.20, Manual April 2006

ADwin

382

takes about 11ms instead of 14ms with FFT_CALC. Both timing values
were determined with arrays in the internal memory DM_LOCAL.

See also

FFT, FFT_INIT, FFT_CALC, FFT_CALC_DX

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

FFT_CALC_DX

ADbasic 4.20, Manual April 2006

ADwin

383

FFT_CALC_DX
The instruction FFT_CALC_DX calculates a Fast Fourier Transformation after
previous initialization and is optimized for processor T10.

Syntax

IMPORT FFT.LIA

FFT_CALC_DX(src_re[],src_im[],res_re[],res_im[],
array1[],array2[],pts)

Parameters

Notes

The instruction is useful only, if FFT_INIT was called before.

FFT_CALC_DX has the same function as FFT_CALC (and FFT_CALC_
DM), but calculates an FFT faster when using the processor T10. This
optimization is not possible for processors T9 or T11.

FFT_CALC_DX may only be used, if the arrays are declared in the ex-
ternal memory.
Using the processor T10, the calculation of an FFT with 1024 samples

src_re[] Real part of source data. The array should be
declared AT DRAM_EXTERN.

src_im[] Imaginary part of source data. The array
should be declared AT DRAM_EXTERN.

res_re[] Result: Real parts (index 1…n / 2) of transfor-
med data. The array should be declared AT
DRAM_EXTERN with array size 4 ×pts.

res_im[] Result: Imaginary parts (index 1…n / 2) of
transformed data. The array should be decla-
red AT DRAM_EXTERN with array size 4 ×pts.

array1[],
array2[]

Arrays for internal calculations. The arrays
should be declared AT DRAM_EXTERN with
array size 4 ×pts.

pts Number (≥ 2) of source data points. The num-
ber of points must be a power of 2.

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

FLOAT
ARRAY

LONG

FFT_CALC_DX

ADbasic 4.20, Manual April 2006

ADwin

384

takes about 49ms instead of 53ms with FFT_CALC. Both timing values
were determined with arrays in the internal memory DRAM_EXTERN.

See also

FFT, FFT_INIT, FFT_CALC, FFT_CALC_DM

Example

See example program <FFT_scale_demo_opt.bas> (for all ADwin
systems) in folder <C:\ADwin\ADbasic\lib\FFT_doc+demo>.

How to Solve Problems?

ADbasic 4.20, Manual April 2006

ADwin

385

7 How to Solve Problems?
If problems already occur during installation, please refer to the documen-
tation for your ADwin system. Make sure all settings have been carried out
properly and completely. Also check if the base address, the processor type,
etc. are set correctly in the menu Options\Compiler. If your problems still
persist, please give your local technical support office a call.
If you need help of a more substantial nature, you can contact us directly; you
find the address inside the manual’s cover page.

How to Solve Problems?

ADbasic 4.20, Manual April 2006

ADwin

386

Short-Cuts in ADbasic

ADbasic 4.20, Manual April 2006

ADwin

A-1

Appendicies
A.1 Short-Cuts in ADbasic

Short cut key Function Matching menu item
CTRL + F5 Boot ADwin system Build Boot

F8 Compile source code Build Compile
CTRL + F8 Start process Build Start

F9 Stop process Build Stop
CTRL + R Colour mark used parame-

ters
Parameter window:
Icon

CTRL + B Comment marked lines Source context menu:
Comment Block

CTRL + SHIFT + B Uncomment marked lines Source context menu:
Uncomment Block

TAB Indent marked lines Source context menu:
Indent

SHIFT + TAB Outdent marked lines Source context menu:
Outdent

CTRL + N New source code file File New
CTRL + O Open source code file File Open
CTRL + S Save source code file File Save
CTRL + P Print source code file File Print
CTRL + Z Undo input Edit Undo
CTRL + Y Redo input Edit Redo
CTRL + X Cut Edit Cut
CTRL + C Copy Edit Copy
CTRL + V Paste Edit Paste
CTRL + A Select all Edit Select All
CTRL + F Find text Edit Find

F3 Continue search text Edit Find Next
CTRL + H Replace text Edit Replace

F1 Call help topic for marked
instruction

Help Help Topics

ASCII-Character Set

ADbasic 4.20, Manual April 2006

ADwin

A-2

A.2 ASCII-Character Set

! " # $ % & '

() * + , - . /

1 2 3 4 5 6 7

8 9 : ; < = > ?

0

A B C D E F G

H I J K L M N O

@

Q R S T U V W

X Y Z [\] ^ _

P

a b c d e f g

h i j k l m n o

`

q r s t u v w

x y z { | } ~ �

p

(g)

BS1 TAB2 LF3 CR4

NUL SOH STX ETX EOT ENQ ACK BEL

VT FF SO SI

CAN EM SUB GS

DLE DC1 DC2 DC3 DC4 NAK SYN ETB

ESC FS RS US

SPC5

00h 0 01h 1 02h 2 03h 3 04h 4 05h 5 06h 6 07h 7

08h 8 09h 9 0Ah 10 0Bh 11 0Ch 12 0Dh 13 0Eh 14 0Fh 15

10h 16 11h 17 12h 18 13h 19 14h 20 15h 21 16h 22 17h 23

18h 24 19h 25 1Ah 26 1Bh 27 1Ch 28 1Dh 29 1Eh 30 1Fh 31

20h 32 21h 33 22h 34 23h 35 24h 36 25h 37 26h 38 27h 39

28h 40 29h 41 2Ah 42 2Bh 43 2Ch 44 2Dh 45 2Eh 46 2Fh 47

30h 48 31h 49 32h 50 33h 51 34h 52 35h 53 36h 54 37h 55

38h 56 39h 57 3Ah 58 3Bh 59 3Ch 60 3Dh 61 3Eh 62 3Fh 63

40h 64 41h 65 42h 66 43h 67 44h 68 45h 69 46h 70 47h 71

48h 72 49h 73 4Ah 74 4Bh 75 4Ch 76 4Dh 77 4Eh 78 4Fh 79

50h 80 51h 81 52h 82 53h 83 54h 84 55h 85 56h 86 57h 87

58h 88 59h 89 5Ah 90 5Bh 91 5Ch 92 5Dh 93 5Eh 94 5Fh 95

60h 96 61h 97 62h 98 63h 99 64h 100 65h 101 66h 102 67h 103

68h 104 69h 105 6Ah 106 6Bh 107 6Ch108 6Dh109 6Eh 110 6Fh 111

70h 112 71h 113 72h 114 73h 115 74h 116 75h 117 76h 118 77h 119

78h 120 79h 121 7Ah 122 7Bh 123 7Ch124 7Dh125 7Eh 126 7Fh 127
1 Backspace, 2 Tabulator, 3 Linefeed,

4 Carriage Return, 5 Space

Baud rates for the CAN Bus

ADbasic 4.20, Manual April 2006

ADwin

A-3

A.3 Baud rates for the CAN Bus
ADwin-light-16 DIO1 and ADwin-Gold-CAN have interfaces for the CAN bus,
version "high speed". The following baud rates can be set:

Available Baud rates [Bit/s]
1000000.0000 888888.8889 800000.0000 727272.7273 666666.6667

615384.6154 571428.5714 533333.3333 500000.0000 470588.2353

444444.4444 421052.6316 400000.0000 380952.3810 363636.3636

347826.0870 333333.3333 320000.0000 307692.3077 296296.2963

285714.2857 266666.6667 250000.0000 242424.2424 235294.1176

222222.2222 210526.3158 205128.2051 200000.0000 190476.1905

181818.1818 177777.7778 173913.0435 166666.6667 160000.0000

156862.7451 153846.1538 148148.1481 145454.5455 142857.1429

140350.8772 133333.3333 126984.1270 125000.0000 123076.9231

121212.1212 117647.0588 115942.0290 114285.7143 111111.1111

106666.6667 105263.1579 103896.1039 102564.1026 100000.0000

98765.4321 95238.0952 94117.6471 90909.0909 88888.8889

87912.0879 86956.5217 84210.5263 83333.3333 81632.6531

80808.0808 80000.0000 78431.3725 76923.0769 76190.4762

74074.0741 72727.2727 71428.5714 70175.4386 69565.2174

68376.0684 67226.8908 66666.6667 66115.7025 64000.0000

63492.0635 62500.0000 61538.4615 60606.0606 60150.3759

59259.2593 58823.5294 57971.0145 57142.8571 55944.0559

55555.5556 54421.7687 53333.3333 52631.5789 52287.5817

51948.0519 51282.0513 50000.0000 49689.4410 49382.7160

48484.8485 47619.0476 47337.2781 47058.8235 46783.6257

45714.2857 45454.5455 44444.4444 43956.0440 43478.2609

42780.7487 42328.0423 42105.2632 41666.6667 41025.6410

40816.3265 40404.0404 40000.0000 39215.6863 38647.3430

38461.5385 38277.5120 38095.2381 37037.0370 36363.6364

36199.0950 35714.2857 35555.5556 35087.7193 34782.6087

34632.0346 34482.7586 34188.0342 33613.4454 33333.3333

33057.8512 32921.8107 32388.6640 32258.0645 32000.0000

Baud rates for the CAN Bus

ADbasic 4.20, Manual April 2006

ADwin

A-4

31746.0317 31620.5534 31372.5490 31250.0000 30769.2308

30651.3410 30303.0303 30075.1880 29629.6296 29411.7647

29304.0293 29090.9091 28985.5072 28673.8351 28571.4286

28070.1754 27972.0280 27777.7778 27681.6609 27586.2069

27210.8844 27027.0270 26936.0269 26755.8528 26666.6667

26315.7895 26143.7908 25974.0260 25806.4516 25641.0256

25396.8254 25078.3699 25000.0000 24844.7205 24767.8019

24691.3580 24615.3846 24390.2439 24242.4242 24024.0240

23809.5238 23668.6391 23529.4118 23460.4106 23391.8129

23255.8140 23188.4058 22988.5057 22857.1429 22792.0228

22727.2727 22408.9636 22222.2222 22160.6648 22038.5675

21978.0220 21739.1304 21680.2168 21621.6216 21505.3763

21390.3743 21333.3333 21276.5957 21220.1592 21164.0212

21052.6316 20833.3333 20779.2208 20671.8346 20512.8205

20460.3581 20408.1633 20202.0202 20050.1253 20000.0000

19851.1166 19753.0864 19704.4335 19656.0197 19607.8431

19512.1951 19323.6715 19230.7692 19138.7560 19047.6190

18912.5296 18867.9245 18823.5294 18648.0186 18604.6512

18518.5185 18433.1797 18390.8046 18306.6362 18181.8182

18140.5896 18099.5475 18018.0180 17857.1429 17777.7778

17738.3592 17582.4176 17543.8596 17429.1939 17391.3043

17316.0173 17241.3793 17204.3011 17094.0171 17021.2766

16949.1525 16913.3192 16842.1053 16806.7227 16771.4885

16666.6667 16632.0166 16563.1470 16528.9256 16460.9053

16393.4426 16326.5306 16260.1626 16227.1805 16194.3320

16161.6162 16129.0323 16000.0000 15873.0159 15810.2767

15779.0927 15686.2745 15625.0000 15594.5419 15503.8760

15473.8878 15444.0154 15384.6154 15325.6705 15238.0952

15180.2657 15151.5152 15122.8733 15094.3396 15065.9134

15037.5940 15009.3809 14842.3006 14814.8148 14705.8824

14652.0147 14571.9490 14545.4545 14519.0563 14492.7536

Available Baud rates [Bit/s]

Baud rates for the CAN Bus

ADbasic 4.20, Manual April 2006

ADwin

A-5

14414.4144 14336.9176 14311.2701 14285.7143 14260.2496

14184.3972 14109.3474 14035.0877 13986.0140 13937.2822

13913.0435 13888.8889 13840.8304 13793.1034 13722.1269

13675.2137 13605.4422 13582.3430 13559.3220 13513.5135

13468.0135 13445.3782 13377.9264 13333.3333 13289.0365

13223.1405 13157.8947 13136.2890 13114.7541 13093.2897

13071.8954 13008.1301 12987.0130 12903.2258 12882.4477

12820.5128 12800.0000 12759.1707 12718.6010 12698.4127

12578.6164 12558.8697 12539.1850 12500.0000 12422.3602

12403.1008 12383.9009 12345.6790 12326.6564 12307.6923

12288.7865 12195.1220 12158.0547 12121.2121 12066.3650

12030.0752 12012.0120 11994.0030 11922.5037 11904.7619

11851.8519 11834.3195 11764.7059 11730.2053 11695.9064

11661.8076 11627.9070 11611.0305 11594.2029 11544.0115

11494.2529 11477.7618 11428.5714 11396.0114 11379.8009

11363.6364 11347.5177 11299.4350 11220.1964 11204.4818

11188.8112 11111.1111 11080.3324 11034.4828 11019.2837

10989.0110 10943.9124 10928.9617 10884.3537 10869.5652

10840.1084 10810.8108 10796.2213 10781.6712 10752.6882

10695.1872 10666.6667 10638.2979 10610.0796 10582.0106

10540.1845 10526.3158 10457.5163 10430.2477 10416.6667

10389.6104 10335.9173 10322.5806 10296.0103 10269.5764

10256.4103 10230.1790 10204.0816 10101.0101 10088.2724

10062.8931 10025.0627 10012.5156 10000.0000 9937.8882

9925.5583 9876.5432 9852.2167 9828.0098 9803.9216

9791.9217 9768.0098 9756.0976 9696.9697 9685.2300

9661.8357 9615.3846 9603.8415 9569.3780 9523.8095

9456.2648 9433.9623 9411.7647 9400.7051 9367.6815

9356.7251 9324.0093 9302.3256 9291.5215 9259.2593

9227.2203 9216.5899 9195.4023 9153.3181 9142.8571

9090.9091 9070.2948 9049.7738 9039.5480 9009.0090

Available Baud rates [Bit/s]

Baud rates for the CAN Bus

ADbasic 4.20, Manual April 2006

ADwin

A-6

8958.5666 8928.5714 8918.6176 8888.8889 8879.0233

8869.1796 8859.3577 8771.9298 8743.1694 8714.5969

8695.6522 8658.0087 8648.6486 8620.6897 8602.1505

8592.9108 8556.1497 8547.0085 8510.6383 8483.5631

8474.5763 8465.6085 8456.6596 8421.0526 8403.3613

8385.7442 8333.3333 8281.5735 8264.4628 8255.9340

8230.4527 8205.1282 8196.7213 8163.2653 8130.0813

8113.5903 8105.3698 8097.1660 8088.9788 8080.8081

8064.5161 8000.0000 7976.0718 7944.3893 7936.5079

7905.1383 7843.1373 7812.5000 7804.8780 7797.2710

7774.5384 7751.9380 7736.9439 7729.4686 7714.5612

7692.3077 7662.8352 7655.5024 7619.0476 7590.1328

7575.7576 7561.4367 7547.1698 7532.9567 7518.7970

7469.6545 7441.8605 7421.1503 7407.4074 7400.5550

7386.8883 7352.9412 7326.0073 7285.9745 7272.7273

7259.5281 7246.3768 7187.7808 7168.4588 7142.8571

7136.4853 7130.1248 7111.1111 7098.4916 7092.1986

7054.6737 7017.5439 6993.0070 6956.5217 6944.4444

6926.4069 6902.5022 6896.5517 6861.0635 6820.1194

6808.5106 6802.7211 6791.1715 6779.6610 6734.0067

6688.9632 6683.3751 6666.6667 6611.5702 6578.9474

6568.1445 6562.7564 6557.3770 6535.9477 6530.6122

6493.5065 6456.8200 6451.6129 6441.2238 6410.2564

6400.0000 6379.5853 6349.2063 6324.1107 6289.3082

6274.5098 6269.5925 6250.0000 6245.1210 6211.1801

6172.8395 6163.3282 6153.8462 6144.3932 6102.2121

6060.6061 6046.8632 6037.7358 5997.0015 5961.2519

5952.3810 5925.9259 5895.3574 5865.1026 5847.9532

5818.1818 5797.1014 5772.0058 5747.1264 5714.2857

5702.0670 5681.8182 5649.7175 5614.0351 5610.0982

5555.5556 5521.0490 5517.2414 5464.4809 5434.7826

Available Baud rates [Bit/s]

Baud rates for the CAN Bus

ADbasic 4.20, Manual April 2006

ADwin

A-7

5423.7288 5376.3441 5333.3333 5291.0053 5245.9016

5208.3333 5161.2903 5079.3651 5000.0000

Available Baud rates [Bit/s]

License Agreement

ADbasic 4.20, Manual April 2006

ADwin

A-8

A.4 License Agreement
Between the buyer of ADbasic – termed the Licensee –
and Jäger Computergesteuerte Messtechnik GmbH, Rheinstraße 2 - 4, 64653
Lorsch – termed hereinafter Jäger Messtechnik GmbH – the following license
agreement is concluded:

1. OBJECT OF THE LICENSE AGREEMENT

1.1 Object of the license agreement is the software of the compiler and the
development system ADbasic (hereinafter termed ADbasic software)
as well as the printed user manual "ADbasic: The Real-Time Develop-
ment Tool for ADwin Systems" (hereinafter termed "printed materials").

1.2 The company Jaeger Messtechnik GmbH draws your attention to the
fact that it is not possible according to the state of the art to develop
computer software in such a way that no errors occur in all applications
and combinations. Only a computer software which is basically practi-
cable according to the user documentation is object of the license
agreement.

2. EXTENT OF USAGE

2.1 Jaeger Messtechnik GmbH grants the Licensee a single, non-exclu-
sive and individual right of use. This means that you may use the
enclosed copy of the ADbasic software only on a single computer and
only in one single location. The Licensee may transfer the ADbasic
software in physical form (that is stored on a storage device) from one
computer to another computer, provided that it is only used individually
on one single computer at any time. A usage other than these restric-
tions is not permitted.

2.2 Programs generated by the Licensee with the ADbasic software, may
be distributed and used without restriction.

3. SPECIAL RESTRICTIONS
The Licensee is not permitted to

a) pass or otherwise give to any third party access to the ADbasic soft-
ware without prior written consent of Jaeger Messtechnik GmbH,

b) electronically transfer the ADbasic software from one computer to
another over a network or a data transfer channel,

License Agreement

ADbasic 4.20, Manual April 2006

ADwin

A-9

c) change or modify, translate, reverse engineer, decompile or disassem-
ble the ADbasic software without prior written consent of Jaeger
Messtechnik GmbH.

4. OWNERSHIP

4.1 Upon purchasing the product, only title to the physical storage device,
where the ADbasic software has been stored, is passed to the Lic-
ensee. No title to the rights of the ADbasic software itself is passed to
the Licensee.

4.2 Jaeger Messtechnik GmbH reserves all rights for publication, copying,
processing and commercialization of the ADbasic software.

5. COPYRIGHTS

5.1 The ADbasic software and the printed materials are protected by copy-
right.

For backup purposes the Licensee may generate a single copy of the
ADbasic software. He must reproduce the copyright notice of Jaeger
Messtechnik GmbH on the copy. The copyright notice on the ADbasic
software must not be removed.

5.2 It is expressly not permitted to fully or partially copy or reproduce the
ADbasic software as well as the printed materials in its original or mod-
ified form or merged or included in other software.

6. GRANT OF LICENSE

6.1 The right to use the ADbasic software can only be granted to a third
party with prior written consent of Jaeger Messtechnik GmbH. The Lic-
ensee must then completely delete the software which he has installed
and pass it to the third party. (The transfer has to include the original
data carrier with the documentation, backup version included). The
license may furthermore only be transferred to a third party, if the latter
agrees for the benefit of Jaeger Messtechnik GmbH to the terms and
conditions of this License Agreement and to the General Conditions of
the company Jaeger Messtechnik GmbH.

6.2 You must not rent, lease or lend the ADbasic software.

7. PERIOD OF AGREEMENT

7.1 The period of the License Agreement is unlimited.

7.2 The right of the Licensee for using the ADbasic software voids auto-
matically without notice of termination, if he violates a condition of this

License Agreement

ADbasic 4.20, Manual April 2006

ADwin

A-10

License Agreement. Upon termination of the license, the Licensee
must destroy the original data medium and all copies of the ADbasic
software, possible modified copies included, as well as the printed
materials.

8. CLAIM FOR DAMAGES AND PENALTY UPON VIOLATION OF THE
CONTRACT

8.1 If the Licensee violates conditions of this License Agreement he must
pay damages.

8.2 Notwithstanding, Jaeger Messtechnik GmbH will charge a penalty of
20,000.00 EURO for violation of the copyright, unauthorized usage of
the software, and unauthorized distribution of the software to third par-
ties.

8.3 The title to omission on completion of the contract is not influenced by
the claim for damages and the penalties.

9. MODIFICATIONS AND UPDATES
Jaeger Messtechnik GmbH is entitled to update the ADbasic software upon its
own discretion. Jaeger Messtechnik GmbH is not obliged to have updates of
the ADbasic software available for the Licensee.
For extensive updates Jaeger Messtechnik GmbH reserves the right to charge
an additional fee.

10. WARRANTY AND LIABILITY OF JAEGER MESSTECHNIK GMBH

a) Jaeger Messtechnik GmbH assumes warranty to the Licensee that at
the moment of delivery the data medium, on which the ADbasic soft-
ware is stored, is error-free in accordance with the accompanying
materials, when applied under normal operating conditions and under
normal maintenance conditions.

b) If the data medium is faulty, the Licensee is granted a replacement
within the warranty period of 6 months from the date of delivery. He
must return the data medium as well as a copy of the invoice to Jaeger
Messtechnik GmbH or to the distributor from whom he has purchased
the product.

c) If a fault as described in Section 10 b) is not eliminated within an ade-
quate period of time by replacement of the product, the Licensee may
choose between either allowance (price reduction) or conversion
(rescission of the License Agreement). The Licensee is not entitled to
any further claims.

Command Line Calling

ADbasic 4.20, Manual April 2006

ADwin

A-11

d) For the reasons mentioned in Section 1.2 Jaeger Messtechnik GmbH
does not assume liability for the absence of defects with regards to the
ADbasic software. In particular Jaeger Messtechnik GmbH does not
assume warranty for the fact that the ADbasic software meets the
requirements and purposes of the Licensee or is compatible to other
programs he is working with. The Licensee is responsible for the cor-
rect choice and the consequences of using the ADbasic software, as
well as for the results he intends to obtain or has obtained. The same
applies for the printed materials which are delivered with the ADbasic
software.

e) Jaeger Messtechnik does not assume liability for damages, unless
Jäger Messtechnik GmbH has caused damages by intention or by
gross negligence. Liability because of properties assured by Jaeger
Messtechnik GmbH remains unaffected. Liability is excluded for con-
sequential damages, which are not part of the assurance given above.

f) Jaeger Messtechnik GmbH does not assume liability for damages
caused by viruses, which are passed on by the data medium. The Lic-
ensee is hold responsible for checking the data medium for viruses,
before installing the ADbasic software on his computer.

11. FINAL CONDITIONS
The invalidity of some individual conditions does not affect the validity of the
License Agreement.
In addition to the conditions of this License Agreement the General Terms and
Conditions of Jaeger Messtechnik GmbH apply.

A.5 Command Line Calling
The ADbasic compiler cannot only be activated through the user interface, but
it can also be directly called in Windows or DOS (with a so-called "command
line call"). The compiler works the same in both cases, it can compile a source
code file and generate a binary or library file.
The compiler will only be called after you have entered your license key in
ADbasic.
The term and functionality "command line call" come from DOS, where com-
mands to the operating system DOS had to be entered in command lines.
Entering such command lines is still possible under Windows.

Command Line Calling

ADbasic 4.20, Manual April 2006

ADwin

A-12

There are several ways to enter commands under Windows:

– Open a Command Prompt window (from Windows start menu, direc-
tory Programs / Accessories).

The compiler call needs the Windows environment anyway. Thus, the
call works only from the Command Prompt window, not from original
DOS-mode.

– Select Run in the start menu and enter a command line in the input
window.

– For frequently needed command lines create an icon on the desktop.
When you generate an icon enter the command line directly.

One or more command lines can be combined in one batch file <*.bat> ,
for example in order to compile several source code files of a project with only
one call.
When you call a command line you have to transfer the relevant options and
parameters. Not all compiler settings can be made via command line call.

A.5.1 Syntax
A command line call consists of at least the name of the program you are cal-
ling and of the file which is to be compiled (each with path and file name). You
can add command line options, beginning with a slash /, some of which have
optional parameters.
The command line call is entered in a single line.

Command Line Calling

ADbasic 4.20, Manual April 2006

ADwin

A-13

Syntax

{[LW:\][path\]}ADbasic{.exe} /L /M
{[LW:\][path\]}infile{.bas} {/Sx} {/Px}
{/A{[LW:\][path\]}outfile}

Options
[LW:\] Optional: Drive or hard disk. For the program

<ADbasic.exe> it usually is C:\.

[path\] Optional: Subdirectory where the program
<ADbasic.exe> or the source code files are located.
With standard installation this is C:\ADwin\ADbasic\.

infile File name of the source code you want to compile.

/L Compile the source code and generate a library file with
the extension LIx (excludes the option /M).

x Stands for the processor on which the compiled
file is to run (see option /P).

/M Compile the source code and generate a binary file with
the extension Txn (excludes the option /L).

x Stands for the processor on which the compiled
file is to run (see option /P).

n Stands for the process number of the compiled
file (is read from the source code file).

/Sx ADwin system for which the file is compiled:

/SC
/SL
/SG
/SP

Cards (ISA bus;16-bit resolution = No)
Light-16 (16-bit resolution = Yes)
Gold (16-bit resolution = Yes); default
Pro (16-bit resolution = Yes)

Command Line Calling

ADbasic 4.20, Manual April 2006

ADwin

A-14

A.5.2 Notes
Optional information in the Syntax is set into braces. The order of options can
be arranged any way you like. Command lines are not case sensitive.
The Debug Mode option is never active when a compilation is effected via
command line.
If the option /A is not used, the generated binary or library file is saved in the
same directory, as the source code.
The following options are mutually exclusive:

A.5.3 Examples
C:\ADwin\ADbasic\ADbasic.exe /L Z:\Myfiles\test.bas

This command line compiles the source code <test.bas> and gene-
rates the library file <test.li9> in the directory <Z:\Myfiles\>.
Since nothing else is indicated, the default setting is used:

• Processor T9
• Gold system (16-bit system = Yes)
• save generated file in the directory of the source code file

If you are already in the directory <C:\ADwin\ADbasic>, you can
shorten this line to:
ADbasic.exe /L Z:\Myfiles\test.bas

/Px Processor type for which the file is compiled:

/P2
/P4
/P5
/P8
/P9
/P10
/P11

Processor T2
Processor T4
Processor T5
Processor T8
Processor T9 (ADSP); default
Processor T10 (ADSP)
Processor T11 (ADSP)

/Aoutfile Path and name of the binary or library file <outfile>
which is to be generated.

Option exluded then:
/L /M

/M /L

/SG, /SL /P2, /P4, /P5, /P8
/SP /P2

Command Line Calling

ADbasic 4.20, Manual April 2006

ADwin

A-15

The shortest version is when the source code is in the same directory
<C:\ADwin\ADbasic> (here without file name extension):
ADbasic /L test

C:\ADwin\ADbasic\ADbasic /L Z:\Myfiles\test.bas /SL

This command line compiles the source code <string.bas> into a li-
brary file for a Light-16 system with the processor T9.
The same call, for the processor T10 only, is as follows:
C:\ADwin\ADbasic\ADbasic /L Z:\Myfiles\test.bas /P10 /SL

C:\ADwin\ADbasic\ADbasic /M Z:\Myfiles\test.bas
C:\ADwin\ADbasic\samples_ADwin\bas_dmo6f /P9 /SG

Compiles the demo file <bas_dmo6f.bas> into a binary file for a Gold
system with T9 processor.

C:\ADwin\ADbasic\ADbasic /M
C:\ADwin\ADbasic\samples_ADwin\bas_dmo6 /P8 /SL

Compiles the demo file <bas_dmo6.bas> into a binary file for a Light-
16 card with the processor T8.

C:\ADwin\ADbasic\ADbasic /M C:\user\my_file.bas /P4 /SC
/Ayour_file

This instruction compiles the file <my_file.bas> for an ADwin-Card
with the processor T4. The generated binary file has the name
<your_file.T41> and can be found in the same directory where the
source code is saved: <C:\user>.

C:\ADwin\ADbasic\ADbasic.exe /M C:\user\my_file.bas
/AY:\somewhere\your_file

The binary file now has the name <your_file.T91> and can be
found in the directory <Y:\somewhere>.

Obsolete Program Parts

ADbasic 4.20, Manual April 2006

ADwin

A-16

A.5.4 Special Settings and Messages

Special Settings
Take into account, where the compiler gets its information. Some compiler set-
tings cannot be entered via command line, but rather only in the development
environment ADbasic.

– The development environment (transparently) saves the settings
Event, Process, Priority, Optimize in the source code file.

– The paths for Include-Directory and Lib-Directory are saved
in the registry.

It is possible that the registry may have changed, especially if you or another
user has worked with a different project on your computer. Therefore we rec-
ommend you check these settings before you execute a command line.

Warnings and Error Messages
If warnings or errors occur during compilation, they are saved in the files
<filename.WRN> and <filename.ERR>. The error messages are the
same as those that ADbasic displays in the info window (see chapter 2.3.13
on page 37).
We recommend you delete the files containing the warnings and error mes-
sages before compilation, so that you can very easily check if the compilation
has proceeded without any errors.

A.6 Obsolete Program Parts
For compatibility reasons the development environment ADbasic 4 also offers
settings for ADwin systems with transputer processors (T4, T5, T8), as well as
help programs with new updates from the previous version of ADbasic.

A.6.1 Dialog Window Process Options
In this dialog window you set compiler options for the currently open source
code window, that is you set the properties of the process, which is compiled
from the current source code and transferred to the ADwin system.
You must make the necessary settings separately for each of the source code
windows by opening the dialog window again (unless you want to use the
default settings).
If you have set the processor types T4, T5 or T8 in the dialog window Compiler
Options, the dialog window shown in fig. 1 is opened.

Obsolete Program Parts

ADbasic 4.20, Manual April 2006

ADwin

A-17

Fig. 1 – The Dialog Window Process Options for processors T4 … T8

– Event: Here you set which event signal is to start the section EVENT:
of your process.

With the setting Timer you define the number of counts of the internal
counter as the event signal. In this case you use the system variable
PROCESSDELAY to define time intervals which triggers an event signal.

With Extern you determine that a signal at the event input of your AD-
win hardware starts the process. This could be for instance an impulse
of a sensor. Such a process must run at high-priority. In this case set
the option Priority to High.

How to use an external event input with an ADwin-Pro system, is de-
scribed in the software documentation under the instruction EVENTEN-
ABLE.

With the setting None the process starts immediately after it has been
transferred to the system. The section EVENT: is – independent of any

Obsolete Program Parts

ADbasic 4.20, Manual April 2006

ADwin

A-18

event signals – it is restarted immediately after the execution (infinite
loop).
In a high-priority process you have to assure that the process also pro-
vides computing time for other tasks (e.g. communication with the
computer).

– Process: Set the number (1…10), with which the transferred process
is accessed on the system.

If several processes are running simultaneously on the ADwin system,
you must assign a separate number to each of the processes.

– Number of Loops: If you like, you can set here the number of times
the program cycles through the event loop before it stops. When this
number is reached, the process stops automatically. A setting you have
changed will be active upon the next start of the process (not in the cur-
rently running process), you needn’t recompile your program.

If you enter the value "0", the program is repeated until you stop the
process with:

• the instruction END,
• the instruction STOP_PROCESS or
• the icon in the development environment.

– Version: Here you enter an integer value, in order to differentiate
between different versions of your program.

– Priority: Set here the priority of the process. You will find more infor-
mation about this subject in chapter 5.1 "Process Management". The
setting Level does not exist for the transputer processor type.

– Control long Delays for Stop: This setting is only available when
you use the processors T2 ... T8.

The stopping of a process is delayed, if it is not called frequently (cycle
time interval > 5 milliseconds). We recommend you use the option in
this case, because this option will speed up the stop procedure.

– Optimize: The optional optimization shortens the process execution
time of up to 20 percent. A higher setting under Level leads to shorter
execution times.

If unexpected compiler or run-time errors occur, you can sometimes
avoid them by setting a lower Level for the optimization.

– Delay: Set here the processdelay (cycle time), before the process is
to begin.

Obsolete Program Parts

ADbasic 4.20, Manual April 2006

ADwin

A-19

A.6.2 The Menu Item Connect
In the menu Tools you can find among other things
the item Connect. It opens the dialog window of the
same name, where you make the settings for the pro-
gram ADserver (which is no longer being updated).
With ADserver you setup a network connection to the
ADwin system.
We recommend you use the program ADwin
TCPIPserver instead of ADserver. In this case, do not make any settings in the
dialog window, but close it!
You will find more information in the online help of ADwin TCPIPserver.
If you still want to use the program ADserver:
From ADbasic you can access an ADwin system, connected to any PC, via a
network (LAN, ISDN, Internet, ...). The program ADserver must be started on
the PC before trying to access the ADwin system. Next you enter the network
settings in the dialog window.

Obsolete Program Parts

ADbasic 4.20, Manual April 2006

ADwin

A-20

Fig. 2 – The dialog window Connect

– Protocol: The protocol, your network uses. It must be installed on
your computer.

– Endpoint: End point for the network communication.

– Server: Name or address of the network computer you want to setup
a connection to.

– Password: Password for the program ADserver. Pay attention this is
case sensitive.

The settings Protocol, Endpoint and Password must be identical to the
settings in the program ADserver on the network computer.
As soon as you click the Connect button, the connection to the network com-
puter and the connected ADwin system, is set up. All further actions of the

Obsolete Program Parts

ADbasic 4.20, Manual April 2006

ADwin

A-21

development environment are transferred to this system. By clicking Dis-
connect the connection is disconnected again.

Obsolete Program Parts

ADbasic 4.20, Manual April 2006

ADwin

A-22

Index

ADbasic 4.20, Manual April 2006

ADwin

A-23

A.7 Index

Symbols
- · 97
· 102
#DEFINE · 123
#ELSE · 151
#ENDIF · 151
#IF · 151
#INCLUDE · 155
* · 98
+ · 95
+ (String) · 96
.NET · 91
/ · 99
: · 103
< = > · 105
= · 104
^ · 100
’ (REM) · 187

Numerics
150h, see device no.
2-dimensional arrays · 53
40 bit accuracy · 46

A
ABSF · 106
ABSI · 107
absolute value

floating point number · 106
integer number · 107

ActiveX · 91
communication to the ADwin

system · 90
use from a development

environment · 91
ADbasic

license agreement · 8
start · 7

ADC · 226
ADC12, ADC14 · 229
Add Open Files to Project · 34
Add to Project · 12, 34
addition · 95
ADtools · 38
ADWIN_SYSTEM · 151
ADwin32.dll · 90
analog in-/outputs

ADC:measure a channel · 226
DAC: output one value · 236
read converted value · 243
read converted value

(12 Bit) · 244
set multiplexer · 248
start a conversion · 250
wait for end of conversion · 252

analyze
general · 73
process flow · 77
run-time error · 74
timing · 74

AND · 108
arc cosine: ARCCOS · 110
arc sine: ARCSIN · 111
arc tangent: ARCTAN · 112
arithmetic functions

- · 97
* · 98
+ · 95
/ · 99
^ · 100
DEC · 122
EXP · 132
INC · 154
LN · 165
LOG · 168
SQRT · 198

Array-Index (local) too large / <1,
see run-time error

Index

ADbasic 4.20, Manual April 2006

ADwin

A-24

arrays
2-dimensional · 53
allocate memory area · 51
copy

· 170
DATA_n · 120
FIFO · 133
global · 48

first element · 49
initialize · 43
local · 50

first element · 51
overview · 44

(DIM) AS · 125
ASC · 113
ASCII-character set · 2
assign a value · 47
assignment (=) · 104
(DIM …) AT · 125
autoindent option · 22
automatical type conversion · 61

B
backslash (control character) · 58
bar · 13
base e · 132
Baudrates for CAN bus · 3
Betriebsmodus L16 einstellen · 360
binary file

see also library
see menu, build
create

from ADbasic · 16
from command line · 12

binary notation · 47
bit shifting

left · 193
right · 194

booting · 7
break, see stop process

BTL file
directory settings · 24

Busy display · 38
bypass waiting time · 172

C
C#.NET, C++ · 91
CAN bus

Baud rates · 3
Gold CAN instructions · 317

CAN bus (L16 DIO1)
CAN_MSG · 300
EN_INTERRUPT · 302
EN_RECEIVE · 303
EN_TRANSMIT · 305
GET_CAN_REG · 306
INIT_CAN · 307
READ_MSG · 308
SET_CAN_BAUDRATE · 310
SET_CAN_REG · 312
TRANSMIT · 313

CAN_MSG
Gold CAN · 318

CAN_MSG (L16 DIO1) · 300
carriage return (control

character) · 58
case sensitivity · 10
CASE, CCASE, CASEELSE(SE-

LECTCASE …) · 190
CAST_FLOATTOLONG · 114
CAST_LONGTOFLOAT · 115
check

number and priority of
processes · 75

CHECK_SHIFT_REG · 334
CHR · 116
CLEAR_DIGOUT · 232
CNT_CLEAR · 257
CNT_CLEARENABLE · 259
CNT_ENABLE · 261
CNT_GETSTATUS · 263

Index

ADbasic 4.20, Manual April 2006

ADwin

A-25

CNT_INPUTMODE · 266
CNT_LATCH · 268
CNT_MODE · 270
CNT_READ · 272
CNT_READFLATCH · 276
CNT_READLATCH · 274
CNT_RESETSTATUS · 278
CNT_SE_DIFF · 280
CNT_SET · 282
code size · 37
color settings · 22
command line

line length
standard · 41
with #INCLUDE · 155

upper case / lower case · 41
command line call · 11
Comment Block · 12
comment, see remarks
communication

between processes · 89
process in the ADwin system · 84
time-out · 84
with a development

environment · 91
with the computer · 90

comparison
< = > · 105
Strings · 206

compiler
command line call · 11
instruction #DEFINE · 123
instruction #INCLUDE · 155
preprocessor statement · 102
set options · 17
status message · 37
Wait for stop · 16

compiler instructions
#IF … THEN · 151

conditional jump
IF … THEN · 149
SELECTCASE · 190

CONF_DIO · 234
CONF_DIO_E · 284
context menu

project window · 34
source code window · 12

control characters in strings · 58
control structures · 62
Controlblock · 12
conversion, start of · 250
cosine: COS · 117
counter

internal, clock cycle · 85
read · 186

CPU_SLEEP · 118
cursor position · 38
cut off decimal places · 61
cycle time · 84

D
DAC · 236
data exchange

between processes · 89
with the computer · 90
with the development

environment · 91
data loss

FIFO · 55
from booting · 7

data memory
see also memory
2-dim. arrays in ~ · 53
additional demand by

debug mode · 74
timing mode · 77
trace mode · 77

allocate · 51
overview, internal, external · 52

Index

ADbasic 4.20, Manual April 2006

ADwin

A-26

data structures
FIFO · 54
global arrays · 48
global arrays, 2-dimensional · 53
global variables · 47
local variables and arrays · 50
overview · 45

data types
overview · 46
string · 56
type conversion · 61

data word
numbering of bits · 3

DATA_n · 48
dimensioning · 125
global arrays, 2-dimensional · 53
overview · 120

Data-Index (global) too large / <1,
see run-time error

debug
general · 73
debug mode · 74
enable timing mode · 25
enable trace mode · 28
menu · 25
timing mode · 74
timing window · 25
trace mode · 77
trace window · 29
TRACE_MODE_PAUSE · 218
TRACE_MODE_RESUME · 219

DEC · 122
decimal logarithm · 168
decimal notation · 47
decimal places, cut off · 61
decimal separator · 47
declaration, see dimensioning
decrement · 122
DEFINE, see #DEFINE
definition of macros

position in the program · 44

Delphi · 91
design of an ADbasic program · 41
development environment

bars and windows · 8
communication with C, Delphi,

Matlab etc. · 91
directory settings · 24
short-cuts · 1
source directory · 7
start · 7

device no.
definition · 91
set · 18

DIAdem · 91
DIGIN · 237
DIGIN_LONG_E (L16 DIO2) · 289
DIGIN_WORD · 239
DIGIN_WORD1_E (L16-DIO) · 285
DIGIN_WORD2_E (L16 DIO1) · 287
digital in-/outputs

clear one output · 232
configure · 234
read all inputs · 239
read one input · 237
set all outputs · 241
set one output · 246

DIGOUT_LONG_E (L16
DIO2) · 299

DIGOUT_RESET1_E (L16
DIO1) · 291

DIGOUT_RESET2_E (L16
DIO1) · 293

DIGOUT_SET1_E (L16 DIO1) · 295
DIGOUT_SET2_E (L16 DIO1) · 296
DIGOUT_WORD · 241
DIGOUT_WORD1_E (L16

DIO1) · 297
DIGOUT_WORD2_E (L16

DIO1) · 298
DIM · 125

Index

ADbasic 4.20, Manual April 2006

ADwin

A-27

dimensioning
instruction DIM · 125
memory area · 51
position in the program · 43

directory
with standard installation · 7

directory settings · 24
disable

trace mode · 218
Disable Trace · 12
display

current information · 9
memory usage: CPU, PM, EM,

DM, DX · 38
division

by 2 · 194
simple · 99

Division by zero, see run-time error
DM, see memory
DM_LOCAL (DIM …) · 125
DO … UNTIL · 128
DRAM_EXTERN (DIM …) · 125
DX, see memory

E
e-function EXP · 132
ELSE (IF … THEN) · 149
EM_LOCAL (DIM …) · 125
EN_CAN_INTERRUPT · 320
EN_INTERRUPT (L16 DIO1) · 302
EN_RECEIVE

Gold CAN · 321
EN_RECEIVE (L16 DIO1) · 303
EN_TRANSMIT

Gold CAN · 323
EN_TRANSMIT (L16 DIO1) · 305
enable

trace mode · 219
Enable Trace · 12
enable trace mode · 28
END · 129

ENDFUNCTION · 146
ENDIF (IF … THEN) · 149
ENDSELECT (SELECTCASE

…) · 190
ENDSUB · 214
equal to = · 105
error

see also run-time error
data loss with FIFO · 55
forced by Cut&Paste · 15
process overwritten · 83
run-time · 30
time-out · 84
try lower optimization level · 20

error message
Wait for stop · 16

escape sequence · 58
Ethernet · 90
event

external signal: reset · 188
lost event signals

check · 27
lost signal

externally controlled
process · 89

several time-controlled
processes · 88

single time-controlled
process · 88

measure time difference · 68
EVENT: · 43, 130
exclusive OR operation · 224
EXIT · 131
exponential function: EXP · 132
exponential notation · 47
expressions

evaluate · 59
separate evaluation · 62

extensive initialization · 43
external data memory (DX) · 52
external memory (SDRAM) · 52

Index

ADbasic 4.20, Manual April 2006

ADwin

A-28

F
F1-Help · 10
FFT · 369
FFT_CALC · 379
FFT_CALC_DM · 381
FFT_CALC_DX · 383
FFT_INIT · 378
FFT_MAG · 373
FFT_MAG_SCALE · 377
FFT_PHASE · 375
FFT_SCALE · 371
FIFO

check number of elements · 55
data loss · 55
design of data structure · 54
dimensioning · 125
initialize · 135
overview · 133
query empty elements · 137
query full elements · 138

FIFO_CLEAR · 135
FIFO_EMPTY · 137
FIFO_FULL · 138
file name

binary file · 16
library · 16

FINISH: · 43, 139
FLO40TOSTR · 142
floating-point numbers

decimal notation · 47
exponential notation · 47
value range · 46

FLOTOSTR · 140
font settings · 22
FOR … NEXT · 144

Fourier transformation
FFT · 369
FFT_CALC · 379
FFT_CALC_DM · 381
FFT_CALC_DX · 383
FFT_INIT · 378
FFT_MAG · 373
FFT_MAG_SCALE · 377
FFT_PHASE · 375
FFT_SCALE · 371

FPAR_n · 47
FUNCTION · 146
function

general features · 63
library

definition · 157
general · 64

macro · 146
position in the program · 44

G
GET_CAN_REG

Gold CAN · 325
GET_CAN_REG (L16 DIO1) · 306
GET_RS · 336
global arrays, see arrays, global
global variables, see variables, glo-

bal
GLOBALDELAY · 182
greater than >, >= · 105

H
halt, see stop process
hardware access

read · 180
write · 181

help
context-sensitive · 8
instruction (F1) · 10

hexadecimal notation · 47

Index

ADbasic 4.20, Manual April 2006

ADwin

A-29

I
IEEE floating-point format · 46
IF · 149

see also #IF · 151
IMPORT · 153
INC · 154
INCLUDE · 155
include

include a file: #INCLUDE · 155
include a library: IMPORT · 153
include-file, general · 64

include file
directory settings · 24

increment · 154
info window · 37
INIT: · 43, 156
INIT_CAN

Gold CAN · 326
INIT_CAN (L16 DIO1) · 307
initialization

boot · 7
installation, standard directory · 7
instruction

measure processing time · 67
instruction separator (:) · 103
integer numbers

binary notation · 47
hexadecimal notation · 47
type conversion · 61
value range · 46

internal counter
clock cycle · 85

internal data memory (DM) · 52
internal memory (SRAM) · 52
interrupt, see stop process

J
jump, conditional

IF … THEN · 149
SELECTCASE · 190

K
keyboard

settings display · 38

L
L16: Betriebsmodus einstellen · 360
L16_MODE · 360
latency (timing window) · 26
length (timing window) · 26
less than <, <= · 105
LIB_ENDFUNCTION · 157
LIB_ENDSUB · 161
LIB_FUNCTION · 157
LIB_SUB · 161
library

create
from ADbasic · 16
from command line · 12

directory settings · 24
function · 157
general · 64
IMPORT · 153
position in the program · 44
subroutine · 161

license agreement · 8
line feed (control character) · 58
line length, max.

standard · 41
with #INCLUDE · 155

LN · 165
LNGTOSTR · 166
LOG · 168
logarithm

decimal · 168
natural · 165

Index

ADbasic 4.20, Manual April 2006

ADwin

A-30

logic functions
AND · 108
NOT · 173
OR · 174
SHIFT_LEFT · 193
SHIFT_RIGHT · 194
XOR · 224

Long, see integer numbers
LOWINIT: · 43, 169
low-priority processes with T11 · 86

M
macro

function · 146
general features · 63
position in the program · 44

Mark Controlblock · 12
Matlab · 91
matrix, 2-dimensional · 53
maximum line length

standard · 41
with #INCLUDE · 155

measure processing time · 67
measurement graph · 38
MEMCPY · 170
memory

additional demand by
debug mode · 74
timing mode · 77
trace mode · 77

allocate · 51
areas (PM, DM, DX) · 52
calculate need of · 37
see also data memory
string · 56
workload · 38

menu
bar · 13
build · 15
choose · 9
debug · 25
edit · 15
file · 14
help · 33
options · 17
tools · 32
view · 15
window · 33

multiplexer
set · 248

multiplication
by 2 · 193
simple · 98

N
names

local variables · 51
natural logarithm · 165
negative sign · 60
NEXT (FOR …) · 144
NOP · 172
NOT · 173
not equal to <> · 105
notation of numbers · 47
notes, see remarks
number of processes, check · 75
number, see device no.
numerical values

notation · 47

O
operating system

directory settings · 24
load, see booting

Index

ADbasic 4.20, Manual April 2006

ADwin

A-31

operators
evaluate · 59
negative sign · 60
priority · 60
XOR · 224

optimal timing
one process · 76
several processes · 75

Optimierung
setting waiting time · 69

optimize
calculate polynoms quickly · 100
constants instead of

variables · 68
general · 67
measure faster · 69
measure processing time · 67
register access · 68
run-time error · 74
T11 memory access · 73
timing · 74
use waiting times · 71

optimize, see also debug
option setting

editor · 21
general · 21
structured display · 22

options setting
compiler · 17
directory · 24
language · 23
process · 19

OR · 174
OR operation · 174

P
P1_SLEEP · 176
P2_SLEEP · 178
PAR_n · 47
parameter window · 35
parameters, see variables, global
PEEK · 180
PM, see memory
POKE · 181
polynoms, calculate quickly · 100
power · 100

base e · 132
replace in polynom · 100

pre-processor instructions
#DEFINE · 123
#IF … THEN · 151
#INCLUDE · 155

preprocessor statement · 102
priority

low-priority processes with
T11 · 86

of processes, check · 75
operators · 60
process, see process, priority

Index

ADbasic 4.20, Manual April 2006

ADwin

A-32

process
check number and priority · 75
communication · 89
communication process · 84
number · 82
operating modes for timing · 88
optimal timing, one process · 76
optimal timing, several

processes · 75
priority

communication · 84
high · 83
low · 83
low with T11 · 86
overview · 82

processing time · 85
query status · 185
setting options · 19
several · 86
standard processes 11, 12 · 83
start

delayed · 200
other process · 199

stop, see stop process
time characteristic · 84

process control
END · 129
EXIT · 131
PROZESSn_RUNNING · 185
RESET_EVENT · 188
RESTART_PROCESS · 189
START_PROCESS · 199
START_PROCESS_DELAYED ·

200
STOP_PROCESS · 202

process cycle
call

by event · 81
time interval · 85

precise timing · 86

process flow
track · 77

process optimization, see optimize
PROCESSDELAY

system variable · 182
time resolutions · 84

processdelay · 84
program architecture

jump
IF … THEN · 149
SELECTCASE · 190

library
function · 157
LIB_SUB · 161

loop
DO … UNTIL · 128
FOR … NEXT · 144

modules
FUNCTION · 146
subroutine SUB · 214

remarks REM · 187
program design · 41
program improvement, see optimize
program memory · 52

additional demand by
debug mode · 74
timing mode · 77
trace mode · 77

program section
EVENT: · 43
FINISH: · 43
INIT: · 43
LOWINIT: · 43
overview · 43

program structure
overview · 62
include-file · 64
library · 64
module (macro) · 63

Index

ADbasic 4.20, Manual April 2006

ADwin

A-33

project
colour mark used variables · 35
general · 13
window · 34

PROZESSn_RUNNING · 185
PROZESSOR · 151

R
READ_FIFO · 337
READ_MSG

Gold CAN · 327
READ_MSG (L16 DIO1) · 308
READ_TIMER · 186
READADC · 243
READADC12 · 244
register access · 68
REM · 187
remarks · 187
RESET_EVENT · 188
RESTART_PROCESS · 189
ring buffer · 54
root · 198
RS_INIT · 338
RS_RESET · 341
RS485_SEND · 342
RSxxx

Gold CAN instructions · 317
run-time error

see also debug mode
display · 30
find · 74

S
Save All Files of Project · 34
SDRAM, see memory
SELECTCASE · 190
separator : · 103
SEQ_INIT

L16 Rev. B · 361

SEQ_READ
L16 Rev. B · 364

SET_CAN_BAUDRATE
Gold CAN · 329

SET_CAN_BAUDRATE (L16
DIO1) · 310

SET_CAN_REG
Gold CAN · 331

SET_CAN_REG (L16 DIO1) · 312
SET_DIGOUT · 246
SET_MUX · 248
SET_RS · 343
settling time see multiplexer · 248
SHIFT_LEFT · 193
SHIFT_RIGHT · 194
(bit) shifting

left · 193
right · 194

short-cuts · 1
sine: SIN · 195
SLEEP · 196
SLEEP see also P1_SLEEP
source code

information · 9
status bar · 38
structured display · 10
use in a project · 34
working with · 10

SQRT · 198
SQRT from negative value, see run-

time error
square root · 198
SRAM, see memory
SSI

Gold CAN instructions · 317
SSI_MODE · 346
SSI_READ · 348
SSI_SET_BITS · 350
SSI_SET_CLOCK · 352
SSI_START · 354
SSI_STATUS · 356

Index

ADbasic 4.20, Manual April 2006

ADwin

A-34

stack size · 37
start of conversion · 250
START_CONV · 250
START_PROCESS · 199
START_PROCESS_DELAYED · 2

00
starting

ADbasic · 7
status bar · 38
status message, compiler · 37
STEP (FOR …) · 144
stop process

itself
in Event: · 129
in LowInit:, Init:, Finish: · 131

others · 202
STOP_PROCESS · 202
STRCOMP · 206
string

assign values normally · 57
assignment not being

recommended · 59
control character · 58
definition of data type · 46
escape sequence · 58
variable structure · 56

string instruction
addition · 96
ASCII value into char · 116
char into ASCII value · 113
comparison · 206
dimensioning · 204
float to string · 140
float to string (40 bit) · 142
length of a string · 209
long to string · 166
partial string

left · 207
midst · 210
right · 212

string to float · 220
string to long · 222
syntax · 204

STRLEFT · 207
STRLEN · 209
STRMID · 210
STRRIGHT · 212
structure

Coloured display of source
code · 10

indent lines · 12
program sections · 62

SUB · 214
subroutine

general features · 63
library

definition (LIB_SUB) · 161
general · 64

macro · 214
position in the program · 44

subtraction · 97
system variable

GLOBALDELAY see
PROCESSDELAY · 182

overview · 50
PROCESSDELAY · 182
PROZESSn_RUNNING · 185

Index

ADbasic 4.20, Manual April 2006

ADwin

A-35

T
T11

low-priority processes · 86
setting waiting time · 70

tab (control character) · 58
tabsize · 21
tangent: TAN · 217
TBin · 38
TButton · 38
TCP/IP

See Ethernet
TDigit · 38
terminate, see stop process
Testpoint · 91
TFifo · 38
TGraph · 38
THEN (IF … THEN) · 149
time

cycle time · 84
precise cycle timing · 86
time-out · 84

time saving
constants instead of

variables · 68
measure faster · 69
register access · 68
setting waiting time · 69
use waiting times · 71

timer, see counter
timing

changed by
debug mode · 74
timing mode · 77
trace mode · 77

operating modes
externally controlled

process · 89
general · 88
several time-controlled

processes · 88
single time-controlled

process · 88
optimal, several processes · 75
optimal, with one process · 76
optimize · 74
query information · 76

timing mode
additional processor time · 77
enable · 25
use · 74
window · 25

timing, see optimize
TLed · 38
TMeter · 38
TO (FOR …) · 144
tool bar · 9
TPar_FPar · 38
TPoti · 38
TProcess · 38
trace mode

additional processor time and
memory demand · 77

apply from within program · 79
enable · 28
TRACE_MODE_PAUSE · 218
TRACE_MODE_RESUME · 219
update information · 78
use · 77
window · 29

TRACE_MODE_PAUSE · 218
TRACE_MODE_RESUME · 219
TRANSMIT

Gold CAN · 332
TRANSMIT (L16 DIO1) · 313
transputer

settings · 16

Index

ADbasic 4.20, Manual April 2006

ADwin

A-36

trigonometric functions
ARCCOS · 110
ARCSIN · 111
ARCTAN · 112
COS · 117
SIN · 195
TAN · 217

type conversion
ASCII value into char · 116
automatical · 61
Float to Long (only data

type) · 115
float to string · 140
float to string (40 bit) · 142
Float toLong (data type only) · 114
long to string · 166
string to float · 220
string to long · 222

U
Uncomment Block · 12
Unmark Controlblock · 12
UNTIL (DO …) · 128
upper / lower case letters · 10
USB · 90
use trace mode · 77
user surface · 8
utility programs, see ADtools

V
VALF · 220
VALI · 222
value range · 46
variables

colour mark used · 35
display · 35
global · 47

copy a great number

· 170
name · 44

initialization by booting · 7
initialize · 43
local · 50

allocate memory area · 51
name length · 51

overview · 44
switch hex/decimal display · 35
see also system variable

Visual Basic · 91

W
wait

NOP · 172
P1_SLEEP: Pro I-Bus · 176
P2_SLEEP: Pro II-Bus · 178
processor T11:

CPU_SLEEP · 118
setting waiting time exactly · 69
SLEEP · 196

WAIT_EOC · 252
Window

source code information · 9
window

compiler options · 17
info window · 37
overview · 8
parameter · 35
process Options · 19
project · 34
status bar · 38

workload
definition · 88
display · 38
influence of number of

processes · 75
workspace size · 37
WRITE_FIFO · 344

Index

ADbasic 4.20, Manual April 2006

ADwin

A-37

X
XOR · 224

Index

ADbasic 4.20, Manual April 2006

ADwin

A-38

Instructions for ADwin-Gold systems

ADbasic 4.20, Manual April 2006

ADwin

A-39

A.8 Instructions for ADwin-Gold systems

Symbols
< = > (comparison)
+ (Addition)
+ (String-Addition)
- (Subtraktion)
* (multiplication)
/ (Division)
^ (power)
= (assignment)
: Colon
#DEFINE
#IF … THEN … {#ELSE …} #ENDIF
#INCLUDE
#…, preprocessor statement

A
ABSF
ABSI
ADC
ADC12, ADC14
AND
ARCCOS
ARCSIN
ARCTAN
ASC

C
CAN_MSG (CAN)
CAST_FLOATTOLONG
CAST_LONGTOFLOAT
CHECK_SHIFT_REG (CAN)
CHR
CLEAR_DIGOUT
CNT_CLEAR (CO1)
CNT_ENABLE (CO1)
CNT_GETSTATUS (CO1)

CNT_INPUTMODE (CO1)
CNT_LATCH (CO1)
CNT_MODE (CO1)
CNT_READ (CO1)
CNT_READFLATCH (CO1)
CNT_READLATCH (CO1)
CNT_RESETSTATUS (CO1)
CNT_SET (CO1)
CNT_SE_DIFF (CO1)
CONF_DIO
COS

D
DAC
DATA_n
DEC
DIGIN
DIGIN_WORD
DIGOUT_WORD
DIM
DO … UNTIL

E
END
EN_CAN_INTERRUPT (CAN)
EN_RECEIVE (CAN)
EN_TRANSMIT (CAN)
EVENT:
EXIT
EXP

F
FFT
FFT_CALC
FFT_INIT
FFT_MAG

Instructions for ADwin-Gold systems

ADbasic 4.20, Manual April 2006

ADwin

A-40

FFT_MAG_SCALE
FFT_PHASE
FFT_SCALE
FIFO
FIFO_CLEAR
FIFO_EMPTY
FIFO_FULL
FINISH:
FLOTOSTR
FOR … TO … {STEP …} NEXT
FUNCTION … ENDFUNCTION

G
GET_CAN_REG (CAN)
GET_RS (CAN)

I
IF … THEN … {ELSE …} ENDIF
IMPORT
INC
INIT:
INIT_CAN (CAN)

L
LIB_FUNCTION …
LIB_ENDFUNCTION

LIB_SUB … LIB_ENDSUB
LN
LNGTOSTR
LOG
LOWINIT:

N-P
NOP
NOT
OR
PEEK
POKE
PROCESSDELAY

PROZESSn_RUNNING

R
READADC
READADC12
READ_FIFO (CAN)
READ_MSG (CAN)
READ_TIMER
REM
RESET_EVENT
RS485_SEND (CAN)
RS_INIT (CAN)
RS_RESET (CAN)

S
SELECTCASE
SET_CAN_BAUDRATE (CAN)
SET_CAN_REG (CAN)
SET_DIGOUT
SET_MUX
SET_RS (CAN)
SHIFT_LEFT
SHIFT_RIGHT
SIN
SLEEP
SQRT
SSI_MODE (CAN)
SSI_READ (CAN)
SSI_SET_BITS (CAN)
SSI_SET_CLOCK (CAN)
SSI_START (CAN)
SSI_STATUS (CAN)
START_CONV
START_PROCESS
STOP_PROCESS
STRCOMP
String " "
STRLEFT
STRLEN
STRMID

Instructions for ADwin-Gold systems

ADbasic 4.20, Manual April 2006

ADwin

A-41

STRRIGHT
SUB … ENDSUB

T
TAN
TRACE_MODE_PAUSE
TRACE_MODE_RESUME
TRANSMIT (CAN)

V-Z
VALF
VALI
WAIT_EOC
WRITE_FIFO (CAN)
XOR

Instructions for ADwin-Gold systems

ADbasic 4.20, Manual April 2006

ADwin

A-42

Instructions for ADwin-light-16

ADbasic 4.20, Manual April 2006

ADwin

A-43

A.9 Instructions for ADwin-light-16 systems

Symbols
< = > (comparison)
+ (Addition)
+ (string addition)
- (subtraction)
* (multiplication)
/ (Division)
^ (power)
= (assignment)
: Colon
#DEFINE
#IF … THEN … {#ELSE …} #ENDIF
#INCLUDE
#…, preprocessor statement

A
ABSF
ABSI
ADC
AND
ARCCOS
ARCSIN
ARCTAN
ASC

C
CAN_MSG (DIO1 only)
CAST_FLOATTOLONG
CAST_LONGTOFLOAT
CHR
CLEAR_DIGOUT
CNT_CLEAR
CNT_CLEARENABLE (DIO1, DIO2)
CNT_ENABLE
CNT_GETSTATUS (DIO1, DIO2)
CNT_INPUTMODE (DIO1, DIO2)
CNT_LATCH
CNT_MODE (DIO1 only)

CNT_READ
CNT_READFLATCH (DIO1 only)
CNT_READLATCH
CNT_SET (DIO1 only)
CONF_DIO_E (DIO1 only)
COS

D
DAC
DATA_n
DEC
DIGIN
DIGIN_LONG_E (DIO2)
DIGIN_WORD
DIGIN_WORD1_E (DIO1 only)
DIGIN_WORD2_E (DIO1 only)
DIGOUT_LONG_E (DIO2)
DIGOUT_RESET1_E (DIO1 only)
DIGOUT_RESET2_E (DIO1 only)
DIGOUT_SET1_E (DIO1 only)
DIGOUT_SET2_E (DIO1 only)
DIGOUT_WORD
DIGOUT_WORD1_E (DIO1 only)
DIGOUT_WORD2_E (DIO1 only)
DIM
DO … UNTIL

E
END
EN_INTERRUPT (DIO1 only)
EN_RECEIVE (DIO1 only)
EN_TRANSMIT (DIO1 only)
EVENT:
EXIT
EXP

F
FFT
FFT_CALC

Instructions for ADwin-light-16

ADbasic 4.20, Manual April 2006

ADwin

A-44

FFT_INIT
FFT_MAG
FFT_MAG_SCALE
FFT_PHASE
FFT_SCALE
FIFO
FIFO_CLEAR
FIFO_EMPTY
FIFO_FULL
FINISH:
FLOTOSTR
FOR … TO … {STEP …} NEXT
FUNCTION … ENDFUNCTION

G
GET_CAN_REG (DIO1 only)

I
IF … THEN … {ELSE …} ENDIF
IMPORT
INC
INIT:
INIT_CAN (DIO1 only)

L
L16_MODE (Rev. B)
LIB_FUNCTION …
LIB_ENDFUNCTION

LIB_SUB … LIB_ENDSUB
LN
LNGTOSTR
LOG
LOWINIT:

N-P
NOP
NOT
OR
PEEK

POKE
PROCESSDELAY
PROZESSn_RUNNING

R
READADC
READ_MSG (DIO1 only)
READ_TIMER
REM
RESET_EVENT

S
SELECTCASE
SEQ_INIT (Rev. B)
SEQ_READ (Rev. B)
SET_CAN_BAUDRATE (DIO1 only)
SET_CAN_REG (DIO1 only)
SET_DIGOUT
SET_MUX
SHIFT_LEFT
SHIFT_RIGHT
SIN
SLEEP
SQRT
SSI_MODE (DIO2)
SSI_READ (DIO2)
SSI_SET_BITS (DIO2)
SSI_SET_CLOCK (DIO2)
SSI_START (DIO2)
SSI_STATUS (DIO2)
START_CONV
START_PROCESS
STOP_PROCESS
STRCOMP
String " "
STRLEFT
STRLEN
STRMID
STRRIGHT
SUB … ENDSUB

Instructions for ADwin-light-16

ADbasic 4.20, Manual April 2006

ADwin

A-45

T
TAN
TRACE_MODE_PAUSE
TRACE_MODE_RESUME
TRANSMIT (DIO1) (DIO1 only)

V-Z
VALF
VALI
WAIT_EOC
XOR

Instructions for ADwin-light-16

ADbasic 4.20, Manual April 2006

ADwin

A-46

Instructions for ADwin-Pro systems

ADbasic 4.20, Manual April 2006

ADwin

A-47

A.10 Instructions for ADwin-Pro systems
The following overview contains those instructions only , which are processed
in the Pro-CPU modules directly.

You find any other instructions for Pro modules in a separate manual "Pro-
Software" (for lack of space).

Symbols
< = > (comparison)
+ (Addition)
+ (String-Addition)
- (Subtraktion)
* (multiplication)
/ (Division)
^ (power)
= (assignment)
: Colon
#DEFINE
#IF … THEN … {#ELSE …} #ENDIF
#INCLUDE
#…, preprocessor statement

A
ABSF
ABSI
AND
ARCCOS
ARCSIN
ARCTAN
ASC

C
CAST_FLOATTOLONG
CAST_LONGTOFLOAT
CHR
COS
CPU_SLEEP

D
DATA_n
DEC
DIM
DO … UNTIL

E
END
EVENT:
EXIT
EXP

F
FFT
FFT_CALC
FFT_CALC_DM
FFT_CALC_DX
FFT_INIT
FFT_MAG
FFT_MAG_SCALE
FFT_PHASE
FFT_SCALE
FIFO
FIFO_CLEAR
FIFO_EMPTY
FIFO_FULL
FINISH:
FLO40TOSTR
FLOTOSTR
FOR … TO … {STEP …} NEXT
FUNCTION … ENDFUNCTION

Instructions for ADwin-Pro systems

ADbasic 4.20, Manual April 2006

ADwin

A-48

I
IF … THEN … {ELSE …} ENDIF
IMPORT
INC
INIT:

L
LIB_FUNCTION …
LIB_ENDFUNCTION

LIB_SUB … LIB_ENDSUB
LN
LNGTOSTR
LOG
LOWINIT:

M
MEMCPY

N-P
NOP
NOT
OR
PEEK
POKE
PROCESSDELAY
PROZESSn_RUNNING

R
READ_TIMER
REM
RESET_EVENT

RESTART_PROCESS

S
SELECTCASE
SHIFT_LEFT
SHIFT_RIGHT
SIN
SLEEP
P1_SLEEP
P2_SLEEP
SQRT
START_PROCESS
START_PROCESS_DELAYED
STOP_PROCESS
STRCOMP
String " "
STRLEFT
STRLEN
STRMID
STRRIGHT
SUB … ENDSUB

T
TAN
TRACE_MODE_PAUSE
TRACE_MODE_RESUME

V-Z
VALF
VALI
XOR

ADbasic 4.20, Manual April 2006

Instruction Index

A.11 Instructions in this manualSymbols
< = > (comparison) 105
+ (addition) 95
+ (string addition) 96
- (subtraction) 97
* (multiplication) 98
/ (division) 99
^ (power) 100
= (assignment) 104
: colon 103
" " (String) 204
#DEFINE 123
#IF … THEN … {#ELSE
…} #ENDIF 151

#INCLUDE 155
#…, preprocessor state-
ment 102

A-B
ABSF 106
ABSI 107
ADC 226
ADC12, ADC14 229
AND 108
ARCCOS 110
ARCSIN 111
ARCTAN 112
ASC 113

C
CAN_MSG

Gold CAN 318
L16 DIO1 300

CAST_FLOATTOLONG
114

CAST_LONGTOFLOAT
115

CHECK_SHIFT_REG 334
CHR 116
CLEAR_DIGOUT 232
CNT_CLEAR 257
CNT_CLEARENABLE259
CNT_ENABLE 261
CNT_GETSTATUS 263
CNT_INPUTMODE 266
CNT_LATCH 268
CNT_MODE 270
CNT_READ 272
CNT_READFLATCH 276
CNT_READLATCH 274

CNT_RESETSTATUS278
CNT_SET 282
CNT_SE_DIFF 280
CONF_DIO 234
CONF_DIO_E 284
COS 117
CPU_SLEEP 118

D
DAC 236
DATA_n 120
DEC 122
DIGIN 237
DIGIN_LONG_E 289
DIGIN_WORD 239
DIGIN_WORD1_E 285
DIGIN_WORD2_E 287
DIGOUT_LONG_E 299
DIGOUT_RESET1_E 291
DIGOUT_RESET2_E 293
DIGOUT_SET1_E 295
DIGOUT_SET2_E 296
DIGOUT_WORD 241
DIGOUT_WORD1_E 297
DIGOUT_WORD2_E 298
DIM 125
DO … UNTIL 128

E-F
END 129
EN_CAN_INTERRUPT

Gold CAN 320
EN_INTERRUPT

L16 DIO1 302
EN_RECEIVE

Gold CAN 321
L16 DIO1 303

EN_TRANSMIT
Gold CAN 323
L16 DIO1 305

EVENT: 130
EXIT 131
EXP 132
FFT 369
FFT_CALC 379
FFT_CALC_DM 381
FFT_CALC_DX 383
FFT_INIT 378
FFT_MAG 373
FFT_MAG_SCALE 377

FFT_PHASE 375
FFT_SCALE 371
FIFO 133
FIFO_CLEAR 135
FIFO_EMPTY 137
FIFO_FULL 138
FINISH: 139
FLO40TOSTR 142
FLOTOSTR 140
FOR … TO … {STEP …}
NEXT 144

FUNCTION … END-
FUNCTION 146

G-J
GET_CAN_REG

Gold CAN 325
L16 DIO1 306

GET_RS 336
IF … THEN … {ELSE …}
ENDIF 149

IMPORT 153
INC 154
INIT: 156
INIT_CAN

Gold CAN 326
L16 DIO1 307

K-L
L16_MODE 360
LIB_FUNCTION … LIB_
ENDFUNCTION 157

LIB_SUB … LIB_END-
SUB 161

LN 165
LNGTOSTR 166
LOG 168
LOWINIT: 169

M-R
NOP 172
NOT 173
OR 174
P1_SLEEP 176
P2_SLEEP 178
PEEK 180
POKE 181
PROCESSDELAY 182
PROZESSn_RUNNING
185

READADC 243

ADbasic 4.20, Manual April 2006

READADC12 244
READ_FIFO 337
READ_MSG

Gold CAN 327
L16 DIO1 308

READ_TIMER 186
REM 187
RESET_EVENT 188
RESTART_PROCESS
189

RS485_SEND 342
RS_INIT 338
RS_RESET 341

S
SELECTCASE 190
SEQ_INIT 361
SEQ_READ 364
SET_CAN_BAUDRATE

Gold CAN 329
L16 DIO1 310

SET_CAN_REG
Gold CAN 331
L16 DIO1 312

SET_DIGOUT 246
SET_MUX 248
SET_RS 343
SHIFT_LEFT 193
SHIFT_RIGHT 194
SIN 195
SLEEP 196
SQRT 198
SSI_MODE 346
SSI_READ 348
SSI_SET_BITS 350
SSI_SET_CLOCK 352
SSI_START 354
SSI_STATUS 356
START_CONV 250
START_PROCESS 199
STOP_PROCESS 202
" " (String) 204
STRCOMP 206

STRLEFT 207
STRLEN 209
STRMID 210
STRRIGHT 212
SUB … ENDSUB 214

T-Z
TAN 217
TRACE_MODE_PAUSE
218

TRACE_MODE_RE-
SUME 219

TRANSMIT
Gold CAN 332
L16 DIO1 313

VALF 220
VALI 222
WAIT_EOC 252
WRITE_FIFO 344
XOR 224

	ADbasic
	Table of contents
	Preface
	Conventions
	1 Introduction
	2 Development Environment
	2.1 Basic Steps
	2.1.1 Start the Development Environment
	2.1.2 Load the ADwin Operating System
	2.1.3 Basic Elements of the Development Environment

	2.2 Working with Source Codes and Projects
	2.2.1 Structured Display of Source Code
	2.2.2 Context Menu in the Source Code Window
	2.2.3 Managing Projects

	2.3 Menus and Dialog Boxes
	2.3.1 File Menu
	2.3.2 Edit Menu
	2.3.3 View Menu
	2.3.4 Build Menu
	2.3.5 Options Menu
	Compiler Options Dialog Window
	Process Options Dialog Window
	Settings Dialog Window

	2.3.6 Debug Menu
	Enable Timing Analyzer Option
	Show timing information Menu Item
	Trace Setup ...… Menu Item
	Show Trace Menu Item
	Debug mode Option
	Show Debug Window Option

	2.3.7 Tools Menu
	2.3.8 Window Menu
	2.3.9 Help Menu
	2.3.10 Project Window
	2.3.11 The Parameter Window
	2.3.12 The Process Window
	2.3.13 Info window
	2.3.14 Status Bar

	2.4 ADtools

	3 Programming Processes
	3.1 Program Design
	3.1.1 The Program Sections
	3.1.2 Other Program Parts

	3.2 Variables and Arrays
	3.2.1 Overview
	3.2.2 Data Structures
	3.2.3 Data Types
	3.2.4 Entering Numerical Values
	3.2.5 Global Variables (Parameters)
	3.2.6 Global Arrays
	3.2.7 System Variables
	3.2.8 Local Variables and Arrays

	3.3 Variables and Arrays - Details
	3.3.1 Variables and Arrays in the Data Memory
	3.3.2 Memory Areas
	3.3.3 2-dimensional Arrays
	3.3.4 The Data Structure FIFO
	3.3.5 Strings
	Normal Assignment
	Character Assignment with the Escape Sequence
	String Assignments that are NOT Recommended

	3.4 Expressions
	3.4.1 Evaluation of Operators
	3.4.2 Type Conversion

	3.5 Decision structures, Loops and Modules
	3.5.1 Subroutine and Function Macros
	3.5.2 Include-Files
	3.5.3 Libraries

	4 Optimizing Processes
	4.1 Measuring the Processing Time
	4.2 Useful Information
	4.2.1 Accessing Hardware Addresses
	4.2.2 Constants instead of Variables
	4.2.3 Faster Measurement Function
	4.2.4 Setting Waiting Times Exactly
	4.2.5 Using Waiting Times
	4.2.6 Optimization with Processor T11

	4.3 Debugging and Analysis
	4.3.1 Finding Run-time Errors (Debug Mode)
	4.3.2 Check the Timing Characteristics (Timing Mode)
	Checking Number and Priority of Processes
	Optimal Timing Characteristics of Processes

	4.3.3 Track the Process Flow (Trace Mode)

	5 Processes in the ADwin Operating System
	5.1 Process Management
	5.1.1 Types of Processes
	5.1.2 Processes with High-Priority
	5.1.3 Processes with Low-Priority
	5.1.4 Communication Process

	5.2 Time Characteristics of Processes
	5.2.1 Processdelay
	5.2.2 Precise Timing of Process Cycles
	5.2.3 Low-Priority Processes with T11
	5.2.4 Workload of the ADwin System
	5.2.5 Different Operating Modes in the Operating System

	5.3 Communication
	5.3.1 Data Exchange between Processes
	5.3.2 Communication between Computer and ADwin System
	5.3.3 The Device Number
	5.3.4 Communication with Development Environments

	6 Instruction Reference
	6.1 Instruction Syntax
	6.2 Instructions for L16, Gold, Pro
	+ Addition
	+ String Addition
	- Subtraction
	* Multiplication
	/ Division
	^ Power
	#…, Preprocessor Statement
	: Colon
	=, Assignment
	< = > Comparison
	ABSF
	ABSI
	AND
	ARCCOS
	ARCSIN
	ARCTAN
	ASC
	CAST_FLOATTOLONG
	CAST_LONGTOFLOAT
	CHR
	COS
	CPU_SLEEP
	DATA_n
	DEC
	#DEFINE
	DIM
	DO … UNTIL
	END
	EVENT:
	EXIT
	EXP
	FIFO
	FIFO_CLEAR
	FIFO_EMPTY
	FIFO_FULL
	FINISH:
	FLOTOSTR
	FLO40TOSTR
	FOR … TO … {STEP …} NEXT
	FUNCTION … ENDFUNCTION
	IF … THEN … {ELSE …} ENDIF
	#IF … THEN … {#ELSE … } #ENDIF
	IMPORT
	INC
	#INCLUDE
	INIT:
	LIB_FUNCTION … LIB_ENDFUNCTION
	LIB_SUB … LIB_ENDSUB
	LN
	LNGTOSTR
	LOG
	LOWINIT:
	MEMCPY
	NOP
	NOT
	OR
	P1_SLEEP
	P2_SLEEP
	PEEK
	POKE
	PROCESSDELAY
	PROZESSn_RUNNING
	READ_TIMER
	REM, '
	RESET_EVENT
	RESTART_PROCESS
	SELECTCASE
	SHIFT_LEFT
	SHIFT_RIGHT
	SIN
	SLEEP
	SQRT
	START_PROCESS
	START_PROCESS_DELAYED
	STOP_PROCESS
	STRING ""
	STRCOMP
	STRLEFT
	STRLEN
	STRMID
	STRRIGHT
	SUB … ENDSUB
	TAN
	TRACE_MODE_PAUSE
	TRACE_MODE_RESUME
	VALF
	VALI
	XOR

	6.3 ADwin-Gold and ADwin-light-16
	ADC
	ADC12
	CLEAR_DIGOUT
	CONF_DIO
	DAC
	DIGIN
	DIGIN_WORD
	DIGOUT_WORD
	READADC
	READADC12
	SET_DIGOUT
	SET_MUX
	START_CONV
	WAIT_EOC

	6.4 ADwin-light-16 DIO1/2 / ADwin-Gold CO1
	CNT_CLEAR
	CNT_CLEARENABLE
	CNT_ENABLE
	CNT_GETSTATUS
	CNT_INPUTMODE
	CNT_LATCH
	CNT_MODE
	CNT_READ
	CNT_READLATCH
	CNT_READFLATCH
	CNT_RESETSTATUS
	CNT_SE_DIFF
	CNT_SET
	CONF_DIO_E
	DIGIN_WORD1_E
	DIGIN_WORD2_E
	DIGIN_LONG_E
	DIGOUT_RESET1_E
	DIGOUT_RESET2_E
	DIGOUT_SET1_E
	DIGOUT_SET2_E
	DIGOUT_WORD1_E
	DIGOUT_WORD2_E
	DIGOUT_LONG_E
	CAN_MSG
	EN_INTERRUPT
	EN_RECEIVE
	EN_TRANSMIT
	GET_CAN_REG
	INIT_CAN
	READ_MSG
	SET_CAN_BAUDRATE
	SET_CAN_REG
	TRANSMIT

	6.5 ADwin-Gold-CAN
	CAN_MSG
	EN_CAN_INTERRUPT
	EN_RECEIVE
	EN_TRANSMIT
	GET_CAN_REG
	INIT_CAN
	READ_MSG
	SET_CAN_BAUDRATE
	SET_CAN_REG
	TRANSMIT
	CHECK_SHIFT_REG
	GET_RS
	READ_FIFO
	RS_INIT
	RS_RESET
	RS485_SEND
	SET_RS
	WRITE_FIFO
	SSI_MODE
	SSI_READ
	SSI_SET_BITS
	SSI_SET_CLOCK
	SSI_START
	SSI_STATUS

	6.6 ADwin-light-16 Rev. B
	L16_MODE
	SEQ_INIT
	SEQ_READ

	6.7 FFT Library
	FFT
	FFT_SCALE
	FFT_MAG
	FFT_PHASE
	FFT_MAG_SCALE
	FFT_INIT
	FFT_CALC
	FFT_CALC_DM
	FFT_CALC_DX

	7 How to Solve Problems?
	Appendicies
	A.1 Short-Cuts in ADbasic
	A.2 ASCII-Character Set
	A.3 Baud rates for the CAN Bus
	A.4 License Agreement
	A.5 Command Line Calling
	A.5.1 Syntax
	A.5.2 Notes
	A.5.3 Examples
	A.5.4 Special Settings and Messages

	A.6 Obsolete Program Parts
	A.6.1 Dialog Window Process Options
	A.6.2 The Menu Item Connect

	A.7 Index
	A.8 Instructions for ADwin-Gold systems
	A.9 Instructions for ADwin-light-16 systems
	A.10 Instructions for ADwin-Pro systems
	Instructions in this manual

