
TiCoBasic
Real-Time Development Tool for

TiCo Processors

TiCoBasic Version 1.0

June 2010

License Key: .

ADwin – the fastest real-time systems under Windows

TiCoBasic 1.0, Manual June 2010

ADwin

II

For any questions, please don’t hesitate to contact us:

Hotline: +49 6251 96320
Fax: +49 6251 5 68 19
E-Mail: info@ADwin.de
Internet www.ADwin.de

Jäger Computergesteuerte
Messtechnik GmbH
Rheinstraße 2-4
D-64653 Lorsch
Germany

Table of contents

TiCoBasic 1.0, Manual June 2010

ADwin

III

Table of contents

 Table of contents .III

1 Conventions. 2

2 Introduction . 3

3 TiCoBasic for ADbasic users . 5

4 Development Environment . 9
4.1 Basic Steps . 9
4.1.1 Starting the Development Environment 9
4.1.2 Check or change TiCoBasic licenses 10
4.1.3 Initializing Communication . 12
4.1.4 Basic Elements of the Development Environment 13

4.2 Creating source code. 16
4.2.1 Calling online help . 16
4.2.2 Context menu in source code window 17
4.2.3 Editor bar . 19

4.3 Formatting source code . 21
4.3.1 Syntax highlighting . 21
4.3.2 Smart formatting . 21
4.3.3 Indenting text lines . 23
4.3.4 Changing lines into comment . 23
4.3.5 Folding text ranges . 23

4.4 Searching and replacing . 25
4.4.1 Finding text quickly . 25
4.4.2 Finding and replacing text . 26

Examples - Finding Text . 29
Examples - Replacing Text . 30

4.4.3 Regular expression . 31
4.4.4 Marking control blocks . 33
4.4.5 Using bookmarks . 34
4.4.6 Jump to a program line . 35

Table of contents

TiCoBasic 1.0, Manual June 2010

ADwin

IV

4.4.7 Jumping to declaration of instruction or variable 35
4.5 Writing programs with ease . 35
4.5.1 Autocomplete for instruction or variable 36
4.5.2 Inserting code snippets . 37
4.5.3 Displaying instruction parameters 38
4.5.4 Displaying declaration of instruction or variable 38
4.5.5 Displaying declarations of a file 39
4.5.6 Displaying used global variables and arrays 40

4.6 Transferring a TiCo binary file to TiCo processor. 41
4.6.1 Transferring a TiCo binary file . 41
4.6.2 Programming the TiCo bootloader 41

4.7 Managing Projects . 42
4.8 Menus. 43
4.8.1 File Menu . 45
4.8.2 Edit Menu . 46
4.8.3 View Menu . 46
4.8.4 Build Menu . 47
4.8.5 Options Menu . 48

Compiler Options dialog box . 48
Process Options dialog box. 50
Settings dialog box . 54

4.8.6 Tools Menu . 58
4.8.7 Window Menu . 59
4.8.8 Help Menu . 59

4.9 Windows . 61
4.9.1 Toolbox . 61
4.9.2 Project Window . 61
4.9.3 Parameter Window . 63
4.9.4 Process Window . 64
4.9.5 Register window . 66
4.9.6 Status Bar . 67

4.10 Info range . 68
4.10.1 Info window . 68
4.10.2 ToDo List . 70
4.10.3 Global Variables . 71
4.10.4 Declarations . 72

4.11 ADtools . 74

Table of contents

TiCoBasic 1.0, Manual June 2010

ADwin

V

5 Programming Processes . 76
5.1 Program Design . 76
5.1.1 The Program Sections . 78
5.1.2 User defined instructions and variables 78

5.2 Variables and Arrays . 80
5.2.1 Overview . 80
5.2.2 Data Structures . 80
5.2.3 Data Types . 82
5.2.4 Entering Numerical Values . 82
5.2.5 Global Variables (Parameters) . 82
5.2.6 Global Arrays . 83
5.2.7 System Variables . 85
5.2.8 Local Variables and Arrays . 85

5.3 Variables and Arrays – Details. 86
5.3.1 Variables and Arrays in the Data Memory 86
5.3.2 Memory Areas . 87
5.3.3 The Data structure Ringbuffer . 89

5.4 Expressions . 97
5.4.1 Evaluation of Operators . 97

5.5 Selection structures, Loops and Modules 99
5.5.1 Subroutine and Function Macros 99
5.5.2 Include-Files . 100
5.5.3 Libraries . 100

6 Optimizing Processes . 102
6.1 Measuring the Processing Time . 102
6.2 Useful Information . 103
6.2.1 Accessing Hardware Addresses 103
6.2.2 Constants instead of Variables 104
6.2.3 Faster Measurement Function 104
6.2.4 Setting Waiting Times Exactly 105
6.2.5 Using Waiting Times . 105
6.2.6 Optimization of memory access 107

7 Processes in the ADwin System 108
7.1 Process Management . 110
7.1.1 Timer controlled process . 110

Table of contents

TiCoBasic 1.0, Manual June 2010

ADwin

VI

7.1.2 Externally controlled process . 111
7.1.3 Process without trigger (None) 112

7.2 Time Characteristics of Processes113
7.2.1 Processdelay .113
7.2.2 Workload of the TiCo processor 114
7.2.3 Different Operating Modes in the Operating System . . .114

7.3 Communication. .116
7.3.1 Data Exchange between Processes 116
7.3.2 Communication with the TiCo processor116
7.3.3 Communication between ADwin CPU and TiCo Processor
118
7.3.4 The Device Number .118

8 Instruction Reference .119
8.1 Instruction Syntax .119
8.2 Basic Instructions TiCoBasic . 120
8.3 Gold II: TiCo processor. 206
8.4 Pro II: TiCo Processor . 254

9 How to Solve Problems? . 302

 Appendix. .A-1
A.1 Short-Cuts in TiCoBasic. .A-1
A.2 ASCII-Character Set .A-4
A.3 License Agreement .A-5
A.4 Command Line Calling. .A-9
A.5 Index .A-17
A.6 Instructions in this manual .A-31

TiCoBasic 1.0, Manual June 2010

ADwin

1

Dear Reader,

TiCoBasic is the programming tool for TiCo processors in your ADwin system
that allows you to create special measurement, open-loop, or closed-loop con-
trol application. The purpose of this manual is to: introduce you to the basics
of programming real-time processes; and act as a reference manual. the use
of the online help with F1 is recommended.

The development environment as well as the programming language TiCo-
Basic is closely related to ADbasic; the change is easy. Please note chapter 3
where differences between TiCoBasic and ADbasic are listed.

First-time users of a TiCo processor and TiCoBasic are recommended to read
chapters 1 and 5, in order to get easily into the subject. This manual assumes
that the user has some programming experience with Basic or any other lan-
guage.

Chapter 4 describes the development environment and is recommended for
all users.

If you have any suggestions on how to improve our documentation, don’t hes-
itate to contact us. Your inputs will be greatly appreciated and will help us pro-
vide a system which everyone can easily understand and operate.

We wish you great success upon programming.

For further questions, please, call our support hot-line (see address in the
manual’s cover page).

Conventions

TiCoBasic 1.0, Manual June 2010

ADw

2

1 Conventions
In this manual the following typographical conventions and icons are
used:
This "attention" icon is located next to paragraphs with important infor-
mation for correct function and error-free operation.
A note provides topics of interest and advice for an efficient operation.
The "information" icon refers to additional information in the manual or
other sources (documentation, data sheets, literature etc.).
The light bulb icon denotes examples showing practicable solutions.
The Courier font-type is used for text displayed on screen, e.g in
windows or menus, or input via the keyboard. The names of menus
and submenus are shown similarly: Menu submenu.
File names and path names are additionally emphasized as follows
<path\xx.ext>.
Source code elements such as Instructions, variables,
comments and any other text are displayed like the development
environment editor does.
Key names are set in square brackets and in small capitals such as
[RETURN] or [CTRL].
The bits of a data word (here 16-bit) are numbered through as follows:

Numbers not indicated in decimal notation have an identifying letter
added, e.g. for the number 17:

– Hexadecimal notation: 11h

– Binary notation: 10001b

Bit no. 15 14 13 … 01 00
Value of the bit 215 214 213 … 21=2 20=1

Name MSB - - - - LSB

Introduction

TiCoBasic 1.0, Manual June 2010

ADwin

3

2 Introduction
The ADwin real-time system is responsible for all time-critical tasks in fast
dynamic test stands and industrial production facilities. For this task, the TiCo
processor–being integrated into the real-time system–is set where precise,
fine-tuning timing is required.
Alike programming the ADwin real-time system with ADbasic, you use the lan-
guage and development environment TiCoBasic to program the TiCo proces-
sor.
To hit the target of an immediate and efficient
start of programming, we first of all would like
to shortly explain the concept of the ADwin
system with the integrated TiCo processor:
Each ADwin system has a central processing
unit, the ADwin CPU, which executes all time-
critical tasks in real time. In addition, an ADwin
system (Pro II and Gold II) can contain one or
more TiCo processors. Analog and digital
inputs and outputs as well as add-ons like
counters and bus interfaces are the connec-
tion to the test stand.
Inside the ADwin system the TiCo processor
(Timing Controller) runs independently as
freely programmable co-processor which has
access to all inputs and outputs and fulfills
special tasks as filtering, data conversion,
communication (SPI), signal generation, con-
trol etc. According to the target the TiCo pro-
cessor can support the ADwin CPU’s task e.g.
by preprocessing; or it undertakes a complete
task on its own.
TheTiCo processor is optimized for fast reac-
tion and für schnelle Reaktionszeiten and
exact timing in a nanosecond time grid.
Communication between PC and ADwin CPU
is completely set up via Ethernet. Instead, the
TiCo processor is implemented as softcore in the FPGA, where to the PC has
no direct access. The data exchange between PC and TiCo processor will
therefore always need the ADwin CPU to forward data.

Introduction

TiCoBasic 1.0, Manual June 2010

ADwin

4

The TiCo processor is programmed with the real-time development environ-
ment TiCoBasic, which enables easy construction of time-critical real-time
processes. TiCoBasic is an integrated development environment under Win-
dows. The familiar command syntax–very similar to ADbasic–allows access-
ing the inputs and outputs, controlling real-time processes, and preparing the
data exchange with the ADwin CPU. The chapter 5 explains the design of
TiCoBasic programs, chapter 7 additionally the action of processes in the
operating system.
Mit nur wenigen Programmzeilen können Sie beispielsweise:

– Messgrößen bis zu Abtastfrequenzen von 800kHz erfassen

– schnelle digitale Regler mit Abtastraten bis zu 400kHz entwickeln

– gleichzeitig analoge Signale erzeugen und messen, z.B. für dyna-
mische Kennlinien-Messungen

Die Entwicklungsumgebung TiCoBasic unterstützt Sie bei der Umsetzung
Ihrer Aufgabe in einen Prozess. Zunächst erstellen Sie den Quelltext in einer
erweiterten Basic-Syntax; mit den Befehlen und Funktionen können Sie die
Hardware Ihres ADwin systems komfortabel programmieren. In chapter 5 ist
erklärt, wie Sie Programme aufbauen.
Mit dem integrierten Compiler erzeugen Sie aus dem Quelltext lauffähigen
Binärcode, der als Prozess auf das ADwin system übertragen und getestet
wird. TiCoBasic bietet Ihnen auch die Hilfsmittel, mit denen Sie Ihre Prozesse
beobachten, Fehler suchen und die Programme optimieren können (siehe
chapter 6).
Sobald die Echtzeit-Prozesse zu Ihrer Zufriedenheit laufen, ist Ihre Arbeit mit
TiCoBasic bereits beendet.
Sie können die Prozesse und Prozessdaten des TiCo processors von der
ADwin CPU aus steuern und beobachten, d.h. Daten lesen und schreiben
sowie Prozesse starten, steuern und stoppen.
Obwohl der TiCo processor autark arbeitet, können Sie aus von der ADwin
CPU jederzeit auf globale Variablen und Felder zugreifen, ohne zeitkritische
Prozesse zu verzögern. Über die globalen Variablen und Felder können alle
Prozesse untereinander oder mit der ADwin CPU schnell Daten austauschen.
Die klare Trennung von Echtzeit-Prozessen im TiCo processor und im ADwin
system einerseits und der Bedienoberfläche im PC andererseits garantiert
Ihnen höchste Betriebssicherheit und zeitlich nachvollziehbare Abläufe.

TiCoBasic for ADbasic users

TiCoBasic 1.0, Manual June 2010

ADwin

5

3 TiCoBasic for ADbasic users
The use of TiCoBasic is just like ADbasic 5: Most functions and work flows are
be present in familiar way, menu entries and buttons remain at the usual spots.
Thus, you will have a good start into TiCoBasic.

On the other hand, there are some important differences which you learn to
know here. The TiCo processor is not simply a second ADwin CPU in small
format, but is optimized for fast reaction and exact timing in a nanosecond time
grid.

Communication with the TiCo processor

The TiCo processor is implemented as soft-
core in the FPGA, where to the PC has no
direct connection. The data exchange
between PC and TiCo processor will therefore
always need the ADwin CPU to forward data.

Please note:

– The main settings under Options >
Compiler select the TiCo processor and
the ADwin CPU as well as the ADwin sys-
tem and the Device No.

– Initialize instead of Boot: The button ini-
tializes the selected ADwin CPU for the
data exchange with the TiCo processor.

The TiCo processor itself is initialized only,
when a process is compiled . In this case all global variables are set
to 0 and the compiled process starts automatically.

– The TiCo processor will continue running, even if the ADwin CPU is
currently not available, e.g. after being booted. In order to reinstall data
exchange, you just have to initialize the ADwin CPU again with the but-
ton .

TiCo processes as usual

Generally, TiCo processes are programmed as ADbasic processes.

– The following number and types of processes are available:

TiCoBasic for ADbasic users

TiCoBasic 1.0, Manual June 2010

ADwin

6

– Please note: Only a single process with high priority should be run-
ning.ADwin CPU There a re 3 program sections: INIT:, Event: and
Finish:, all running with the same priority. There is no section
LOWINIT:.

– The processor clock cycle is 20ns.

Reduced set of instructions

– The TiCo processor uses data type Long only; the data type Float is
not available.

The basic set of instructions is listed below. In addition, there are in-
structions to access inputs, outputs and interfaces of the ADwin hard-
ware, which are described in a separate document.

Process type High
priority

Low
priority

timer-controlled 1 1

externally controlled 1 –

without trigger 1 –

Standard INIT:, EVENT:, FINISH:, REM, : (colon)
Variables DIM, PAR_1…PAR_80, DATA_1…DATA_16

Ringbuffer_For_Read
Ringbuffer_For_Write
Local arrays

Mathematics,
operators

+ - * /
INC, DEC, SHIFT_LEFT, SHIFT_RIGHT
ABSI, NOT, OR, XOR, AND

Comparison = < > OR, AND
Structure FOR…NEXT, DO…UNTIL

IF…THEN, SELECTCASE
FUNCTION, SUB, Lib_FUNCTION, Lib_SUB

Processes,
system variables

END
Processdelay, PROCESS_RUNNING, NWTIME

Pre-Compiler #IF…#ENDIF, #DEFINE, #INCLUDE
Timing NOP, NOPS, SLEEP, READ_TIMER
Memory access IN, OUT

TiCoBasic for ADbasic users

TiCoBasic 1.0, Manual June 2010

ADwin

7

Float calcuations like integer powers, trigonometric functions and divi-
sion with rest are not available.

– Up to 16 global arrays DATA_1…DATA_16 can be declared (in
ADbasic up to DATA_200). The data structure FIFO is not available.

– There are the new data structures Ringbuffer_For_Read and
Ringbuffer_For_Write.

Ring buffers are used for fast data transfer; the possible applications
are mutually exclusive:

• The TiCo process exchanges data with external DRAM in both
directions, reading and writing via the same ringbuffer array.

• ADbasic processes (on the ADwin CPU) and TiCoBasic processes
exchange data via a ringbuffer. One ringbuffer is required for each
direction of data exchange.

• Several processes on the TiCo processor exchange data with each
other via ringbuffer. Two ringbuffers are required, one for reading
and one for writing.

Using the data structure Ringbuffer is not an easy task.
Wrongly implemented, there may be errors which can hardly be
tracked. The use of the data structure Ringbuffer is therefore

reserved to experienced users of ADbasic and TiCoBasic.

– The instruction EXIT is replaced by END.

– The instructions In and Out replace Peek and Poke.

ADbasic instructions for control of TiCo

The ADwin CPU can directly access data of the TiCo processor. There are
some ADbasic instructions at hand for data exchange and process control,
see chapter 8.3 and 7.2.

TiCoBasic for ADbasic users

TiCoBasic 1.0, Manual June 2010

ADwin

8

Deviations in the development environment

– Actually, the development environment TiCoBasic provides neither
debug nor timing mode, which are available in ADbasic.

– If several files belong to a project, they will be always compiled
together. Compiling a single file is only possible, if it is not part of a
project.

– In future, the use of assembler instructions will be possible in TiCo-
Basic. Therefore, the environment contains a Register window, which
shows register values of the TiCo processor.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

9

4 Development Environment
Programs for TiCo processors are quickly and easily developed with
the TiCoBasic development environment. The TiCoBasic compiler
works with an enlarged BASIC syntax like ADbasic, but with a smaller
set of instructions.
After having completed an TiCoBasic program, it is compiled to a
binary file and transferred–indirectly via ADwin CPU–to the TiCo pro-
cessor. In bootloader mode, the program will be started and executed
automatically and independently from the development environment.

4.1 Basic Steps

4.1.1 Starting the Development Environment
To start the TiCoBasic development environment, do as follows:

1. Start the development environment by selecting Programs
ADwin TiCoBasic from the Windows start menu.

The first start may last a few seconds until the environment
shows up, since the Windows package .Net Framework is start-
ed, too.

The environment will appear with the Windows-specific ele-
ments such as windows, menu bar and tool bar.

2. Upon first start-up, you will be prompted to enter the License
key. The License key is to be found on the cover sheet of this
TiCoBasic manual.

Without valid License key, ADbasic will operate in demo mode.
In this mode the development environment only works for dem-
onstration, test or evaluation purposes. For example, you can-
not create binary files.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

10

Find more information about the TiCoBasic l icense in
chapter 4.1.2 on page 10.

3. Enter the settings of the TiCo processor to be programmed next
in the menu Options\Compiler:

• the type of ADwin system and ADwin CPU
• the device no.
• for a Pro II system: the module with the TiCo processor.

The development environment saves the settings so that upon
a new start of TiCoBasic they will not need to be entered again,
unless a different TiCo processor is used.

4.1.2 Check or change TiCoBasic licenses
In order to check or change the TiCoBasic license key, do as follows:

1. Select the menu entry Help About.

The window About TiCoBasic opens which displays the ver-
sion of the development environment and the current Licens-
es (list of available licenses see below).

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

11

2. In order to enter or change
the license key click the
button Change License.

The dialog window Li-
cense key opens.

3. Enter your license key.

The License key is to be
found on the cover sheet of this TiCoBasic manual.

In TiCoBasic, the following licenses are available:

– No license (demo mode)

Without valid License key, TiCoBasic will operate in demo
mode. In this mode the development environment only works
for demonstration, test or evaluation purposes. For example,
you cannot create binary files.

– Evaluation license (expiring by date)

The license enables all functions of the development environ-
ment for a fixed period. Afterwards, TiCoBasic will run in demo
mode again (see above).

– Non-expiring license of the Licensee

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

12

The following licenses can be enabled:
• ADbasic 5, works with all ADwin processors
• ADbasic 3.0, works with ADwin processors up to version T9
• ADbasic 2.0, works with ADwin processors up to version T8
• TiCoBasic
• ADlab (Matlab driver for ADwin)

The TiCoBasic and ADlab licenses can be combined with one
of the ADbasic licenses.

The license conditions for TiCoBasic are described in the Li-
cense Agreement (annex see A-5).

4.1.3 Initializing Communication
The TiCo processor is implemented as
softcore in the FPGA, to which the PC
has no direct connection. The data
exchange between PC and TiCo proces-
sor will therefore always use the ADwin
CPU as interstation.
The selected ADwin CPU is initialized for
data exchange with the TiCo processor
by clicking the button (= initialize). This
will setup a process in the ADwin CPU,
which organizes the data flow between
PC and TiCo processor.
The TiCo processor itself is only initiali-
zed after compiling a process, with the
button . Thus, the contents of the pro-
gram and data memories will be lost, all global TiCo parameters set to
the value 0 and the compiled process starts automatically. If there is
no TiCo processor available an error message is launched.
The TiCo processor will continue running, even while the ADwin CPU
is not available, e.g. because of booting. In order to restore the data
exchange, it will suffice to initialize the ADwin CPU with the
(Initialize) button.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

13

You can also stop and reset the TiCo processor with the button
(Reset). Doing so, you will loose all values in the global TiCo varia-
bles and the process is deleted.

4.1.4 Basic Elements of the Development Environment
The development environment consists of several bars and windows
(see fig. 1); the window dimensions may be individually adjusted.
Online help for a window or the currently marked key word is called
with the key [F1]. The button opens the help index.

Fig. 1 – Elements of the TiCoBasic development environment

The functions of the development environment are called using:

– The tool bar and the editor bar (see fig. 2).

– The context menus of the windows (right mouse button).

– The menu bar.

– The Short-Cuts in TiCoBasic (see annex).

Project win-
Tool bar

Title bar

Parame-
ter

Menu bar

Info range

Source code

Processde-

Status bar

Editor bar

Source
code status

ADtools

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

14

While using a function, the function’s description is shown at the left of
the status bar.

Fig. 2 – The tool bar

An instruction is selected when a menu entry is clicked with the left
mouse button, or when the keys [ALT] + [FIRST LETTER] of the corre-
sponding menu, are pressed. Some instructions have short-cuts (see
Appendix A.1), which are displayed in the menus.
Each process is edited in its own source code window. Several win-
dows may be opened at a time; the sizes of the windows can be indi-
vidually adjusted. More information about the relevant source code
window is displayed at various other locations:

– The title bar shows the names of the open source code window.

– The source code status bar displays the process options that
have been set.

A right-click on the bar opens the Process Options dialog box.

– The global parameters used in the source code project are high-
lighted in the Parameter Window (see chapter 4.9.3, page 63)

New file Save file

Open file

Start
process

Stop
process

Compile

Print file

Print
preview

Update
system

information

Initialize
ADwin

Open
project Help

New
project

Save
project

files

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

15

by clicking Scan Global Variables ; see Displaying used
global variables and arrays on page 40.

– The info range at the bottom displays information in several win-
dows:

• Info window: The compiler’s error messages (highlighted
red) and warnings (see chapter 4.10.1 on page 68).

• ToDo List: A simple ToDo list from comment lines (see
chapter 4.10.2 on page 70).

• Search results from a search in all files of a project (see
chapter 4.4.2 on page 26).

Please note: Editing in the source code window is supported by sev-
eral tools (see Creating source code on page 16).
The Project Window shows the name of an opened project and the
corresponding files; without project the window remains empty.
Some data of the TiCo processor are continuously read and displayed
(only when PC communication to the TiCo processor is established):

– Processdelay (process cycle time) of the process which has the
number as the currently edited source code. Displayed at the
right side of the toolbar.

– The values of the global variables in the Parameter Window; a
change to one of these values will immediately be transferred to
the ADwin system.

– The status of running processes in the Process Window
(page 64).

– The register values of the TiCo processor in the Register win-
dow (page 66).

– Memory usage information in the Status Bar (see chapter 4.9.6
on page 67).

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

16

4.2 Creating source code
Open a new window for each process source code (using File
New).
If you use several files for your task, we recommend to manage the
files in a project file (see page 42: Managing Projects).
Editor and TiCoBasic compiler do not bother about upper or lower
case letters. However, in the examples throughout this manual-for the
purpose of better reading-a consistent notation is used.
Calling online help (see below) is a good idea when you need a guide
for editing or programming.
The source code editor provides several useful tools. Call the tools via
Context menu in source code window (page 17) or via Editor bar
(page 19):
Numerical values may be entered into source code in hexadecimal,
binary and exponential notation, as well as in decimal (see also
chapter 5.2.4).
Find more editor functions here:

– Formatting source code, page 21

– Searching and replacing, page 25

– Writing programs with ease, page 35

4.2.1 Calling online help
The Help Menu (page 59) enables to call selected help pages, e.g.
table of contents or sorted instruction lists.
Using [F1] opens a help page according to the currently opened dia-
log box or according to the instruction at cursor position.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

17

If the cursor is set upon an invalid instruction the help index shows up.
Reasons may be:

– The text is not an instruction but a user-defined declaration:
Variable / array, symbolic name, macro (Sub, Function). For a
user define, a help page cannot be provided.

– The instruction is misspelled, e.g. Digin_Wrod instead of
Digin_Word. After being corrected, the instruction will be high-
lighted correctly.

–

– The (user-defined) include or library file is missing where the
instruction is defined. Please insert the appropriate line at the
start of the source code.

4.2.2 Context menu in source code window
Various help functions are available from the context menu by right-
clicking in the source code window.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

18

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

19

The following functions use the cursor position or the active selection:

– Cut: Cut selection and copy into the clipboard.

– Copy: Copy selection into the clipboard.

– Paste: Delete selection and insert text from the clipboard.

– Comment Block, Uncomment Block: Changing lines into
comment, page 23.

– Indent, Outdent: Indenting text lines, page 23.

– Mark Control block, Unmark Control block: Marking
control blocks, page 33.

– Declaration Info: Displaying declaration of instruction or
variable, page 38.

– Jump to Declaration: Jumping to declaration of instruction
or variable, page 35.

These functions are available without marking:

– Add to Project: Add a file to the project.

– Code snippets: Inserting code snippets, page 37.

– Show all Declarations: Displaying declarations of a file,
page 39.

4.2.3 Editor bar
The editor bar provides editor tools for use in the source code window.

Using bookmarks, page 34.

Changing lines into comment, page 23.

Folding text ranges, page 23.

Displaying declaration of instruction or variable,
page 38.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

20

Jumping to declaration of instruction or variable,
page 35.
Inserting code snippets, page 37.

Displaying declarations of a file, page 39.

Undo the previous editing action or redo it.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

21

4.3 Formatting source code
Source code can be (mostly automatically) formatted to clearly show
the program structure:

– Syntax highlighting, page 21

– Smart formatting, page 21

– Indenting text lines, page 23

– Changing lines into comment, page 23

– Folding text ranges, page 23
Find more editor functions in the sections:

– Creating source code, page 16

– Searching and replacing, page 25

– Writing programs with ease, page 35

4.3.1 Syntax highlighting
Once a command line is written, the editor will automatically change
the color of the instruction words, variable names and array names,
while indenting the lines to give a clear structure.
The editor divides the character strings you have entered, into several
groups of syntax elements being displayed differently. The color
design may be changedunder Options Settings, Editor - Syntax
Highlight (see page 55); the window also shows an overview of syntax
groups.
Syntax highlighting requires an active option Parse Declarations
under Editor - General (see page 54).

4.3.2 Smart formatting
Once a command line is written, the editor will automatically correct
the number of spaces, thus giving the line a clear structure. This way
e.g. operators like "=" or keywords like "If" will have a space to left
and right.
If you like to format manually you have to switch off smart format under
Editor - General, Smart format (see page 54).

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

22

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

23

4.3.3 Indenting text lines
Once a command line is written, the editor will automatically indent the
lines to give a clear structure. Manual indenting is not available in com-
bination with automatic indenting.
If you like to indent manually you have to switch off automatic inden-
tation under Editor - General, AutoIndent. Afterwards, indents may
be set with [TAB] or [SPACE]. Several marked lines may be indented
or outdented by selecting Indent oder Outdent in the source code
context menu (right mouse click).
The menu entry Options Settings, Editor - General, Tabsize
be used to set the number of spaces for one indent.

4.3.4 Changing lines into comment
Marked lines may be changed into comment lines in one action by
selecting the menu entry Comment Block from the source code con-
text menu (right mouse click). The editor will then insert a comment
char ' at every of the marked lines so the compiler will skip these lines.
In the same way Uncomment Block will delete a comment char at the
start of the lines.

4.3.5 Folding text ranges
The editor recognizes control structures like conditions or loops, pro-
gram sections, macros and library modules as foldable text ranges.
These ranges are marked by a grey line to the left of the line start, with
a minus sign in the first line of the range.
You fold a range with click on the minus sign in the first line; in the
example below you would click left of Function sumsquare.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

24

Using the button Toggle Outlining all folable text ranges may
be folded or ununfolded at once.
Foldable text ranges can be recognized only, if the option Parse Dec-
larations under Editor - General (see page 54) is active.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

25

4.4 Searching and replacing
Find, mark or replace any part of source code with these functions:

– Finding text quickly, page 25

– Finding and replacing text, page 26

– Regular expression, page 31

– Marking control blocks, page 33

– Using bookmarks, page 34

– Jumping to declaration of instruction or variable, page 35
There are more editor functions:

– Creating source code, page 16

– Formatting source code, page 21

– Writing programs with ease, page 35

4.4.1 Finding text quickly
You can find text quickly using the short-cut [CTRL]-[F3]. There is
also the short-cut [CTRL]-[SHIFT]-[F3] to start a quick find backward.
Find uses the marked text or–if no text is marked–the word at cursor
position. The following find options are fixed:

– Uppercase and lowercase letters are of no importance.

– Find text also as part of a word.

– Folded text areas are searched.

– All open documents are searched.
Using quick find, you cannot use regular expressions nor can you cre-
ate bookmarks.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

26

4.4.2 Finding and replacing text
You can find each occurrence of a combination of any characters,
including uppercase and lowercase characters, whole words, or parts
of words, or regular expression (see Regular expression on page 31).

1. Select the menu entry Edit Find to search or Edit
Replace to replace. A dialog box opens which remains on the
screen until you close it.

2. In the Find what box, type in the search string, or choose a
previous string from the drop-down list.

3. Replace only: Type the replacement expression in the
Replace With box, or choose a previous string from the drop-
down list.

4. Set the scope of the search.

Option Description
Match case Option active: Find text having the given pat-

tern of uppercase and lowercase letters.
Option inactive: Uppercase and lowercase
letters are of no importance.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

27

5. Set the search range.

Match whole
word

Option active: Find occurrences of the text
as whole words.
Option inactive: Find text also as part of a
word.

Search hid-
den text

The option refers to Folding text ranges (see
page 23).
Option act ive: Folded text areas are
searched.
Option inactive: Folded atext areas are
skipped.

Search up Option active: Search in direction to start of
file.
Option inactive: Search in direction to end of
file.

Use regular
expres-
sions

Specify that the search string is a Regular
expression (see page 31).

Prompt on
replace

Option valid with Replace All only.
Option active: Each occurence opens a dia-
log box to control replacing.
Option inactive: All occurences are replaced
without query.

Option Description
Current
Document

Start search in the current source code at
cursor position.
If text is selected, the cursor is positioned
behind the selection.

All open
Documents

All open documents are searched, starting
with the current source code.

Option Description

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

28

6. Start the action with one of the buttons.
• Find Next: If the search string is found, the screen scrolls

so you can see the text in context.
• Replace: Replace the current selection and select the next

occurrence.
• Replace All: Replace all occurrences of the search text, in

the specified scope.
• Bookmark All: Place a bookmark on each line containing

the search string.

7. Close the dialog by clicking the Close button, or continue edit-
ing as normal.

With the option All Documents of Project, the dialog clos-
es automatically. Search results are shown in the Find Window
in the info range below.

Selection
only

Only the selected range is searched.
If no selection is given, search starts at cur-
sor position.

All Docu-
ments of
Project

All files of the project are searched, not
regarding whether the current source code
is also part of the project. Cannot be used for
replace.
The results are shown at the bottom in a win-
dow. Double click a result to jump to the
appropriate code line or use the arrow but-
tons.

Option Description

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

29

Notes
– The menu entry Edit Find Next finds the next occurence of

the search string using the current search options, even if the
Find dialog box is closed.

– The action Replace replaces selected text only, when the
selection fits to the search string.

– Beware of replacing a pattern that is matched with a regular
expression that can optionally match nothing, such as ".+" or
"a*". In these degenerate cases, the editor can go into a loop,
until the line becomes too long.

– Hint: If you want to use regular expressions for a great number
of replacements in one or even all all open documents, you
should use Find Next and Replace to make sure you have
spelled the replacement string correctly, before replacing the
rest with Replace All.

Examples - Finding Text
Examples for finding text with Regular expressions.

– Find all spaces or tabs at the end of a line:
[]+$

The search string finds one or more spaces or tabs, being fol-
lowed by the end of the line.

– Find everything on a line:
^.+

The search string finds the beginning of a line, followed by one
or more of any characters, up to the end of the line.

– Find $12.34:
\$12\.34

Note that . and $ have been escaped using the backslash \ to
hide their regular expression meanings.

– Find a string, which is valid as variable name in TiCoBasic:
\b[a-z][_a-z0-9]*

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

30

The search string finds a word starting with a alphabetic char-
acter, followed by zero, one or more underscores or alphanu-
meric characters.

– Find an inner-most bracketed expression:
\([^\(\)]*\)

The search string finds a left bracket, followed by zero or more
characters excluding left and right brackets, followed by a right
bracket.

– Find a repeated expression:
([0-9]+)-\1

Th search string in braces (…) finds one or more digits; the
braces define the tagged expression. It is followed by a hyphen,
followed by the string matched by the tagged expression. So
this regular expression will find 14-14 and 08-08, but not 08-
15.

Examples - Replacing Text
Examples for replacing text with Regular expressions.

– Find two numeric strings separated by one or more spaces:
([0-9]+) +([0-9]+)

and swap them around, using a colon to separate them:
$2:$1

– To change simultaneously:

from X100000 to X100.000

from Y100123 to Y100.123

from Z600 to Z.600

Search: ([XYZ])([0-9]*)([0-9][0-9][0-9])

Replace by: $1$2.$3

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

31

4.4.3 Regular expression
A regular expression is a search string that uses so called meta char-
acters to match patterns of text. Meta characters are valid with the
Find command only, not with the Replace command.
To use a regular expression for search/replace, check the option Use
regular expressions in the dialog box. With active option, the but-
tons > to the right of the input fields are enabled, where you can select
meta chars.
The syntax of regular expressions is defined in the .NET-Framework
2.0. a more A detailed description be found on the Internet at the
address http://msdn2.microsoft.com (search for „regular expres-
sions“).

Meta -
zeichen
:

Bedeutung:

. Any single character.
Example: Ma.s matches Mats, Mars und Mads, but not
Mas.

[] Any one of the characters

1. given explicitely in brackets, or

2. any of a range of characters separated by a
hyphen (-).

Examples: h[aeiou][a-z]d matches: hard, head,
hand and hold; [A-Za-z] matches any single letter.
The regular expression x[0-9] matches x0, x1, …, x9.

[^] Any characters except for those after the caret ^.
Example: h[^uo]t matches hat and hit, but not hot or
hut.

^ The start of a line (column 1).
Example: The search string ^start matches start
only, when it is the first word on a line.

http://msdn2.microsoft.com
http://msdn2.microsoft.com

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

32

$ The end of a line (not the line break characters). Use this
for restricting matches to characters at the end of a line,
but not \n.
Example: end$ only matches end when it is the last word
on a line.

\b The start of a word.
\B The end of a word.
\n A new line character, for matching expressions that span

line boundaries.
A \n cannot be followed by operators *, + or {}. Do not
use this for constraining matches to the end of a line. It's
much more efficient to use "$".

() Expression in braces is stored as pattern in internal reg-
isters. The register content may be re-used in the search
or replacement string.
Up to 9 patterns can be stored, numbered according to
their order in the regular expression. The corresponding
replacement expression is $x and \x in the search string,
for x in the range 1…9.
Example: If the search string ([a-z]+) ([a-z]+)
matches guide user, $2 $1 would replace it with user
guide.

* Matches zero, one or more of the preceding characters or
expressions.
Example: ha*d matches hd, had and haad.

? Matches zero or one of the preceding characters or
expressions.
Example: ha?d matches hd and had, but not haad.

Me ta -
zeichen
:

Bedeutung:

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

33

4.4.4 Marking control blocks
The lines of a control block may be highlighted altogether, e.g. to opti-
cally check nested structures. To do so, place the cursor on the key-
word of a control block and select Mark Control block from the
source code context menu (right mouse click).
Only one control block can be highlighted at a time.
The highlighting is removed using Unmark Control block (context
menu). The cursor position does not matter in this case.

+ Matches one or more of the preceding characters or
expressions.
Example: ha+d matches had and haad, but not hd.

| Matches either the expression to its left or its right.
Example: had|haad matches had, or haad.

\ "Escapes" the special meaning of the above expressions,
so that they can be matched as literal characters. Hence,
to match a literal backslash \, you must use \\.
Example: ^a matches an a at the start of a line, but \^a
matches the string ^a.

Meta -
zeichen
:

Bedeutung:

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

34

The following control block can be highlighted:

– Program sections Init:, Event:, Finish:

– Do … Until

– For … Next

– If … EndIf

– SelectCase … EndSelect

– Function … EndFunction

– Sub … EndSub

– Lib_Function … Lib_EndFunction

– Lib_Sub … Lib_EndSub

All control structures are also foldable text ranges (see Folding text
ranges on page 23).

4.4.5 Using bookmarks
Bookmarks mark selected source code lines. You can jump to book-
marked lines.
You can use these actions:

– Set a Bookmark

Bookmark a line either with the Toggle Bookmark button from
the editor bar or click Bookmark All in the Replace dialog
box.

Use Toggle Bookmark to remove single bookmarks.

– Go to Next Bookmark

Select the Next Bookmark button from the editor bar.

– Go to Previous Bookmark

Select the Previous Bookmark button from the editor bar.

– Remove all Bookmarks

Select the Delete all Bookmark button from the editor bar.

Use Toggle Bookmark to remove single bookmarks.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

35

Bookmarks are saved together with the source code file.

4.4.6 Jump to a program line
You can jump to a program line in the source code with a double click
on the line number in the status bar or by selecting GoTo Line in the
Edit menu. A dialog box opens, where you enter the nuber of the
desired program line.
To show source code line numbers, the option show linenumbers
under Editor - General (see page 54) must be enabled.

4.4.7 Jumping to declaration of instruction or variable
From a variable name, you can directly jump the variable’s declara-
tion. This is true for all self-declared names: local variables, arrays,
instructions (Sub, Function) and symbolic names (#Define).
To jump to a declaration, you place the cursor on the self-declared
name and then either select Jump to Declaration from the context
menu (right mouse click), or click the Jump to Declaration button
in the editor bar.
A jump to declaration is only available, when the option Parse Dec-
larations under Editor - General (see page 54) is active.
Of course, the jump is not available for instructions of standard include
files as well as for global variables PAR.

4.5 Writing programs with ease
Be at ease while programming using the following functions:

– Autocomplete for instruction or variable, page 36

– Documenting self-defined instructions and variables, page 54

– Inserting code snippets, page 37

– Displaying declaration of instruction or variable, page 38

– Displaying declarations of a file, page 39

– Displaying used global variables and arrays, page 40

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

36

Find more editor functions here:

– Creating source code, page 16

– Formatting source code, page 21

– Searching and replacing, page 25

4.5.1 Autocomplete for instruction or variable
You can use autocomplete to type keywords, instruction and variable
names and even code snippets: Type some of the name’s first char-
acters and press [CTRL-SPACE].

Using autocomplete, you don’t have to type instructions or variables
completely.
Do as follows:

1. Write the first letters of the word and press CTRL-SPACE.

A drop-down list opens the entries of which will fit to complete
the previous letters.

If you use autocomplete behind a space character, the list will
contain all available keywords.

2. Select the desired list entry with mouse or arrow keys.

After a moment, an annotation to the selected list entry is dis-
played to the right: The decalration of the instruction or variable,

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

37

the string "Reserved Keyword" or the complete code snippet.
(see below).

3. If you continue typing a name, the drop-down list is not updated
automatically. Press CTRL-SPACE again for a list update.

4. To insert the selected string you simply type a brace open (best
for an instruction) or a space.

Else, you could also use the [RETURN] key or type any other
non-alphanumeric char.

Autocomplete is only available, when the option Parse Declara-
tions under Editor - General (see page 54) is active.

4.5.2 Inserting code snippets
The editor provides the use of pre-defined code snippets, given in a
collection. According to its definition, a code snippet can expand to
some characters, some lines or a complete program listing.
To insert a code snippet at cursor position, do one of the following:

– Enter the first letters of a code snippet keyword, e.g. Sele for
a SelectCase structure, select the code snippet from the list
and press CTRL-SPACE (see also Autocomplete for instruction
or variable).

– Use Codesnippets from the context menu or from the editor
bar.

A drop-down list with folders opens, which each contain several
code snippets (or more folders).

Navigate through the folders via mouse or via keyboard. The
following keys be used:

• Arrow up/down: Select list entry
• Return: Insert selected code snippet or open folder.
• Backspace: Return to previous folder level.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

38

After you have selected a code snippet the appropriate key-
board shortcut is displayed to the right.

– Insert the shortcut of a code snippet, followed by [TAB].
To display a list of code snippets and short-cuts, open <codesnip-
pets.xml> in the folder C:\ADwin\TiCoBasic\Common\ with a
browser.

4.5.3 Displaying instruction parameters
The passed parameters of an instruction are displayed automatically,
as soon as you type in the opening brace after the instruction’s name.
While you type in the parameter expressions, the appropriate passed
parameters is displayed bold in the tooltip.
The tooltip vanishes as soon as the cursor is placed outside the braes
around the parameters. You can re-activate the tooltip if you retype the
opening brace. Alternatively, you can call the function Declaration
Info from the context menu or the editor bar to display the complete
declaration of the instruction.
The display of instruction parameters is only available, when the
option Parse Declarations under Editor - General (see page 54)
is active.

4.5.4 Displaying declaration of instruction or variable
From an instruction, a variable name, or any declared keyword, you
can display its declaration and notes as tooltip, when you

– move the mouse over the keyword.

The declaration is displayed only, when the option Automatic
quick info tips under Editor - General (see page 54) is ac-
tive.

– set the cursor on the keyword and press [F2].

– set the cursor on the keyword and select Declaration Info
in the editor bar or in the context menu.

The function is available for all keywords which belong to the language
TiCoBasic or are self-declared: local and global variables, arrays,
instructions (Sub, Function) and symbolic names (#Define).

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

39

The display of declarations is only available, when the option Parse
Declarations under Editor - General (see page 54) is active.

4.5.5 Displaying declarations of a file
To display all declarations, include and library files referring to a
source file, set the Declarations to the foreground (see page 72). Dec-
larations of other source code files will not be displayed–even if com-
bined within a project.
The display of declarations is only available, when the option Parse
Declarations under Editor - General (see page 54) is active.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

40

4.5.6 Displaying used global variables and arrays
You can display global variables and arrays being used in the active
source code and in the appropriate project (if present) by a click on the
Scan Global Variables button in the Parameter Window (see
also page 63).
This results in two displays:

– the Global Variables displays all used global variables and
arrays.

– in the Parameter Window the used global variables (not the
arrays) are highlighted.

The highlighting uses three colors, according to the use of pa-
rameters:

Using the Clear Scan button both displays are cleared.
If If you change the source code the displays are not updated auto-
matically. To do so, click the Scan Global Variables button again.

• Green: Parameter is used in the active source
code only.

• Red: Parameter is used both in the active
source code, and in another source
code of the project, too.

• Blue: Parameter is used in an inactive
source code of the project, and not in
the active source code.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

41

4.6 Transferring a TiCo binary file to TiCo processor
Using the environment TiCoBasic, you can transfer a saved binary file
to the TiCo processor or into the TiCo bootloader.

4.6.1 Transferring a TiCo binary file
To transfer a binary file to the TiCo processor, do as follows:

– Create a binary file using Build Make Bin File; see also
page 47.

Here, set the process attributes as priority, process number,
process type etc.

– Select the menu entry Load Bin File in the menu Tools and
the binary file in the next window.

Confirm the selection with Open; now, TiCoBasic transfers the
binary file as process to the TiCo processor which is set in the
compiler options.

– The process is not started automatically. To do so, click on the
button Start Process .

4.6.2 Programming the TiCo bootloader
The TiCo bootloader automatically loads and runs selected TiCoBasic
processes on start-up of the ADwin hardware.
To program the TiCo bootloader, do as follows:

– Create a binary file using Build Make Bin File; see also
page 47.

Here, set the process attributes as priority, process number,
process type etc.

– Select the menu entry Bootloader… in the menu Tools.

The dialog window Bootloader opens.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

42

– Click on the button Load Bootloader and select the binary file
in the next window.

– Enable the bootlader operation with the button Enable Boot-
loader. Up from now, the processes of the binary file are auto-
matically started upon start-up of the ADwin hardware.

Using the button Disable Bootloader, you can temporarily
disable the bootloader operation and enable it later onagain.

– Close the dialog window with Close.

4.7 Managing Projects
One project can manage many process source codes, include files,
and library files, for instance when programming an application with
several processes. Only one project can be open at a time.
The project file also saves the display parameters of the development
environment: window position, size, open project files. Thus, with
opening a project, the display will be rearranged.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

43

the following rules apply to the combination of project files (see also
chapter 7.1 "Process Management"):

– At least one process must have high priority.

– Only a single timer-controller process with high priority is
allowed.

– There can be one low priority timer-controller process, if a high
priority process belongs to the project, too.

You can combine a timer-controller process and an externally control-
l e r p rocess . In th i s case , p lease con tac t ou t suppor t
(support@adwin.de); we will inform you about the required precau-
tions.
A project allows the user:

– Displaying used global variables and arrays of a project (see
page 40).

– Search through all files of a project, including not yet opened
files.
Just enable the All Documents of Project option in the find
window (see chapter 4.4.2 "Finding and replacing text"). The
option is not available for replacing.

– Save all files of project at once, using Save all Files of
Project from the project window context menu.

– Open the Windows Explorer with the path of the selected file,
using Open Path in Explorer Window from the project win-
dow context menu

Project-related capabilites can be accessed via project window con-
text menu (right mouse click, see "Project Window" on page 61) or in
the menu File.

4.8 Menus
The menu bar contains these menus:

– File: Manage files and projects (page 45
)

mailto:support@ADwin.de

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

44

– Edit: Edit source codes (page 46
)

– View: Show windows and bars (page 46
)

– Build: Tool for generating executable programs (page 47
)

– Options
:

Program settings (page 48
)

– Tools: Various help functions (page 58
)

– Window: Arrange source code windows (page 59
)

– Help: Help, version and license information (page 59
)

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

45

4.8.1 File Menu

The File menu con ta ins
instructions for managing files
and projects.
Files can be opened, created,
saved, or closed. Multiple source
code windows may be open
simultaneously.
Projects can also be opened,
saved and created in the same
way as files, with the exception
that no more than one project
can be open at a time. More
instructions are available in the
pro jec t w indow (see
chapter 4.9.2).
The print functions can also be
found in the menu.
Under Recent Files and
Recent Projects a list of pre-
viously opened files and projects
is displayed.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

46

4.8.2 Edit Menu

4.8.3 View Menu

With Restore Default Layout, the default layout, which was active
at the initial start of the TiCoBasic program, can be restored with a sin-
gle mouse-click. This refers also to the Toolbox setttings (page 61).

The menu Edit contains the edit
functions, in accordance with the
standard Windows conventions.
Moreover the menu offers functions
for searching (Find, Find Next)
and replacing (Replace); see Find-
ing and replacing text on page 26.
Unforeseen errors may occur when
inserting characters or program
lines from other programs with "Cut
and Paste" into the source code,
and therefore is not recommended.

In the View menu you may open or
close

– the tool bar

– the editor bar

– the ADtools bar

– the status bar.
You find further information about
the p rocess w indow in
chapter 4.9.4 on page 64, about
the toolbar see fig. 2.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

47

4.8.4 Build Menu
With the Build menu, the active source code can be compiled into

– a process using Compile.

– a binary file using Make Bin File.

– a library using Make Lib File.

Please note: Before compiling, all changed source code, library- and
include files are saved automatically (AutoSave).
A change of file may occur by automatic indenting of text lines (see
chapter 4.3.3 on page 23), for example when opening a previously
unformatted file.

Compile is the most comprehensive instruction: It compiles the whole
project (without project: a single source code) and transfers the
generated binary file as process to the TiCo processor.

The process is automatically started on the TiCo processor.

If the compiler detects errors or critical sequences in the source
code, it is shown in the Info window. A double click highlights the
appropriate line in red.

Make Bin File is only available for licensed TiCoBasic users. It com-
piles the whole project (without project: a single source code) into
a binary file and saves it automatically. The file is stored in the
directory of the source code file, but with the extension .TIx. The
x denotes the processor type (see Options Menu, Process Options
dialog box).

A binary file with the extension <*.TI3> can be transferred to
a TiCo processor of type 1. A binary file can be transferred to
the TiCo processor with TiCoBasic (see chapter 4.6.1 "Trans-

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

48

ferring a TiCo binary file") or from a development environment
such as C or Visual Basic.

Make Lib File is available for licensed TiCoBasic users only. It com-
piles the complete project (or a single source code)into a binary file
and automatically saves it as library file. The library is stored in the
same directory and with the same name as the source code file, but
with the file extension .TLx. (where x denotes the processor type.)
Afterwards the library can be included into other source codes that
use their functions and subroutines (see chapter 5.5.1 on
page 99).

4.8.5 Options Menu

Compiler Options dialog box
The settings in this dialog box are used in every source code compi-
lation. In particular the information refers to the ADwin system and the
TiCo processor on which the compiled source codes are to be execu-
ted as process.
To compile source codes for different TiCo processors , the parame-
ters need to be set for each TiCo processor in the dialog box.

In the Options menu a number of options can
be set which will have an immediate effect. For
each menu item a dialog box opens where the
settings are entered.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

49

Fig. 3 – The Compiler Options dialog box

– System: Select the ADwin system.

– Processor: Select the system’s processor type.

– Device No.: Select the device number to access the ADwin
system.

The device number is set using the program <ADcon-
fig.exe>. The default setting is 150 Hex.

– Module Address (only ADwin-Pro II systems): Select the
module, where the TiCo processor is located.

– Do not access the Device: If inactive, a binary file will be
automatically transferred to the hardware after compilation.
Thus, the ADwin hardware must be connected before compila-
tion.

With active option, a source code can be compiled, even if the
ADwin hardware is not connected to the PC.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

50

Please note: The menu entries for transfer of bootloader or bi-
nary files (chapter 4.8.6 "Tools Menu", page 58) are enabled
only, when this option is disabled.

– Remember Device No.: Active option saves the last used
Device No. (see above) on closing TiCoBasic; the next start-up
will automatically use the saved number.

Inactive option skips saving the device number. Thus, TiCo-
Basic starts up with the formerly (when Yes was set) saved de-
vice number NONE.

Process Options dialog box
This dialog box contains the compiler options for the currently opened
source code window; the properties of the process which is to be com-
piled from the opened source code and transferred to the ADwin sys-
tem.
This applies to library files as well, where only the option Optimize
can be set.
Each process must be configured separately by opening the dialog
box for each source code window, unless using the default settings. To
quickly open this window do a double click on the source code’s status
bar.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

51

Fig. 4 – The Process Options dialog box

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

52

– Process: Process number

The number under which the transferred process is started on
the TiCo processor .

If there is more than one process to be run, each process must
have its own process number.

– Eventsource: Sets the event source signal which initiates the
Event: section of the process.

• Timer
sets the internal counter as event signal. The system
variable Processdelay determines the delay in which the
counter creates an event signal.

• External
sets the (external) signal the event input of the ADwin
system as event signal. A specified value in a given
Address is used a event signal. The process always runs
with high priority.
Further settigs see below at External Event.

• None
The process type None (without event signal) is only used
for special applications–mostly programmed in
assembler–and excludes other process types. if not
programmed differently, the process does not respod to
external event signals and is run only once.

– External Event: Settings for external event source.

The settings determine the conditions and the hardware which
releases an event signal. Any values can be entered hexadec-
imal or decimal.

An event signal is released as follows: The conjunction of the
value in the hardware Address and the bit Mask is compared
to Value using the Operation. If the comparison is true, an
event signal is released.

The hardware addresses are different for each ADwin hard-
ware.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

53

Example: The settings above mask the value of address 70h
with 12h, so only the bits 2 and 5 remain unchanged. If the re-
sult is > 0, i.e. one of the two bits is set, a process cycle is start-
ed with an event signal.

– Priority: The priority of the process.

Set the priority the process will be run with in the ADwin hard-
ware. For more information see chapter 7.1 "Process
Management"chapter 6.1.1 "Types of Processes".

– Optimize: Status and level of compiler optimization.

Compiler optimization, which may be used optionally, can re-
duce the execution time of the process by up to 20 percent. A
higher setting under Level will lead to shorter execution times.

Under certain circumstances, a process causing unexpected
compiler or run-time errors can be solved by setting a lower op-
timization level.

– Initial Processdelay: The initial Processdelay (cycle
time) with which the process is to be started.

– Version: An integer value for differentiating between several
versions of a process.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

54

Settings dialog box
The Settings dialog box has several sheets, which are activated via
tree diagram in the left pane:

– Editor
• Editor - General
• Editor - Syntax Highlight
• Editor - Print Settings

– Language

– Directory

– ADtools

Editor - General
Parse and Indent: The editor can format the source code automat-
ically, e.g. indent and do syntax highlighting. To do so, the editor must
parse all source codes continuously. The information found is the base
for more comfortable functions like Autocomplete for instruction or
variable, Displaying declarations of a file or Documenting self-defined
instructions and variables.
Please note: Continuous parsing of source codes may cause a loss of
editor speed on slow PCs.

Parse Declarations: The editor continuously parses source
codes. Some comfortable functions depend on this function.

Autoindent: Source code is indented automatically. Indent
positions are set via Tabsize. See also "Indenting text lines"
on page 23.

Indent TiCoBasic sections: Program sections are indent-
ed by one tab more.

Smart format: Format lines automatically, see "Smart format-
ting" on page 21.

Align comments at specified position: Any comment
after source code is automatically set to the specified Posi-
tion.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

55

Please note: While using double comment chars '' you can po-
sition a comment manually as before.

Tabsize: Setting, how much spaces make one tab indent. In-
denting is always done with spaces.

Show line numbers: Line numbers are displayed in the gutter left of
the source code. See also „Jump to a program line“ on page 35.
Column mark, visible: A grey line is displayed at the given Posi-
tion. The line enables easy line breaking at the desired position, e.g.
in order to avoid long lines for print.

Editor - Syntax Highlight
The editor highlights the syntax elements with different colors; see
also chapter 4.3.1 "Syntax highlighting" on page 21; complete syntax
highlighting reuires an active option Parse Declarations under
Editor - General.
You may set the highlighting individually for each syntax element (def-
inition see liste below):

– Color: Text color.

– Bold: Font style bold.

– Italic: Font style italic.
The example text above shows how source code be formatted.
Set to Default deletes all individual changes and resets default set-
tings.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

56

The editor distinguishes the following syntax elements:

– TiCoBasic-Syntax (System related):
• TiCoBasic sections: Keywords Init:, Event: and

Finish: for program sections.
• Compiler Directives: Pre-compiler instructions like

#Define, starting with a #.
• Reserved Keywords: Basic instructions as Dim in

TiCoBasic.
• Global Variables: Global variables Par_1 … Par_80

and Data_1 … DATA_16.
• External Keywords: TiCoBasic instructions for access to

inputs/outputs like P2_ADC. Most of these instructions are
declared in the delivered standard include or library files.

• Symbols: Operators as braces, + or =.

– User related:
• Defined Names: Symbolic names like myName, declared

with #Define.
• Local Variables: Variables like myVar declared with

Dim.
• Sub Names: Names (like mySub) of user-defined modules,

declared with Sub or Lib_Sub.
• Function Names: Names (like myFunction) of user-

defined modules, declared with Function or
Lib_Function.

– Other:
• Numbers: Numbers in decimal (15), hexadecimal (0Fh) and

binary notation (1111b).
• Strings: Strings in "double quotes".

– Comments: Comments after Rem or quote '.

– Standard Text: All elements which do not belong to other
groups, e.g. invalid instructions like Eixt (instead of Exit).

Editor - Print Settings
The settings refer to printing of source code.
Header refers to the printed header line.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

57

Print Header: A header line is printed on top of each page.

Header text: The text of the header line.
Layout determines the elements of the screen display are to be
printed.

Syntax Highlight: Syntax highlighting is printed.

Color: With inactive option the printout is black and white.

Line numbers: Line numbers are printed at the left.

Font size: Sets the font size of the output.

Language
The language in which the error messages of the compiler is dis-
played. Options are either Deutsch (german) or English.

Directory
Set the directories where the operating system and the compiler
search for TiCoBasic files:

– BTL-Directory: The directory in which the development
environment searches for the system files for communication
with the TiCo processor.

– Include-Directory: The directory in which the compiler
searches for include files <*.inc>, which can be included into
the source code using #Include instruction (without path).

– Lib-Directory: The directory in which the compiler searches
for library files <*.lib>, which can be included into the source
code using Import instruction (without path).

– Default working directory: The directory in which the
development environment searches searches for files, if a
source code file or a project is opened.

It is recommended that default directories for BTL, Include and Library
be not changed. To include library and include files from other direc-
tories, type the full or relative path name with the instruction.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

58

ADtools
The ADtools (description see chapter 4.11) can be started from the
ADtools bar. If the appropriate option is active, the tool is displayed in
the bar.

4.8.6 Tools Menu

The menu entries Bootloader… und Load Bin File… are
only available when the option Do not access the device in
the Compiler Options dialog box is disabled (see page 48).

The menu entry TGraphTiCo starts a utility tool; short description see
chapter 4.11 on page 74.

The Tools menu option calls utility pro-
grams.
The menu entry Bootloader… programs
the TiCo bootloader (see chapter 4.6.2
"Programming the TiCo bootloader",
page 41). The bootloader can start a pro-
cess automatically on start-up of the
ADwin hardware.
The menu entry Load Bin File… trans-
fers a saved binary file to the TiCo proces-
sor (see chapter 4.6.1 "Transferring a
TiCo binary file", page 41).

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

59

4.8.7 Window Menu

4.8.8 Help Menu
The Help menu calls the online help of the development environment:

The instruction lists refer to the ADwin system, which is set in
the Compiler Options dialog box on page 48.

Altenatively, you may use the button in the toolbar. With the [F1]
key, help is opened for a dialog box or for the selected keyword.
The About menu entry opens a window that displays the version of
the development environment and the License key. The license key
can be entered or changed by pressing the Change License button
(see also page 9).

From the Window menu it is possible to
switch between different source code win-
dows and arrange them on the monitor.
The Arrange Icons menu reorders min-
imized source code windows which is use-
ful after the screen resolut ion has
changed.
At the bottom of the menu, there is a list of
open source codes; by clicking one of
these menu items that source code will
become the active window. The active
source code is checked; in the example at
right it is TiCoBasic1.bas.

– Content: Table of con-
tents

– Index: Index directory

– Instructions by …:
Sorted lists of instructions.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

60

Without entereing a valid License key, TiCoBasic runs in demo
mode. Indemo mode, the use is only allowed for demonstration, test
or evaluation purposes.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

61

4.9 Windows

4.9.1 Toolbox
The Toolbox is the window range of the environment to the left, where
Project Window, Parameter Window, Register window, and Process
Window are displayed.
The toolbox divides into an upper and lower display region, where to
the windows can be assigned freely. A hidden window is drawn to the
front with a click on its tab.
To assign a window to the upper or lower region, do as follows:

– Do a right mouse click to the head bar of the window to open the
context menu.

– Select whether to dock the window at top or bottom.

– You may dock all windows to the same region. Thus, only one
window can be in front at a time.

The standard setting can be reset via the menu entry View
Restore default layout.
The toolbox can be displayed as movable window or be completely
hidden via the buttons in the head.

4.9.2 Project Window
The project window shows an opened project and the source code and
include files added.
The project window is located in the Toolbox (see page 61).

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

62

In the project window the following actions may be executed:

– Add a source code or include file to the project:
Select Add to Project from the source code context menu.

– Add all open files to the project:
Select Add Open Files to Project from the project window
context menu.

– Delete a source code file from the project:
Highlight the file in the project window, then

• press the [DEL] key or
• select Remove from Project from the context menu.

– Open a source code file and make it the active source code:
• Double-click the file or
• Highlight the file in the project window, then select Open

from the context menu (right mouse button).

– Save all open source code files of the project:
Select Save All Files of Project from the context menu.

– Open the Windows Explorer with the path of the selected file:
Select Open Path in Explorer Window from the context
menu.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

63

Fig. 5 – The Project Window with the Context Menu

4.9.3 Parameter Window
The parameter window displays a table showing the values of the glo-
bal parameters Par_1…Par_80. With the scroll bar at right you can
scroll through the parameters.
The parameter window is located in the Toolbox (see page 61).
When the communication between the computer and ADwin system is
active (icon Enable Cyclic Update in the toolbar), the fields in
the table are enabled and appear with a white background color, and
display the values of the global parameters. The values are continu-
ously read out from the system. Fields are disabled and appear with
a grey background color when the communication is inactive.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

64

Fig. 6 – The parameter window

To change the display of a parameter’s value between decimal and
hexadecimal notation (see Par_5 in fig. 9), do a mouse click on the
number of the variable (left of the table field). A click on the column
header changes the display of all parameters at once.
For use of the Scan Global Variables button see "Displaying
used global variables and arrays" on page 40.

4.9.4 Process Window
The process window shows information about the processes 1…4 on
the TiCo processor, when the communication between the computer

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

65

and the system is active (icon in the toolbar). Otherwise the fields
are grey.
The process window is located in the Toolbox (see page 61). Open the
process window with a click on the tab Processes.

Fig. 7 – The Process Window

For each process the following information is displayed:

– Process status
• running: process is running.
• stopped: process was stopped.
• ---: process does not exist.

A process can be stopped with button and started again with
 button. The buttons of the toolbar have the same function,

but they refer to the process related to the active source code.

– process delay (process cycle time); the process delay for the
active source code is displayed in the toolbar, too.

To change the cycle time, type a value into the input field. As
soon as the cursor leaves the input field the value is transferred

Process-
delay

blue =
low
priority

red =
high
priority

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

66

to the TiCo processor. Please note to not overload the TiCo pro-
cessor by small values.

– Process priority; the color of the process number indicates the
priority:

• red = high priority
• blue = low priority

The time units and meaning of the process delay are explained
in chapter 7.2.1 "Processdelay", page 113.

– Process runs in debug mode

– Process runs in timing mode

4.9.5 Register window
The register window shows the register contents of the TiCo proces-
sor, if the communication between PC and system is active (button
in the tool bar). Otherweise the fields are disabled.
The register window is located in the Toolbox (see page 61). Open the
register window with a click on the tab Registers.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

67

Fig. 8 – Das Register-Fenster

The register contents are useful if you use assembler code in a pro-
gram. A documentation of assembler instructions is not yet available.

4.9.6 Status Bar
The status bar is located at the bottom of the TiCoBasic program win-
dow.

Program
counter

Internal timerWorking reg-
isters A…D

Internal index
registers

External
index regis-

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

68

– Left side: Information about the last TiCoBasic action.

– Middle: The current workload (bei aktiver Verbindung zwischen
PC und TiCo) and the memory size of the TiCo processor.

– Right: The current cursor position in the source code window
(line and column); further compiler settings (debug mode, tim-
ing mode, device no., processor, ADwin hardware).

The displayed information about the CPU/memory usage:

4.10 Info range
The info range is located at the bottom of the main window and
encloses the following windows:

– Info window

– ToDo List

– Global Variables

– Declarations

4.10.1 Info window
In the info window the compiler messages concerning the current
source code are displayed:

– Error messages (coloured red)

– Warnings

– Status message after compilation

– Busy: the processor workload in percent, calculated as:
CPU time / (CPU time + idle time).

– PM: available program memory in bytes.
– DM: available internal data memory in bytes.
– DX / SX: available external data memory in bytes.

Action in CPU usage and memory size cursor position and
compiler settings

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

69

The window is part of the Info range (see above).
Warnings and error messages are displayed with the place of
occurence (line, file name and path). A double click turns the appro-
priate code line to red and the cursor jumps to the line.

The (successful) status message after compiling looks like this:

The values be used as hints about the required memory:

– Codesize: Size of the created binary file in bytes; the file will
be stored in the program memory (PM) as process.

– Workspacesize: Required memory size in bytes in the local
data memory (DM), being used for

• local variables and arrays
• internal purpose (2 × 4 byte)

Additional memory will be required in the data memory which be
calculated manually:

• Each global array requires about fourty byte in the local data
memory (internal purpose).

• Each element of a global array requires 4 byte (in the
external data memory; if the array be declared At
DM_Local, the elements are stored in the local data
memory).

– Constsize: Benötigter Speicherplatz für Konstanten in Bytes.

– Stacksize: Internal stack size, which is used for libraries.

Compile: C:\path\TiCoBasic1_Pr1.bas
TiCoBasicCompiler Version 1.02.01 17.01.2008
Process compiled. Codesize: 212 Workspacesize: 728

Constsize: 720
0 Errors, 0 Warnings

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

70

The memory size required in the external data memory (DX) will not be
displayed.

4.10.2 ToDo List
The ToDo window serves as a simple ToDo list: lines from the current
source code are shown where the text „ToDo:“ is contained as a com-
ment. By use of such commenting lines not yet completed tasks can
be flagged in the source code and clearly arranged in the ToDo win-
dow.
If a task is completed, just delete the comment line.
The window is part of the Info range (see page 68).

A double click on a ToDo entry positions the cursor in the appropriate
line of the source code.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

71

4.10.3 Global Variables
The window Global Variables displays which global variables
(Par_1 … Par_80) and arrays (Data_1 … Data_16) are used in a
source code or a project.
To start or update the display click the button Scan Global Vari-
ables in the Parameter Window (see Displaying used global vari-
ables and arrays, page 40).
The window is part of the Info range (see page 68).

The window columns can be sorted with a click on the column header.

– the name of the scanned file

– the line number where the variable is called or used.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

72

If the comment contains a file name, the line number refers to
this file, else to the scanned file.

– a comment, if
• the variable is used more than once in the line
• the variable is used only indirectly.

This case happens if e.g. a function of an include or a library
file uses a global variable. The function call in the source
code thus uses the global variable indirectly, even though it
does not show up in the calling line.

If you change the source code the window is not updated automati-
cally. To do so, use the button Scan Global Variables in the
parameter window.

4.10.4 Declarations
The Declarations window displays all declarations, include and
library files related to a source code file. For update of the display click
the Update button.
Declarations of other source code files will not be displayed–even if
combined within a project.
The window is part of the Info range (see page 68).

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

73

The declarations are displayed sorted under tabs, representing the
declaration sources:

– [file].bas: Declarations within the source file: local varia-
bles, arrays, instructions (Sub, Function) and symbolic
names (#Define).

– System: System variables and instructions being implemented
in TiCoBasic, if they fit to the current compiler settings.

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

74

Global variables PAR are not displayed here. Please note the
Global Variables (page 71) and the function "Displaying used
global variables and arrays" (page 40).

– ADwin-Gold, ADwin-light-16: Instructions for hardware
access, which are implemented in TiCoBasic und and fit to the
current compiler settings.

– [file].inc: Variables and instructions being declared in this
include file. Such tabs only show up if there are #Include lines
in the source code file.

– [file].lib: Variables and instructions being declared in this
library file. Such tabs only show up if there are Import lines in
the source code file.

– All: All valid declarations of the above sources.
The window columns can be sorted with a click on the column header.
With active option Show Groups, declarations are grouped by type.
If you change the source code the window is not updated automati-
cally. To do so, use the Update button.
The display of declarations is only available, when the option Parse
Declarations under Editor - General (see page 54) is active.

4.11 ADtools
ADtools is a collection of simple utility programs, which can display
data and operation status of an ADwin system or a TiCo processor.
Start one of the ADtools simply from the vertical bar at the right.
For TiCo processor, only the program TGraphTiCo is available at the
time; the program can show the values of global arrays (Data) in a
graph.
Each ADtool is its own independent Windows program; each can be
started several times, allowing for comprehensive views of parame-
ters of interest on the computer monitor. Once an appropriate screen
layout is selected, the whole configuration may be saved and used
later.
The following ADtools are available:

Development Environment

TiCoBasic 1.0, Manual June 2010

ADw

75

All further information about the help programs can be found in the
online help of the used ADtools program.

TDigit
Global variable and array values can be displayed and
adjusted.

TGraph Global array contents can be displayed in a graph.

TButton
Button control for booting the ADwin system, loading,
starting or stopping a process, or setting a parameter
value.

TLed

Displays the value of a variable by a simulated LED. The
LED can be off, on, blinking slowly or flickering rapidly
depending on the value. An audible alarm can also be set
with this tool..

TMeter
Global variable and array values can be viewed as an
analog dial.

TPoti
Global variable and array values can be adjusted with a
potentiometer-style control.

TProcess
Start/stop, adjust timing, and display information about
the processes loaded on the ADwin system.

TPar_FPar
All or selected global variables can be displayed or
entered.

TFIFO Save FIFO array data into a file..

TBin
Up to five PAR variables can be displayed in binary (as
DIL switch) and in hexadecimal notation, and adjusted.

TString Save and/or load a configuration to/from several ADtools.

ADtools
saves and loads a user-defined configuration of several
ADtools.

TGraph-
TiCo

displays contents of global arrays of a TiCo processor in
a graph.

Programming

TiCoBasic 1.0, Manual June 2010

ADw

76

5 Programming Processes
This chapter provides information about how to build and structure an
TiCoBasic program and which variables can be used.

5.1 Program Design
A TiCoBasic program is an ASCII text file created with the editor of the
development environment, using an extended Basic syntax. The com-
piler translates this source code into an executable process for the
TiCo processor.
jThe source code consists of any number of command lines; each con-
taining an instruction or assignment (exception see : Colon), with up
to 255 (ASCII-) characters in one line.
TiCoBasic accepts instructions and variable names in lower and upper
case letters (for more clarity all examples use unique spelling).
A program consists of up to 3 sections, which take on different tasks
when executed on the TiCo processor. fig. 12 outlines the ideal steps
for an TiCoBasic program.
Each program must at a minimum, have an Event:section.
Exception to standard program design is the Process without trigger
(None), which has no defined sections at all. See more on page 112.
Optionally functions and subroutines can be defined, as well as librar-
ies and "include"-files be included.

Program

TiCoBasic 1.0, Manual June 2010

ADw

77

Fig. 9 – Design of an TiCoBasic program

Declarations:

INIT:

FINISH:

Macro Functions
and Subroutines

Macro Functions
and Subroutines

Macro Functions
and Subroutines

Library
Functions and
Subroutines

#DEFINE

#INCLUDE

IMPORT

<TiCoBasic.BAS>

<TiCoBasic.INC>

<TiCoBasic.TLx>

Macro Functions
and Subroutines

DIM

EVENT:

Programming

TiCoBasic 1.0, Manual June 2010

ADw

78

5.1.1 The Program Sections
Each of the program sections (see fig. 9) start with a keyword, as
described below. All sections have the priority which is set for the pro-
cess (Process Options dialog box, page 50).

– Init: is the section being executed only once at the start of the
process. It is used for initialization e.g. of variables or of data
transfer.

– Event: is the main program section, which is (characteristi-
cally) called in regular time intervals until it is stopped. This sec-
tion is triggered by a cyclic timer event or an external event,
depending on the configuration..

– Finish: is executed only once after a process has been stop-
ped; it is, therefore, the counterpart to the initialization.

The Init: and Finish: sections are optional, while the Event:
section is not and must be included in your program. Contrary to
ADbasic, there is no section LowInit:.

5.1.2 User defined instructions and variables

Symbolic names
The instruction #Define defines symbolic names (see page 135).
Group all of these definitions at the beginning of the file and before the
start of the program sections.
Symbolic names are often used to give a name to constants, global
variables and global arrays, but also to expressions.

Arrays and Local Variables
In an TiCoBasic program the local variables and all arrays must be
declared with Dim before they can be used (see page 137). The global
variables Par_n are already pre-defined and do not need to be decla-
red. Variables and arrays have no defined contents after being decla-
red, therefore they should be initialized.
Within the process all variables and arrays are available in all program
sections. The global variables and arrays may also be accessed from

Program

TiCoBasic 1.0, Manual June 2010

ADw

79

other processes and from the TiCo processor, in order to exchange
data.

Macros
A macro function Function … EndFunction or subroutine Sub …
EndSub call inserts the macro into the program text where it is being
used (see also chapter 5.5.1 on page 99). However, the macro defini-
tion cannot be done within the program sections. (see fig. 9 on
page 77).

Libraries
Libraries must be included before the program sections that use them.
Library functions Lib_Function … Lib_EndFunction and sub-
routines Lib_Sub … Lib_EndSub, when used more than once within
a program, require less memory than similar macro functions or sub-
routines described above (see also chapter 5.5.3 on page 100).

Programming

TiCoBasic 1.0, Manual June 2010

ADw

80

5.2 Variables and Arrays

5.2.1 Overview

Variables and arrays are normally stored in the internal memory DM
(memory map, see chapter 5.3.1), if not determined explicitely.
The data type Long has a length of 32-bit.

5.2.2 Data Structures
In TiCoBasic there are two main types of data structures:

Data structure Name Data type Notes
Global variables and arrays

Variable (Sca-
lar) Par_1…Par_80 Long

Pre-defined,
not declarable,
memory area DM

System vari-
able Processdelay Long

Prozessn_Runnin
g Long

One-dimen-
sional array
(vector)

Data_1[]…
Data_16[]

Long,
Ringbuff
er

Name Data_ not
changeable, only
declaration of array
number and dimen-
sion.

Local variables and arrays
Variable
(Scalar) selectable Long must be declared

One-dimen-
sional
array (vector)

selectable Long must be declared

– variables (scalars)

Each variable can store one value only.

VAR

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

81

The maximum number of variables and array size are limited only by
the memory size of the TiCo processor.
The compiler differentiates

– Global Variables (Parameters) variables and Global Arrays
(see chapter 5.2.5 and chapter 5.2.6):

All TiCo processes as well as the ADwin CPU can access global
variables, for instance to exchange data.

System variables are global variables (see page 85).

– Local Variables and Arrays (see page 85):

Local variables are available only in the process, function, or
subroutine where they have been declared.

Variables and arrays are declared with the Dim instruction; this deter-
mines the data type, as well as the necessary memory place, and allo-
cates it to the variable name.
For easier programming, global variables Par_1 … Par_80 are
already pre-defined; thus, global variables don’t have to (and cannot)
be declared.
The compiler recognizes the declaration of global arrays by the names
Data_n, where "Data_" is a fixed text and "n" is the array index num-
ber (1...16) specified.
After declaration, variables and array elements have an undefined
value and thus should be initialized with a useful value (e.g. zero).
Exception: With the transfer of a process to the TiCo processor all glo-
bal variables Par_1 … Par_80 are automatically initialized with zero.

– arrays, one--dimensional..

An array consists of any user-defined number of ar-
ray elements, each storing one value.

One-dimensional global arrays Data_n may also be
used as FIFO (a ring buffer which works according to
the principle: First in, first out, see chapter 5.3.3 on
page 89).

ARRAY

Programming

TiCoBasic 1.0, Manual June 2010

ADw

82

5.2.3 Data Types
A data type must be indicated when declaring variables and arrays.
The compiler processes only data type Long: these are 32-bit integer
values with the ranges:

−2147483648 … +2147483647 = −231 … +2-31-1.
The next section illustrates, in which notation a numeral value can be
entered.

5.2.4 Entering Numerical Values
You can use 4 different notations in order to enter numerical values.
The following examples assign the (decimal) value 930 to a variable
x.

1. Decimal notation: x = 930

2. Expontential notation: x = 93E1

Here 93E1 stands for 93 × 101, where "E" is followed by the ex-
ponent to the basis of 10 (max. 2 decimal places).

3. Binary notation: x = 1110100010b

4. Hexadecimal notation (an h is added): x = 3A2h

If the hexadecimal value begins with a letter (A-F), a leading
zero (0) must be added: Instead of "F6h" the value must be writ-
ten "0F6h", otherwise the compiler takes the value as the name
of a local variable.

5.2.5 Global Variables (Parameters)
All running TiCo processes and the ADwin CPU can access global
variables and arrays; therefore they are ideal for data exchange bet-
ween the processes or between the processes and the ADwin CPU
(see also chapter 7.3.1 "Data Exchange between Processes").
80 integer variables as well as up to 16 arrays of the Long data type
are available. All variables and array elements have a length of 32-bit.
The System Variables, also globally available, are described on
page 85.

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

83

The global variables can be used anywhere in a program without
being declared. Since the variables have an undefined value at pro-
gram start they should be initialized with a useful value (e.g. zero).
Exception: With the transfer of a process to the TiCo processor all glo-
bal variables Par_1 … Par_80 are automatically initialized with zero.
The global variables are also termed parameters and have the names
Par_1, Par_2, …, Par_80 with the Long data type for 32-bit integer
values.

Example
Par_5 = 700 'Parameter 5 contains the
value 700.
Par_72 = ADC(1) 'The voltage at the analog
input 1

'is measured and stored
into

'parameter 72.

Contrary to other variables, global variables Par_n must not be decla-
red because they are pre-defined and are already known to the com-
piler.

5.2.6 Global Arrays
The global arrays enable the exchange of data between the processes
on the ADwin system or the ADwin CPU (see also chapter 7.3.1 "Data
Exchange between Processes"). Up to 16 arrays of the Long data
type are available.
Since size and data type are selectable, global arrays must be
declared at the beginning of a program and preferably be initialized,
too. (Else the array elements have undefined values).
The compiler recognizes the declaration of global variables by their
names Data_n, where "Data_" is a fixed text and "n" is the array
number (1…16). The names for DATA arrays are:
Data_1, Data_2, …, Data_16.

Other array numbers are not allowed. However, the declaration of non-
sequential array numbers is permissible, for instance Data_5 without

Programming

TiCoBasic 1.0, Manual June 2010

ADw

84

Data_1 … Data_4 is allowed. In your program the compiler differen-
tiates the arrays by their numbers.

Example
REM Declare the array 5 with 20000 elements of the type
Long.
Dim Data_5[20000] As Long

The maximum size of the array depends on the memory size. For
instance on a TiCo processor with 256MiB memory an array of up to
67 million elements of the Long type may be declared.
After the array has been declared, each individual element can be
accessed. The first element of an array has the index 1.
Do not assign a value to the element 0 of an array, for instance with
Data_1[0] = … .

Examples
Rem The value of the 200th element from array 5 is
assigned
Rem to the global integer variable Par_1.
Par_1 = Data_5[200]

Rem In this program line the 345th element from the
array
Rem Data_5 gets the value 4000.
Data_5[345] = 4000

A variable can be used as an index number of an array element:
'Here, too, as in the example above, the value 4000 is
'assigned to the 345th element of the array Data_5.
number1 = 345
Data_5[number1] = 4000

However, a variable cannot be used as number of an array. The follo-
wing instruction results in an error message of the TiCoBasic compiler:

num = 2
Data_num[300] = 20 'WRONG !!
Data_2[300] = 20 'CORRECT

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

85

The compiler determines Data_num to be the name of a local
array, which (probably) has not been declared and therefore is
not available. Instead, use the notation Data_2. Note the diffe-
rent syntax highlighting of the variables.

5.2.7 System Variables
In order to get information about the status of the TiCo processor the
following system variables are available. These are global variables
that can be accessed by all TiCo processes and by the ADwin CPU.
More information can be found in the description of the instructions.
Prozessn_Running

Returns the status of the process n (with n = 1…10): the pro-
cess is running, just being stopped or already stopped (see
page 183). The variable can only be read.

Processdelay

The nominal time interval, in which time-controlled processes
are called by the counter, is the processdelay (cycle time). With
the system variable Processdelay (see also page 180) you
query and set this time, measured in clock cycles of the counter.

You read and write into the variable Processdelay in the sec-
tions Init: and Event: only. But writing into the variable is
only allowed once per section, because otherwise.

Please note that the workload of the processor is at least less
than 90 percent, and must not exceed 100 percent.

5.2.8 Local Variables and Arrays
All local variables and arrays, needed for a process must be declared
before the start of the first section of the TiCoBasic program and pref-
erably be initialized, too. (Else the variables have undefined values).
Variable names can consist of any alphanumeric characters (a-z, A-Z,
or 0-9) or an undersore ("_"). Special characters like german umlauts
(Ä, Ö, Ü) are not allowed and there is no case sensitivity. The length
of variable names is only limited by the maximum line length (255
characters).

Programming

TiCoBasic 1.0, Manual June 2010

ADw

86

Variables (scalars) can be defined as integer values (type Long), 32
bits long.

Example
Rem Define the variable 'value' with data type Long
Dim value As Long

Variables may also be declared as a one-dimensional array, allowing
the user to generate and/or process an array of variables. The number
of elements to dimension in an array is put into square brackets after
the array name.

Example
Rem Define an array with the length 100, with the name
Rem 'value', and the data type Long
Dim value[100] As Long

The first element of an array has the index 1, in the example:
value[1]. The element index 0 must not be accessed at all.

5.3 Variables and Arrays – Details

5.3.1 Variables and Arrays in the Data Memory
The user can explicitly determine which memory area, internal or
external, to store arrays and local variables (see below). This alloca-
tion is made, in the source code, when the variable is declared using
the Dim statement using the additions At DM_Local or At
DRAM_Extern.
Without the use of these allocation statements, all variables and
arrays are stored in the internal memory DM.
It is recommended that the internal memory be used for variables and
(small) arrays for fast access. The slower, external memory–if exist-
ing–is more suitable for arrays, due to its size.
The fig. 10 shows examples of declarations, in order to store variables
and arrays in the different memory areas.

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

87

Fig. 10 – Allocation of the Memory Area with Declarations

The global variables Par_1…Par_80 are pre-defined in the internal
memory (DM), therefore they cannot be re-declared in the external
memory (DX).

5.3.2 Memory Areas
The TiCoprocessor uses a fast internal memory (SRAM) and–if exi-
sting–a huge external memory (SDRAM).
Half of internal memory is available as program memory PM and as
data memory DM.

Variable /
Array

Memory
Area

Source Code Declaration

Local
Variable

In te rna l
(DM)

Dim var As Long
or
Dim var As Long At DM_Local

Exte rna l
(DX)

Dim var As Long … At DRAM_Extern

Array In te rna l
(DM)

Dim array[5] As Long At DM_Local

(g loba l /
local)

Ex te rna l
(DX)

Dim array[5] As Long
or
Dim array[5] As Long At
DRAM_Extern

Programming

TiCoBasic 1.0, Manual June 2010

ADw

88

– Program memory (PM):
Program memory occupies half of the internal SRAM and con-
tains the operating system and processes.

– Internal data memory (DM)
The internal data memory occupies half of the internal SRAM
for storing the global and local variables and arrays.

– External data memory (DX, SX)
The external data memory covers the external SDRAM.

Few Pro II modules (e.g. Pro II-MIO-TiCo) use SRAM instead
of SDRAM as external data memory.

Accessing external memory is always combined with a varying
waiting time (jitter); an exception is the access with The Data
structure Ringbuffer (see page 89). Please also note
chapter 6.2.6 on page 107.

Data in the internal memory (DM) can be accessed faster than data in
the external memory (DX). Comparing external SRAM and internal
memory, the access speed is nearly equal.
Memory size (SRAM, SDRAM) is an ordering option and cannot be
upgraded.
The size of memory areas is the only limiting factor to the size of the
processes and the number of declared variables and arrays (indirectly
to the size of source files, too). In the status line of the development
environment, the amount of memory of PM, DM and DX, is displayed
in bytes.

DX:PM:

DM:

internal memory
(SRAM)

external memory
(SDRAM)

processes
and

Data

Data (va r i -
ables, arrays)

Data (SDRAM)

Data (SRAM)SX
or

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

89

5.3.3 The Data structure Ringbuffer
In order to transfer great data amounts continuously and safely, it is
recommended using a Data_n global array with the Ringbuffer
data structure: a "First In, First Out" ring buffer.
The data structure FIFO of the ADwin CPU is quite different from a
Ringbuffer. FIFO is described in the ADbasic manual.
Ring buffers are useful for several applications; however, the applica-
tions are mutually exclusive:

– The TiCo process accesses data in the external DRAM in both
directions, reading and writing via the same ringbuffer array.

– ADbasic processes (on the ADwin CPU) and TiCoBasic proces-
ses exchange data via a ringbuffer. One ringbuffer is required
for each direction of data exchange.

– Several processes on the TiCo processor exchange data with
each other via ringbuffer. Two ringbuffers are required, one for
reading and one for writing.

Using the data structure Ringbuffer is not an easy task. Wrongly
implemented, there may be errors which can hardly be tracked. The
use of the data structure Ringbuffer is therefore reserved to expe-
rienced users of ADbasic and TiCoBasic.

How does a ringbuffer work?

In a ringbuffer, data is handled in a special way; like a queue where
data is appended to the end of the queue and retrieved from the begin-
ning of the queue. Unlike a "normal" array, data in the array is not
accessed by its element number, but by the first or the last element of
the array (via a data pointer). Consequently, data elements are read
out in the same order as they were written into the array (= First In,
First Out).
Since a Ringbuffer array has a finite number of elements (which is
declared), the chain of used and unused array elements form a ring,
the ring buffer. The data pointers to the first and last used array ele-

Programming

TiCoBasic 1.0, Manual June 2010

ADw

90

ment are managed automatically when a new value is assigned to the
array or when a value is read out.
From the ring structure of the ringbuffer array it is possible for the head
of the data chain to "overtake" the data end. This can only occur when
data is written faster into the ringbuffer than it is being read out. Sub-
sequently, the earlier stored data will be overwritten and lost.

Declare and use a ringbuffer
A ringbuffer is declared with Dim:

Rem Read ringbuffer with 103 elements in external memory
Dim DATA_1[103] As Long As Ringbuffer_For_Read At
DRAM_Extern
Rem Write ringbuffer with 1000 elements
Rem in internal memory
Dim DATA_2[1000] As Long As Ringbuffer_For_Write At
DM_Local
Rem Read and write ringbuffer with 199 elements in
Rem external memory
Dim DATA_3[199] As Long As Ringbuffer_For_Read At
DRAM_Extern
Dim DATA_3[199] As Long As Ringbuffer_For_Write At
DRAM_Extern

Regarding ringbuffer sizes in external memory, please note page 186.
If no memory area is declared, the compiler uses DM_Local as
default. It is recommended to always specify the memory area on dec-
laration.
Please note: A ringbuffer array cannot be accessed as "normal" array
in the source code
A certain ringbuffer array can be accessed by indicating its array name
(with the corresponding array number).

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

91

Example
Dim DATA_5[1000] As Long As Ringbuffer_For_Read At
DM_Local
Dim DATA_5[1000] As Long As Ringbuffer_For_Write At
DM_Local
DATA_5 = 95 'Writes the value 95 into
the

'DATA_5 ringbuffer array
PAR_7 = DATA_5 'Reads a value from the
ringbuffer and

'stores it in the global
variable

'PAR_7

To ensure that the ringbuffer is not full, the Ringbuffer_Empty
function should be used before writing into it. Similarly, the
Ringbuffer_Full function should be used to check if there are
values which have not yet been read, before reading from the ringbuf-
fer.
Referring to the following rules, the external memory SRAM_Extern
and the internal memory DM_Local are regarded as a single memory
area. The SRAM_Extern replaces the excternal memory
DRAM_Extern on certain Pro II modules.
General rules for declaration of ringbuffers:

– Only 2 ringbuffer declarations are acceptable for each memory
area.

– In external memory DRAM_Extern only one ringbuffer each is
allowed for reading ond for writing.

In the memory area DM_Local + SRAM_Extern, combinations
of read and write ringbuffers are possible. Thus, you can also
use 2 read ringbuffers or 2 write ringbuffers.

– It is forbidden, to declare both, ringbuffers and normal arrays, in
external memory DRAM_Extern.

Programming

TiCoBasic 1.0, Manual June 2010

ADw

92

Example
Rem 2 ringbuffers in external memory
Rem Normal arrays are forbidden now!
Dim DATA_5[199] as long as Ringbuffer_For_Read at
dram_extern
Dim DATA_5[199] as long as Ringbuffer_For_Write at
dram_extern

Rem 2 ringbuffers in internal memory
Rem Normal arrays can be declared in addition
Dim DATA_1[200] as long as Ringbuffer_For_Read at
dm_local
Dim DATA_2[200] as long as Ringbuffer_For_Read at
dm_local
Dim DATA_3[200] as long at dm_local

Accessing external memory (DRAM)
The normal access to global and local arrays in external memory is
quite slow. In contrary, fast data exchange is possible with a ringbuffer.
Here the TiCo process writes and reads data using a single ringbuffer.

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

93

Example
Rem Write and read ringbuffer in external memory
Dim DATA_5[199] as long as ringbuffer_for_read at
dram_extern
Dim DATA_5[199] as long as ringbuffer_for_write at
dram_extern
Rem Normal arrays are forbidden now!
Dim free,used,value1 As Long

Init:
Rem Initialize read ringbuffer DATA_5
RingBuffer_Clear(5)

Event:
Rem Are there elements free for writing?
free = Ringbuffer_Empty(5,0)
If (free > 0) Then
DATA_5 = value1

EndIf
Rem Are there used elements to be read?
used = Ringbuffer_Full(5,0)
If (used > 0) Then
PAR_7 = DATA_5

EndIf

After declaration of a read ringbuffer in external memory, the ringbuffer
should be initialized with RingBuffer_Clear.

Data exchange between TiCo processes
Two TiCo processes in a project (see also chapter 7.3.1 on page 116)
can exchange data with each other via a ringbuffer continuously and
fast. The ringbuffer can be declared in the (smaller) internal memory
or in the (slower) external memory.
The data exchange works correctly only, if the data flow is unique, i.e.
the one process writes into the ringbuffer and the other process reads
from the ringbuffer. Even a change of flow is possible as long as the
data flow remains unique.
Please note: The declaration of a ringbuffer is valid for the whole
project and may therefore be written only in one of the source codes.

Programming

TiCoBasic 1.0, Manual June 2010

ADw

94

Nevertheless, all processes of a project can access the declared ring-
buffer.

Example
Process 1, which writes data:

Rem Write and read ringbuffer in internal memory
Dim DATA_5[500] as long as ringbuffer_for_read at
dm_local
Dim DATA_5[500] as long as ringbuffer_for_write at
dm_local
Dim free,value1 As Long

Init:
Rem Initialize read ringbuffer DATA_5
RingBuffer_Clear(5)

Event:
Rem Are there elements free for writing?
free = Ringbuffer_Empty(5,0)
If (free > 0) Then
DATA_5 = value1

EndIf

Process 2, which reads data:
Rem No more ringbuffers may be declared here!
Dim used As Long

Event:
Rem Ringbuffer is used, although not declared in this
Rem source code:
Rem Are there used elements to be read?
used = Ringbuffer_Full(5,0)
If (used > 0) Then
PAR_7 = DATA_5

EndIf

Data exchange with ADbasic processes
ADbasic processes (on the ADwin CPU) and TiCoBasic processes
can can exchange data with each other via a ringbuffer continuously

Variables and

TiCoBasic 1.0, Manual June 2010

ADw

95

and fast. The ringbuffer can be declared in the (smaller) internal
memory or in the (slower) external memory.
For each direction of data flow a separate ringbuffer is required, which
may be declared in TiCoBasic only. The data exchange works cor-
rectly only, if the data flow is unique, i.e. the one process writes into the
ringbuffer and the other process reads from the ringbuffer. A change
of flow is not possible.
The data exchange uses a global variable Par_n of the TiCo proces-
sor for synchronization. In ADbasic, the ringbuffer instruction writes
the current value of the write or read pointer–according to the direction
of data flow–into the variable. This ensures, that the process in TiCo-
Basic may query the number of data to read or to write.

Example
TiCoBasic process, which writes data

Rem Write ringbuffer in internal memory
Dim DATA_1[500] as long as ringbuffer_for_Write at
dm_local
Dim free,used,value1 As Long

Init:
Rem Initialize write ringbuffer DATA_1
RingBuffer_Clear(1)

Event:
Rem Are there elements free in Data_1 for writing?
Rem Par_5 contains the number of free elements and is

set
Rem in ADbasic
free = Ringbuffer_Empty(1,5)
If (free > 0) Then
DATA_5 = value1

EndIf

Programming

TiCoBasic 1.0, Manual June 2010

ADw

96

ADbasic process, which reads data (ADwin-Gold II here)
#Include ADwinGoldII.inc
Dim DATA_10[300] As Long 'array for read data
REM define settings array for TiCo
Dim tset[150] As Long 'settings array for TiCo
Dim val As Long 'error code

Init:
Rem Initialize data exchange to TiCo processor 1
TDrv_Init(1, tset)

Event:
Rem Read up to 250 values from TiCo array Data_1 and

store
Rem into Data_10. The number of free elements is

written
Rem into TiCo parameter Par_5.
val = Get_TiCo_RingBuffer(tset, 1, DATA_10, 1, 250, 1,

5, 0)
If (val > 0)
Rem Data has been read, and are processed here

EndIf

Expressions

TiCoBasic 1.0, Manual June 2010

ADw

97

5.4 Expressions

5.4.1 Evaluation of Operators
An expression is what is assigned to a variable or transferred as an
argument of an instruction. It consists of any possible combination of:

– simple data: constant, variable or array element

– operators being used for arguments.
For the evaluation of an expression, it is important to understand the
order in which the operators are used. The operators are divided into
categories, which are resolved according to priorities: A category of
higher priority is processed before a category of lower priority (see
fig. 10).

Example
var = Par_1 + Par_2 * Par_1^3 / 4

corresponds to
var = Par_1 + (Par_2 * (Par_1^3) /4)

Operator Category
" " Delimiter of character strings

TiCoBasic keyword Instruction, function, variable, etc.
= Assignment
() Parentheses
- Negation of a constant
* / Multiplication / Division operators
+ -

And Or XOr
Arithmetic operators
Binary operators

< > = Comparison operators
And Or Boolean operators

Fig. 11 – Priorities of Operator Categories
(Top = highest priority)

Programming

TiCoBasic 1.0, Manual June 2010

ADw

98

If 2 or more operators, appearing in the same line, have the same pri-
ority (or if there are the same operators), the compiler processes them
in the order they appear, from left to right.
Using a negative sign with variables, may return unexpected results,
in some cases, and can be avoided by using parentheses.

Example
var = 1/-x 'not recommended
var = 1/(-x) 'correct: negative
inverse value

Selection

TiCoBasic 1.0, Manual June 2010

ADw

99

5.5 Selection structures, Loops and Modules
When writinging extensive programs, TiCoBasic provides the follow-
ing structure elements:

– Control structures to help shorten large sections.
• Loops for sections being frequently repeated:

Do … Until or
For … Next.

• Structures for case-by-case decisions:
If … EndIf or
SelectCase … EndSelect.

– Subroutine and Function Macros to define frequently used pro-
gram sections as

• Subroutine macros with Sub … EndSub
• Function macros with Function … EndFunction

– Libraries of compiled subroutines and functions, which can be
included into a user’s source code with Import:

• Library subroutines with Lib_Sub … Lib_EndSub
• Library functions with Lib_Function …

Lib_EndFunction

– Collections of source code sections and program modules in
Include-Files, which can be included into a user’s source code
using
#Include filename.Inc

More information and examples of instructions can be found in
chapter 8 "Instruction Reference".

5.5.1 Subroutine and Function Macros
The syntax of subroutine and function macros is simple, only requiring
the terms Sub … EndSub and Function … EndFunction around
the relevant program sections, like parentheses. Contrary to subrou-
tines, functions return a value.
Source code is more clearly structured with subroutines and functions.
These subroutines and functions define macros, whose complete
instruction block is inserted (prior to compilation) into the place of the
source code, where it is called.

Programming

TiCoBasic 1.0, Manual June 2010

ADw

100

Please note: upon each subroutine or function call, the generated
binary file is increasing in size. You can use library functions or sub-
routines as an alternative (see below).
You will find more information about the structure of macro modules in
the instruction reference (page 146: Function … EndFunction;
page 202: Sub … EndSub).

5.5.2 Include-Files
Source code sections can be collected and stored in an "include" file.
Such files (as well as the source code they contain), can very easily be
included into a source code file with the #Include instruction.
The content of an include file is based on the same rules as normal
source code files. However, in most cases include files contain only
subroutine and function macros.
When an include file is generated, the source code is entered in the
same way as a "normal" TiCoBasic file but saved using the File /
Save as menu option with the Include file *.inc file type.
Depending on the include file‘s source, attention must be paid to the
position at which the file is included into another source code file, to
maintain a working program structure. If the include-file contains
function and subroutine macros, it must be included before the Init:
section or after the Finish:section.
You can also include an include-file into source codes of library files
and other include-files (nested include).
Include files installed with TiCoBasic contain only subroutine and func-
tion macros, defining instructions for hardware access. Thus, the
appropriate position for these files to be included is the beginning of
the source code (see page 77).

5.5.3 Libraries
In a library, compiled library subroutines and functions (modules) can
be assembled. With the Import instruction, the modules of a library
can be included into a process where they will be called.
The library modules are similar to the subroutine and function macros.
They are created in a source code file using the Lib_Sub …

Selection

TiCoBasic 1.0, Manual June 2010

ADw

101

Lib_EndSub and/or Lib_Function … Lib_EndFunction instruc-
tions. The library file is then compiled using the Build / Make lib
file menu option.
Also, calling library modules several times does not increase the size
of the binary file. Compared to macro functions and subroutines,
library modules require less memory when they are called more than
once. However, additional execution time is needed for calling them
(compare to chapter 5.5.1 "Subroutine and Function Macros").
Please note that a library module cannot call a library module within
the same library file. It is recommended macro functions and subrou-
tines be used instead. Alternatively, additional libraries may also be
used.
When interlacing libraries (including a library within another library),
the source code calling the libraries must include all levels (see
fig. 12), otherwise an error message will be returned by the compiler.
Recursive calls of library functions or subroutines are not allowed.
You will find more information about the structure of the library mod-
ules in the instruction reference (page 161: Lib_Function …
Lib_EndFunction; page 166: Lib_Sub … Lib_EndSub).

Fig. 12 – Interlaced Libraries

Library 1Source code of a process

Library
functions and
subroutines

<LIB2.LI?><LIB1.LI?>

<ADbasic.BAS>

...
IMPORT LIB2.LI?
IMPORT LIB1.LI?
...

IMPORT LIB2.LI?

Library
functions and
subroutines

Library 2

Optimizing

TiCoBasic 1.0, Manual June 2010

ADw

102

6 Optimizing Processes
The TiCo processor is designed to quickly and precisely execute con-
trol and measurement tasks. Depending on the requirements it may be
necessary to optimize your TiCoBasic program for a faster processing
time.
The following pages illustrate steps for optimizing a program. Many
factors determine the optimization process which needs to be consid-
ered with each individual case.

6.1 Measuring the Processing Time
For optimization it is important to measure the processing time of a
process cycle or of a program section. This can be done using the
internal counter of the TiCo processor.
The TiCo processor has an internal counter which is incremented in
clock rates of 20ns. The current counter value can be read using the
Read_Timer instruction.
After power-up, the counter is set to the value 0 (zero), then continually
incremented in fixed clock pulses.
The processing time of the program is measured as a time difference.
In the following example, the processing time of a time-critical program
section (minus an offset) is stored in the global variable Par_1.
To obtain the offset run the both Read_Timer lines in succession –
without any program lines between them – and calculate the diffe-
rence of these values. The offset is to calculate only once for the sur-
veyed program.

Useful

TiCoBasic 1.0, Manual June 2010

ADw

103

Example
Dim t1, t2 As Long

Event:
Rem …
t1 = Read_Timer()
Rem Time-critical section
Rem …
t2 = Read_Timer()
Par_1 = t2 - t1 -4 'Process time in clock pulses

'(offset = 4 clock pulses)

If Par_1 in the example above equals 37, the time-critical sec-
tion requires 37 × 20ns = 740ns.

It is also possible to measure the time difference between two external
events, in an event-driven process. In the following example the mea-
surement is stored in the global variable Par_1.

Example
Dim oldtime, time As Long

Init:
oldtime = Read_Timer()

Event:
time = Read_Timer()
Par_1 = time - oldtime
oldtime = time

6.2 Useful Information

6.2.1 Accessing Hardware Addresses
Many of the TiCo processor functions are managed by its control and
data registers. These functions can quickly be executed by directly
accessing the relevant registers with the InPeek and OutPoke
instructions. Here, "directly" means that the functions’ addresses are
not calculated in the process cycle, but passed as constant values:
saving computing time for the calculation.

Optimizing

TiCoBasic 1.0, Manual June 2010

ADw

104

The addresses for the control and data registers can be found in the
relevant hardware manual.

6.2.2 Constants instead of Variables
A calculation is executed faster when the values are specified as con-
stants and not as variables.

Example
PAR_1 = PAR_2*PAR_2 'with PAR_2=17
PAR_1 = 17*17

For the first calculation the value of the variable Par_2 must be
determined during run-time. The square must then be calcula-
ted and assigned to Par_1.
In the second calulation the compiler already has determined
the value. During run-time it will only be assigned.

6.2.3 Faster Measurement Function
With the ADC instruction, an analog-to-digital (A/D) conversion for a
channel with a specified gain is carried out. In order to make its appli-
cation easier, the instruction is kept rather simple and combines
several sequencesADC (see hardware manual for the ADwin system).
There are different situations resulting in a faster processing when
using these individual sequences, compared to using the ADC instruc-
tion.
For instance, the ADC instruction does not consider that the ADwin-
Gold II-system has two ADCs, which are able to convert two different
channels at the same time. This is illustrated in the following example:

Useful

TiCoBasic 1.0, Manual June 2010

ADw

105

Example
REM Example for Gold II
REM Set both multiplexers of the ADC to the channel 1
Set_Mux1(000b)
Set_Mux2(000b)
Rem wait for settling time
Rem …
Start_Conv(11b) 'Start conversion on both
ADCs
Wait_EOC(11b) 'Wait for end of
conversion
Par_1 = ReadADC(1) 'Read out ADC1
Par_2 = ReadADC(2) 'Read out ADC2

6.2.4 Setting Waiting Times Exactly
Using a waiting time, you can easily set an exact offset between
2 instructions, for example to bridge a fixed processing time of a hard-
ware component.
The instruction Sleep sets the waiting time exactly: The processor
stops for the pre-set time, causing the next instruction to be started
with appropriate delay.

6.2.5 Using Waiting Times
Some instructions require a certain waiting time after being called.
This time can be used for other calculations.
The Set_Mux1/2 and Start_Conv instructions require waiting time
for the settling of the multiplexer and the conversion of the ADCs.
During this waiting time, the processor is not busy and could be used
for other tasks.
More detailed information about the required waiting times for data
conversion can be found in your hardware manual.
The next example is an extension of the previous example, showing
how two measurements are executed across two separate ADCs.
Compared to the ADC instruction, this enables execution of 4 times the
number of measurements.
The key feature of the example is to carry out the individual steps in
the conversion process not sequentially but rather in parallel. The time

Optimizing

TiCoBasic 1.0, Manual June 2010

ADw

106

delay for multiplexe setting is carried out during the A/D conversion of
the other channels. Both measurement processes are overlapped:
The start of conversion for the channels 1+2 is followed by setting the
multiplexer for the channels 3+4.

Example
REM Example for Gold Rev. B
Init:
Set_Mux(000000b) 'Set Mux for first

measurement,
'channels 1+2

Sleep(140) 'Wait 14 µs

Event:
Start_Conv(11b) 'Start conversion

(channels 1+2)
Set_Mux(001001b) 'Set Mux, channels 3+4
Wait_EOC(11b) 'Wait for end of

conversion
' (channels 1+2)

Par_1 = ReadADC(1) 'Read out ADC1, channel 1
Par_2 = ReadADC(2) 'Read out ADC2, channel 2

Start_Conv(11b) 'Start
conversion(channels 3+4)
Set_Mux(000000b) 'Set Mux, channels 1+2
Wait_EOC(11b) 'Wait for end of

conversion
' (channels 3+4)

Par_3 = ReadADC(1) 'Read out ADC1, channel 3
Par_4 = ReadADC(2) 'Read out ADC2, channel 4

The Init: section sets the multiplexer up for the first measu-
rement so that the A/D is ready the first time the Event: section
is executed.

It is very important that adequate delay for the multiplexer settling time
and A/D conversions be provided or incorrect measurements or A/D
conversion failures may be obtained. There are some hints in
chapter 6.2.4 "Setting Waiting Times Exactly".

Useful

TiCoBasic 1.0, Manual June 2010

ADw

107

6.2.6 Optimization of memory access
The access to external memory is quite slow, especially with access
to single memory address. In a process with low priority, an access to
a single address in external memory can even decrease the reaction
time of a process with high priority.
In addition, the access to external memory of the TiCo processor is
always combined with a variable waiting time ("jitter"). The reason is
that the TiCo processor assumes an access to random addresses,
and therefore organizes the access completely new–with appropriate
waiting time.
The above disadvantages are avoided by the use of the data structure
Ringbuffer for the access to data in external memory. Please note:
The above disadvantages are avoided only after initialization and after
the first access with a Ringbuffer structure.
Information about the use zur of the data structure Ringbuffer is
described chapter 5.3.3 on page 89.

Processes in

TiCoBasic 1.0, Manual June 2010

ADw

108

7 Processes in the ADwin System
An ADwin system has the capability to control complex test stands
while rapidly executing measurements. Programs using an TiCoBasic
process are used to provide this capability. Within this process you can
specify how analog and digital data is processed within the TiCo pro-
cessor and how it is exchanged with external devices, e.g. to support
the ADwin CPU or to work independently.
After starting the process the program1 in the TiCo processor is (cha-
racteristically) restarted and processed in regular time intervals. This
calling of a process cycle is triggered by one of the following start
signals, called events:

1. Timer Event: A pulse of the internal counter. You determine for
each process separately in which time interval (processdelay) a
new event is triggered.

2. External Event: An external signal, which arrives at the event
input of the ADwin system. This could be for instance the pulse
of an incremental encoder.

3. The process type None (without event trigger) is only required
for special use–mostly programmed in assembler–and
excludes any other process type. If not programmed differently,
the process does not react to any event signals and is pro-
cessed only once.

You define the exact function of a process in the TiCoBasic source
code:

– The initialization in the section Init:.

– The actual function of the process cycle in the central
Event:section (event loop).

– The final processing in the Finish: section.
It is possible to control the processes from the ADwin CPU, that is the
processes are started, stopped or their processdelays changed. From
the PC you can control processes only from the development environ-

1. more precisely: the program section Event:.

Processes in

TiCoBasic 1.0, Manual June 2010

ADw

109

ment TiCoBasic.With the bootloader option, it is also possible to have
processes start automatically on power-up of the ADwin hardware.
For programming the bootloader, see chapter 4.6.2 "Programming the
TiCo bootloader", page 41.

Processes in

TiCoBasic 1.0, Manual June 2010

ADw

110

7.1 Process Management
There should be only a single process (with high priority) running on
the TiCo processor. According to your task on of the following process
types will fit:

– Timer controlled process

Besides the high priority timer controlled process, a low priority
timer controlled process is possible. A low priority process can-
not run on its own.

– Externally controlled process

The externally controlled process always has high priority.

– Process without trigger (None)

For the process without trigger the priority is of no imprtance.
It is possible to combine a timer controlled process and an externally
controlled process. Please contact our support (support@adwin.de)
for this task, so we can inform you about the required arrangements.
If you want to run more than one process at once, you have to add the
source code files to a project (see chapter 4.9.2 on page 61).

7.1.1 Timer controlled process
With a timer controlled process, a process cycle is triggered regularly
by a pulse of the internal counter. The time interval between two
pulses called cycle time or processdelay and can be set in units of
20ns (see also chapter 5.2.7 on page 85).
Besides the high priority timer controlled process, a low priority timer
controlled process is possible. Set the process priority in the menu
"Options \ Process Options".

mailto:support@ADwin.de

Process

TiCoBasic 1.0, Manual June 2010

ADw

111

The process with high priority is processed preferentially:

– The output of signals can be set in intervals of 20ns without jit-
ter.

– The maximum latency from the process call by an event signal
until execution of the process begins is 120ns.

– A high-priority process cycle cannot be interrupted and is
always completely processed. During this time all process
cycles with low-priority are blocked.

Even a stop instruction cannot interrupt a running, high-priority
process cycle: the system will complete the current high priority
process cycle before proceeding.

A low-priority process cycle will be interrupted at the time when
a high-priority process cycle is started and as long until it has
finished.

Have time-critical tasks run in a high-priority process and other tasks
with low priority, so the processor can run time-critical cycles without
trouble.

7.1.2 Externally controlled process
With an externally controlled process, a process cycle is triggered by
an external signal.
The externally controlled process always has high priority:

– The output of signals can be set in intervals of 20ns without jit-
ter.

– The maximum latency from the process call by an event signal
until execution of the process begins is 120ns.

– A high-priority process cycle cannot be interrupted and is
always completely processed.

Even a stop instruction cannot interrupt a running, high-priority
process cycle: the system will complete the current high priority
process cycle before proceeding.

The calling event signal is set very flexibly via a hardware address.
The value in the hardware address and a bit mask are processed in a

Processes in

TiCoBasic 1.0, Manual June 2010

ADw

112

bitwise AND operation. The result is compared to a fixed value via an
operator (<, >, =); if the comparison is true, an event signal is triggered.
For the settings see Process Options dialog box on page 50.
The hardware addresses are different for each ADwin hardware.

Example: The above settings masks the value of address 70h with
12h, so only the bits 2 and 5 remain unchanged. If the result is > 0
(operation and value), that is one of the two bits is set, an event
signal is triggered and thus a process cycle started. Be it that the hard-
ware address is a register for digital inputs, any high level pulse on one
of the two digital inputs–related to the bits 2 and 5–will trigger a pro-
cess cycle.

7.1.3 Process without trigger (None)
The process type None (without trigger) is only required for special
use–mostly programmed in assembler–and excludes any other pro-
cess type. The use is recommended for very experienced users only.
The process does not react to any event signals but starts running as
soon as it is transferred to the TiCo processor or by the bootloader
function. The program is processed only once, it does not repeat pro-
cessing from the start.
In order to run the program more than once, loops can be pro-
grammed.
The process type None has influence to the operating system. Thus,
processes can neither be started or stopped externally, nor can the
cycle time of processes be changed.

Time

TiCoBasic 1.0, Manual June 2010

ADw

113

Please note special characteristics for programming:

– The program has no sections, the key words Init:, Event:
and Finish: are therefore invalid and generate a compiler
error message.

– The instruction End has no function.

– Insert an endless loop at the end of a program. Otherweise
unforseen problems may occur. An endless loop can llok like
this:
Do
Until (1 = 2)

The programming with assembler is described in a separate manual.

7.2 Time Characteristics of Processes

7.2.1 Processdelay
The time interval, in which time-controlled process cycles are called by
the counter, which is the cycle time of the event section of the process.
It is usually measured in clock cycles of the system clock and called
Processdelay. The process delay of each process is specified by set-
ting the value of the system variable Processdelay. (see also
page 180).
One timer interval has 20ns.
For instance, a processdelay with the value 1250 means that a pro-
cess is called in time intervals of 1250 × 20ns = 25µs. You can specify
this event interval in the program line:

Processdelay = 1250

The processing time of a process cycle must not, even under worst
case circumstances, be higher than the cycle time, so that each pro-
cess cycle can be called at the time specified (with Processdelay).
Differences in the computing time may arise from different program
sections which are run conditionally. (If, Case).

Processes in

TiCoBasic 1.0, Manual June 2010

ADw

114

Fig. 13 – Processdelay and processing time

Example
If an extensive calculation is executed only every, say 1000
measurements, then the long processing time of this process
cycle must be shorter than the cycle time. In order to obtain
short process cycles one alternative is to divide the calculations
into small steps and to process a step in each process cycle.
Thus the process cycles have a consistent, short processing
time.

7.2.2 Workload of the TiCo processor
The workload of the TiCo processor is the ratio of the computing time
used to the available computing time, indicated in percent.
You can monitor the workload of the processor in the status line dis-
play Busy within the development environment (see chapter 4.9.6).
This value gives you an indication if the processor still has enough
computing time available to complete all of the required activities.
The workload of the processor should exceed 90 percent only in
exceptional cases and must not exceed 100 percent.

7.2.3 Different Operating Modes in the Operating System
The operating system handles the timing of a timer controlled process
and an externally controlled process differentyl. In an externally con-
trolled process single event signals can be lost, in a timer controlled
process normally not.

Processdelay
(cycle time)

Processing time

125 µs 200 µs175 µs150 µs

Processor free

Process 2

Time

TiCoBasic 1.0, Manual June 2010

ADw

115

Timer controlled process
In a timer controlled process each process cycle is normally called at
the predefined time (via Processdelay, page 113). Sometimes this
timing misses, e.g. because the processing of a process cycle took
longer than the set cycle time; in this case the timer event signal "accu-
mulate".
The operating system is making up accumulated timer event signals,
by calling process cycles without pause, until the originally set timing
pattern is reached. This is also true for a low priority process as long
as no high priority process is active.

If accumulated timer event signals have to wait more than 42.9 sec-
onds for being processed, these event signals cannot be made up any
more. If a delay of such size appears, you have to check the general
timing of the process: Probably the process cycle regularly takes
longer than the cycle time. In this case you can enlarge the cycle time
or shorten the processing time of the process cycle by suitable pro-
gramming.

Externally Controlled Process
In an externally controlled process incoming event signals are pro-
cessed very fast, but in special situations single event signals can be
lost.
The operating system uses a hardware register to store external event
signals. If an event signal has arrived, the operating system immedi-
ately starts a process cycle, except a high priority process is currently
being processed. In this case the register serves as buffer for the
event signal, and the operating system starts the next process cycle
immediately after the currently processed cycle has finished.

very long cycle

Processdelay
(cycle time)

start delayed
start in time

Processes in

TiCoBasic 1.0, Manual June 2010

ADw

116

An external event signal is a rather important information–in particular,
because it cannot be predefined by the ADwin system–and must not
get lost. Therefore note to have short process cycles in this process (in
the section Event:).

7.3 Communication

7.3.1 Data Exchange between Processes
Data can be exchanged between different TiCo processes via global
variables (Par_n) or global arrays (Data_n).
If global arrays are used in several processes, they have to be
declared identically in each process. In this case it is practical to save
these declarations of global arrays into an include file and include the
file into all of these processes (see also chapter 5.5.2 "Include-Files").
This is different for The Data structure Ringbuffer (see chapter 5.3.3
on page 89); in this case the declaration may only be done once in a
project.
Global variables can be used by one process to control a process run-
ning simultaneously.

Example
Process 1 is a function generator and Process 2 is a controller.
The function generator regularly writes the generated value into
the global variable Par_10. At every event loop the controller
process reads out the global variable Par_10 and uses its con-
tents as setpoint of the control loop.

Thus the function generator very easily controls the setpoint of
the controller. All local variables and arrays of Process 1 are
hidden from Process 2 (and vice versa). Take into account that
the timing characteristics of both processes must be consid-
ered.

7.3.2 Communication with the TiCo processor
From the PC there is no direct access to the TiCo processor, access
is only possible from the ADwin CPU. The ADwin CPU can control pro-

Communicatio

TiCoBasic 1.0, Manual June 2010

ADw

117

cesses of the TiCo processor as well as read from or write data to the
TiCo. The TiCo processor itself does not communicate actively.
In order to exchange data between PC and TiCo processor, the ADwin
CPU has to be configured as intermediate station. Here, a process on
the ADwin CPU–which you have to set up on your own–exchanges
data and control signals. The same principle is used for the data flow
in the development environment TiCoBasic.
All data exchange is made via global variables (Par_n, FPar_n) or
global arrays (Data_n). This refers also to the Data Exchange bet-
ween Processes (see above).

Communikation between PC and ADwin CPU
The communication to the ADwin CPU is managed under Windows
with the ADwin32.dll (dynamic-link library). In the ADwin CPU a
communication process is responsible for this task.
If you are working with the ActiveX interface, the latter is responsible
for the communication with the ADwin CPU. Internally the ActiveX
interface transfers or gets the data via the ADwin32.dll.
The ADwin32.dll has the following tasks:

– Communication with the connected ADwin system Ethernet
(TCP/IP).

– Recognizing and handling of communication errors.

– Blocking several computer applications if they want to access
the same system at the same time.

With the blocking mechanism several applications can simulta-
neously access one or more ADwin systems independent of
each other.

If a computer application starts the communication to a system, it
transfers a device number in addition to the specified instruction. The
ADwin32.dll uses this "Device Number" to differentiate between the
various ADwin systems and assign the corresponding configurations.

Processes in

TiCoBasic 1.0, Manual June 2010

ADw

118

7.3.3 Communication between ADwin CPU and TiCo Processor
The ADwin CPU can control processes of the TiCo processor as well
as read from or write data to the TiCo. The TiCo processor itself does
not communicate actively.
The ADwin CPU can access the TiCo processor with ADbasic instruc-
tions and perform the following actions:

– Initlialize data access

– Read and write global variables Par_1…Par_80.

– Read and write global arrays Data_1…Data_16.

– Read and write ringbuffers and query status.

– Set and read processdelay of a TiCo process.

– Start and stop TiCo processes.

– Start, stop and reset processor.

– Query system information.

– Transfer a binary file.
You find a detailed description of the instructions here:

– ADwin-Gold II: chapter 8.3 on page 206.

– ADwin-Pro II: chapter 8.4 on page 254.

7.3.4 The Device Number
Each ADwin system connected to a computer is accessed via a
unique device number (unique to the PC).
You set the device number with the program ADconfig: .
In ADconfig you link a Device Number with the communication para-
meters, which define how a system can be accessed (Ethernet). This
is the information the ADwin32.dll needs in order to being able to
communicate with the system.

Instruction Reference

TiCoBasic 1.0, Manual June 2010

ADw

119

8 Instruction Reference
Below, the available TiCoBasic instructions for TiCo processors are
listed. Instructions for inputs/outputs be found in the hardware manual.
The instructions are listed in alphabetical order. In the annex there are
instruction overviews sorted by ADwin system and by alphabet.
In chapter 8.3 and chapter 8.4 the TiCoBasic instructions are listed
which allows the ADwin CPU access the TiCo processor; the instruc-
tions are listed separately for ADwin-Gold II and ADwin-Pro II.

8.1 Instruction Syntax
Please note:

– Any expressions can be used as arguments.

– Some arguments require a specified data structure, which are
labelled as follows:

– The expected data type is given for each argument and for a
function’s return value:

– Some instructions can only be used, when a specific library or
Include file is included. Under Syntax the relevant include-
instruction is indicated (place this command line at the begin-
ning of the source code).

We assume that the necessary library or include file is located
in the directory, which is set under the Options Settings
menu, Directory item, (see also the instructions #Include
or Import).

CONST constant numbers such as 35, and expres-
sions without variables.

VAR variable or array element.
ARRAY array, also identified in the command syntax

by its brackets [] after the array name.

LONG integer number
LOGIC logic expression in a condition

Basic Instructions TiCoBasic

TiCoBasic 1.0, Manual June 2010

ADw

120

8.2 Basic Instructions TiCoBasic
The instructions in this section are valid for all TiCo processors.

+ Addition

TiCoBasic 1.0, Manual June 2010

ADw

121

+ Addition
The "+" operator adds two values.

Syntax
ret_val = val_1 + val_2

Parameters

Notes
- / -

See also
- Subtraction, * Multiplication, / Division, ^ Power

Example
Par_1 = 9 + 4 'Par_1 = 13

val_1 Addend 1. LONG

val_2 Addend 2. LONG

- Subtraction

TiCoBasic 1.0, Manual June 2010

ADw

122

- Subtraction
The "-" operator subtracts one value from another.

Syntax
val = val_1 - val_2

Parameters

Notes
- / -

See also
+ Addition, * Multiplication, / Division, ^ Power

Example
Par_1 = 9 - 4 'Par_1 = 5

val_1 Minuend. LONG

val_2 Subtrahend. LONG

* Multiplication

TiCoBasic 1.0, Manual June 2010

ADw

123

* Multiplication
The "*" operator mulitplies two values.

Syntax
val = val_1 * val_2

Parameters

Notes
- / -

See also
+ Addition, - Subtraction, / Division, ^ Power

Example
Par_1 = 9 * 4 'Par_1 = 36

val_1 Multiplicator 1. LONG

val_2 Multiplicator 2. LONG

/ Division

TiCoBasic 1.0, Manual June 2010

ADw

124

/ Division
The "/" operator divides one value by another.

Syntax
val = val_1 / val_2

Parameters

Notes
Please note, that a division is executed without rest.

If the divisor is a variable with a negative sign, you should use
braces to ensure you get the expected result (see also
chapter 5.4.1 "Evaluation of Operators" on page 97).

See also
+ Addition, - Subtraction, * Multiplication, ^ Power

Example
Par_1 = 36 / 4 'Par_1 = 9
Par_2 = 2 / 4 * 5 'Par_2 = 0 -> integer
calculation
Par_3 = 27 / (-Par_1) 'Par_3 = -3
Rem Please note the braces in the last line

val_1 Dividend. LONG

val_2 Divisor. LONG

^ Power

TiCoBasic 1.0, Manual June 2010

ADw

125

^ Power
The "^" operator calculates the value of a number raised to a power.

Syntax
val = val_1 ^ val_2

Parameters

Notes
If the basis and/or the exponent are a variable with a negative
sign, you should use braces to ensure the sign will be consid-
ered upon exponentiation (see also chapter 5.4.1 "Evaluation of
Operators"). This is not necessary with constants.
var1 = -2^2 'var1 = 4
var2 = -var1^2 'var2 = -16
var3 = (-var1)^2 'var3 = 16

Polynoms are calculated quicker, if you reduce powers by fac-
toring out receiving a multiplication.
y = a + b*x + c*x^2 + d*x^3 +e*x^4 'slower version
y = a + x*(b + x*(c + x*(d + x*e))) 'quicker version

See also
+ Addition, - Subtraction, * Multiplication, / Division

Example
Par_1 = 9 ^ 4 'Par_1 = 6561

val_1 Basis. LONG

val_2 Exponent. LONG

#…, Preprocessor Statement

TiCoBasic 1.0, Manual June 2010

ADw

126

#…, Preprocessor Statement
An TiCoBasic instruction beginning with the "#" sign instructs the pre-
processor to treat the following source code differently. The output of
the preprocessor is further processed by the compiler.
The following preprocessor statements are available:

#Define Definition of symbolic constants: Search and
replace character strings in the source code with
other character strings.

#Include Include a file: Insert a file (with source code) into
the source code.

#If…#EndI
f

Conditional compilation: If the condition is true the
corresponding code lines are compiled, otherwise
deleted.

: Colon

TiCoBasic 1.0, Manual June 2010

ADw

127

: Colon
The sign ":" separates more than one instruction within a single line.

Syntax
[Step_1] : [Step_2] {: [Step_3] …}

Notes
[Step_n] refers to any program instruction as is otherwise in-
dicated in one individual program line.

A program line must not be longer than 255 characters (excep-
tion see #Include on page 158).

It is recommend that you use this instruction only when it makes
the source code more clearly-structured.

Example
Inc Par_1 : Inc Par_2
'Increase Par_1 and Par_2 in *one* line

=, Assignment

TiCoBasic 1.0, Manual June 2010

ADw

128

=, Assignment
The operator "=" assigns the result of the expression on the right side
of the operator to the variable or the array element on the left side of
the operator.

Syntax
var = expr

Parameters

Notes
- / -

Example
Dim val_1, val_2 AS Long'Declaration

Init:
val_1 = 69 'Assignment of a constant

Event:
val_2 = val_1 * 2 'Assignment of an

expression

var Variable or array. VAR

LONG

expr Expression. LONG

< = > Comparison

TiCoBasic 1.0, Manual June 2010

ADw

129

< = > Comparison
The operators "<", "=" and ">" are used to compare two values. In
TiCoBasic these operators can only be found in conditional expressi-
ons.

Syntax
If (val_1 > val_2) Then

Parameters

Notes
The following comparisons are possible:

See also
If … Then … {Else …} EndIf, #If … Then … {#Else … } #EndIf

Example
Dim value AS Long
Event:
value = -5

 If (value < 0) Then value = 0
Rem Result: value = 0

val_1 Operand. LONG

val_2 Operand. LONG

Operator Meaning
< less than
<= less than or equal to
> greater than
>= greater than or equal

to
= equal to
<> not equal to

AbsI

TiCoBasic 1.0, Manual June 2010

ADw

130

AbsI
AbsI provides the absolute value of a long variable.

Syntax
ret_val = AbsI(value)

Parameters

Notes

The smallest negative integer value -231 has no positive coun-
terpart in TiCoBasic; the absolute value of -231 is therefore un-
defined.

See also
- / -

Example
Dim val_1, val_2 AS Long

Event:
 val_1 = -5
 val_2 = AbsI(val_1) 'Result: val_2 = 5

value Argument: −(231-1) … +231-1. LONG

ret_val Absolute value of the argument (0 … +2-31-1). LONG

And

TiCoBasic 1.0, Manual June 2010

ADw

131

And
The operator And combines two integer values bit by bit or two Bool-
ean expressions as Boolean operator.

Syntax
var = val_1 And val_2 'bitwise
operator

If ((expr1) And (expr2)) Then 'Boolean
operator

Parameters

Notes
With And you can only combine expressions of the same type
(integer or Boolean) with each other, mixing them is not possi-
ble.

You can use Boolean operators only in statements such as If
… Then … Else or Do … Until (variables cannot have Boo-
lean values).

If you use several Boolean operators in one line, you have to put
each operation into separate parentheses. This is not neces-
sary for combining integer values.

See also
Not, Or, XOr

val_1, val_
2

Integer value. LONG

expr1,
expr2

Boolean operator with the value "true" or "false". LOGIC

And

TiCoBasic 1.0, Manual June 2010

ADw

132

Example
Rem Bitwise operator of long variables
Dim val_1, val_2, val3 AS Long
val_1 = 0100b '= 4
val_2 = 0110b '= 6
val3 = val_1 And val_2 'bitwise operator
Rem Result: val3 = 0100b = 4

Or:
Rem Boolean operation of Boolean expressions
Dim val_1, val4 AS Long
val_1 = 314

Rem Boolean operation: (true And true) = true
If ((val_1 < 910) And (val_1 > 310)) Then
val4 = 1

Else
val4 = 0

EndIf 'Result: val4 = 1

Data_n

TiCoBasic 1.0, Manual June 2010

ADw

133

Data_n
The Dim Data_n[…] As … instruction dimensions a global DATA
array.
More information about dimensing see page 137.

Syntax
Dim Data_n[dim1] AS Long

{AT <mem_type>}

Parameters

Notes
You can access the array elements 1…Dim. The array element
[0] must not be used since it is used for internal purpose.

The maximum array size depends on the available physical
memory size of the TiCo processor.

See also
Dim, Ringbuffer, "Global Arrays" on page 83, "Variables and Ar-
rays in the Data Memory" on page 86

Example
Rem Dimension the global array Data_15 with
Rem 1000 long elements
Dim Data_15[1000] AS Long

Data_n Name of the declared DATA array (n: 1…16).

dim1, dim2 Array size: Number (≥1)of the array elements of
the type Arr_type.

CONST

LONG

<mem_
type>

memory, where the array elements are stored:
DRAM_EXTERN: external data memory.
SRAM_Extern: external data memory in Pro II

modules (instead of DRAM).
DM_LOCAL: internal data memory (default).

Dec

TiCoBasic 1.0, Manual June 2010

ADw

134

Dec
Dec decrements the value of aLong-variable by 1.

Syntax
Dec(var)

Parameters

Notes
Dec(var) provides the same result as the program line:
val=val-1 and it may have shorter execution time.

See also
Inc, - Subtraction

Example
Dim index AS Long
Dim Data_1[1000] AS Long

Init:
index=1000

Event:
DAC(1,Data_1[index]) 'Output the value on DAC1
Dec(index) 'Decrement the index by 1
If (index<1) Then
index=1000 'Start again after 1000

outputs
EndIf

var Name of a local or global Long-variable. VAR

CONST

LONG

#Define

TiCoBasic 1.0, Manual June 2010

ADw

135

#Define
#Define replaces a symbolic name in the source code with an
expression, for instance a constant.

Syntax
#Define name expression

Parameters

Notes
Place this instruction at the beginning of a source code.

The function #Define is a preprocessor instruction, that
means the replacement is made when you compile the source
code (even before the compiler generates the program). Use
this function in order to use more descriptive names in the
source code instead of constants, parameters or expressions.

The first string up to a blank is interpreted as symbolic name,
the following text until the carriage return is interpreted as an ex-
pression to be inserted1. The expression is inserted exactly as
you have defined it; variable names in the expression are not re-
placed by their value, but as a character string.

Neither name nor expression are case-sensitive.

If you want to use a mathematical term for expression, we
recommend it be placed in parenthesis to avoid errors (see ex-
amples).

name Symbolic name, without quotation marks.
Special chars are not allowed, only alphanumeric
characters (a…z, A…Z, 0…9) and the underscore
(_).

CONST

STRING

expressio
n

Expression for the symbolic name, without quota-
tion marks.
All characters are allowed.

CONST

STRING

1. Text behind a comment char "'" will be ignored by the compiler.

#Define

TiCoBasic 1.0, Manual June 2010

ADw

136

See also
#Include

Example
#Define setpoint Par_1 'Comments like this are
ignored
#Define measured Data_1
#Define const 12441223

With these instructions you can use the names setpoint,
measured and const in the source code instead of Par_1,
Data_1 and the number.

#Define setpoint (13 + 4^3)
Par_1 = 2 * setpoint '= 2 * (13 + 4^3)

Without the parentheses in the #Define expression you would
get the value "90" instead of the expected "154".

Dim

TiCoBasic 1.0, Manual June 2010

ADw

137

Dim
Dim declares one or more

– local variables

– local one-dimensional arrays

– global one-dimensional arrays Data_n[n] (also ringbuffer
arrays)

Information about variables and data types can be found in
chapter 5.2.3, information about. ringbuffer arrays under the heading
Ringbuffer on page 186.

Dim

TiCoBasic 1.0, Manual June 2010

ADw

138

Syntax
Dim var1 {, var2, …} AS Long

Dim array1[dim1] AS Long
{AT <MEM_type>}

Dim Data_n[dim1] AS Long
{As Ringbuffer_For_Read / Ringbuffer_For_

Write} {AT <MEM_type>}

Parameters

Notes
The global variables Par_n must not be declared, because
they are predefined.

If you want to access data from the ADwin CPU or from several
processes, you can only do this by using global variables and
arrays.

A fast data exchange is enabled using ringbuffers, either bet-
ween ADwin CPU and TiCo processor or between TiCo proces-
sor and external memory.

Using the data structure Ringbuffer is not an easy task.
Wrongly implemented, there may be errors which can hardly be
tracked. The use of the data structure Ringbuffer is therefore

var1, var2 Names of the declared variables.

array1 ,
Data_n

Names of the declared arrays. For Data_n you
can select n from 1…16.

dim1, dim2 Array size: Number (≥1) of the array elements of
the type Long.

CONST

LONG

<mem_
type>

Memory where the variables are stored:
DRAM_EXTERN: external memory.
SRAM_Extern: external data memory in Pro II modules

(instead of DRAM).
DM_LOCAL:local memory (default).

Dim

TiCoBasic 1.0, Manual June 2010

ADw

139

reserved to experienced users of ADbasic and TiCoBasic.
Please note the hints in chapter 5.3.3 on page 89.

In an array you can access the elements 1…Dim. The array ele-
ment [0] must not be used, because it is used for internal pur-
poses.
The maximum array size depends on the physical memory on
the TiCo processor.

See also
Data_n, Event:, Ringbuffer, Finish:, Init:, "Variables and Arrays
in the Data Memory" on page 86

Example
Rem Dimension var1 as long variable
Dim var1 AS Long

Rem Dimension the local array "array1" with 1000 long
elements
Dim array1[1000] AS Long

Rem Dimension the global array Data_20 with
Rem 1007 Long elements as ringbuffer for read
Dim DATA_20[1007] AS Long AS Ringbuffer_For_Read

Do … Until

TiCoBasic 1.0, Manual June 2010

ADw

140

Do … Until
Do…Until repeatedly executes a block of instructions until the Exit
condition evaluates to "true". The block is executed at least one time.

Syntax
Do

… 'Instruction block

Until (condition)

Parameters

See also
< = > Comparison, And, Or, For … To … {Step …} Next, Select-
Case

Notes
You can nest Do…Until loops repeatedly; only the available
memory size will limit the number of nested loops.

Avoid loops with long execution times in high-priority process-
es, because they cannot be interrupted.

condition Boolean abort condition with the operators <, >, =,
AND and OR.

LOGIC

Do … Until

TiCoBasic 1.0, Manual June 2010

ADw

141

Example
Dim count AS Long
Dim DATA_1[103] AS Long AS Ringbuffer_For_Write

Init:
count = 1

Event:
Do 'Start loop
Data_1 = ADC(1,4) 'Read out measurement

value
Inc count 'Increase count variable

Until (count > 103) 'Are 100 measurements
being made?

End

TiCoBasic 1.0, Manual June 2010

ADw

142

End
End ends a process.

Syntax
End

Notes
End stops the processing of a section immediately. End is valid
in all program sections.

If used in the Event: section, it starts processing the section
Finish: (if existing). Any instructions in the Event: section
following the End instruction are not processed.

See also
ProcessN_Running

Example
Event:
If (ADC(1) > 3000) Then'Measure and compare
End 'End process, but execute

Finish:
EndIf

Finish:
SET_DIGOUT(1) 'Set digital output 1

Event:

TiCoBasic 1.0, Manual June 2010

ADw

143

Event:
The keyword Event: marks the start of the main program section,
which is called every Event signal.

Syntax
Event:

Parameters
- / -

Notes
See also overview of program sections in chapter 5.1.1 on
page 78.

The program section Event: is the central functional section,
which in a process is called in (typically) regular intervals, until
it is stopped. Depending on the settings the call is triggered by
a cyclic timer Event signal or by an external Event signal. See
more in chapter 7 "Processes in the ADwin System".

With processor module Pro-CPU T11, the memory area can
only be set starting with revision E04.

See also
Dim, Init:, Finish:

Example
Dim val_1 AS Long

Event:
val_1 = -5

Finish:

TiCoBasic 1.0, Manual June 2010

ADw

144

Finish:
The key word Finish: marks the start of the finishing program sec-
tion.

Syntax
Finish:

Parameters
- / -

Notes
See also overview of program sections in chapter 5.1.1 on
page 78.

The program section Finish: is run once as soon as the pro-
cess is stopped.

After having processed the last instruction in the Finish: sec-
tion, there will be a certain delay until the process status "stop-
ped" is valid.

In contrary to ADbasic, the program section Finish: has the
priority, which is selected for the process.

With processor module Pro-CPU T11, the memory area can
only be set starting with revision E04.

See also
Dim, Init:, Event:, ProcessN_Running

Example
Dim val_1 AS Long

Finish:
val_1 = -5

For … To … {Step …} Next

TiCoBasic 1.0, Manual June 2010

ADw

145

For … To … {Step …} Next
The For…Next instruction creates a program loop which executes a
specified number of times.

Syntax
For i = X To Y {Step Z}

… 'instruction block

NEXT i

Parameters

Notes
The instruction block is executed at least once, even if the start
value X is greater than the end value Y.

Declare the count variable as Long variable.

A high priority process cannot be interrupted by another pro-
cess, which is also true while executing a time intensive For …
Next loop. Since the TiCo processor cannot respond to other
events in this time, it is important to keep the number of loops
small for high priority processes.

See also
Do … Until, If … Then … {Else …} EndIf, SelectCase

Example
- / -

i Count variable. LONG

X Start value of the run variable. LONG

Y End value of the run variable. LONG

Z Step length (≥1) of the run variable; default: 1. LONG

Function … EndFunction

TiCoBasic 1.0, Manual June 2010

ADw

146

Function … EndFunction
Function…EndFunction is used to define a function macro with
passed and returned values.

Syntax
Function macro_name({val_1, val_2, …}) AS Long

{Dim var AS Long}

… 'instruction block

macro_name = … 'assign return value

EndFunction

Parameters

Notes
You will find general information about macros in chapter 5.5.1
on page 99.

This instruction defines a function macro, which means that the
whole instruction block between Function and EndFunction
is inserted any place where the macro is called.

Functions help to make your source code more clearly-struc-
tured. Please note that each function call will increase the size
of the compiled file.

macro_
name

Name of the function and of the return value, data
type Long.

val_1, val_
2

Names of passed parameters;
for arrays use the syntax with dimension brackets:
array[] or Data_n[].

LONG

Function … EndFunction

TiCoBasic 1.0, Manual June 2010

ADw

147

You may insert functions at the following 3 locations:

1. Before the section Init:

2. After the section Finish:

3. In a separate file which you Include with #Include (only in
locations described in 1. and 2.).

Please note the following when defining functions:
• no process sections such as Init:, Event:, or Finish:

can be defined.
• local variables can be defined at the beginning, which are

only available in the function and for the processing period.
This is true even when a variable has the same name as a
variable outside of the function.

• a value should be assigned to the function name, which will
be the returned value for the function in the source code.

A function is called with its name and with the arguments you
have defined; the function must be used as argument in the cal-
ling program line, e.g. in an assignment (see example). All ex-
pression types (including one- and two-dimensional arrays) are
allowed as arguments, as long as they have the appropriate
data type.
If you don’t define arguments you neverthelesse have to use the
(empty) braces for the function’s call: name().

If an array is used as a passed parameter the syntax is different
for call and definition:

• call of function without dimension brackets:
ret_val=name(array_pass)

• definition of function with dimension brackets:
Function name(array_def[]) …

Values are assigned to elements of passed arrays as usual:
array_def[2] = value

If a value is assigned to a passed parameter x within the
function, the function’s call must not use a constant x, but a va-

Function … EndFunction

TiCoBasic 1.0, Manual June 2010

ADw

148

riable or a single array element. If so, a passed parameter can
be used to hold a return value.

If a passed parameter is part of an expression inside a function
the parameter should be set in braces. This avoids problems
with the order of operator evaluation.

See also
#Include, Sub … EndSub

Example
Function sumsquare(w1, w2, w3) AS Long
Rem The function calculates the square of the sum of the
Rem values w1, w2 und w3
Dim sum AS Long
sum = w1 + w2 + w3
sumsquare = sum * sum

EndFunction

Calling the function e.g. is done by the following program lines:
x = sumsquare(x1, x2, x3)
DAC(1,sumsquare(x1, x2, x3))

The same function with an array as passed parameter:
Function sumsquare_array(array[]) AS Long
sum = array[1] + array[2] + array[3]
sumsquare_array = sum * sum

EndFunction

Calling this function is made in a similar manner (but without di-
mension brackets):
x = sumsquare_array(array)
DAC(1,sumsquare_array(array))

For array you can indicate a global or a local array. Enter the
array name only, without element number and brackets.

If … Then … {Else …} EndIf

TiCoBasic 1.0, Manual June 2010

ADw

149

If … Then … {Else …} EndIf
The If…Then control structure is used to conditionally execute a sin-
gle instruction (If…Then…) or a block of instructions (If … Then …
Else … EndIf).

Syntax
If (condition) Then

… 'Instruction block

{Else 'the Else-block is optional

… 'Instruction block }

EndIf

or

If (condition) Then instr

Parameters

Notes
You can nest If structures repeatedly; only limited by the avail-
able memory.

The instruction block after Else (if there is one) is executed fa-
ster than the one after If…Then. This can be used to speed up
the total execution time of the Event:section, by putting the
condition that has most common state, int ehe Else statement,
for instance when you check if limit values are exceeded.

In the single-line version, the instruction cannot call a subrouti-
ne macro (Sub) nor a function macro (Function).

condition Boolean condition with the operators <, >, =, AND
and OR.
If the condition is "true" the instructions after Then
are executed.

LOGIC

instr Instruction (corresponds to an instruction line).

If … Then … {Else …} EndIf

TiCoBasic 1.0, Manual June 2010

ADw

150

See also
< = > Comparison, And, Or, Do … Until, SelectCase

Example
Dim val AS Long 'Declaration

Event:
val = ADC(1) 'Acquire measurement

value

If (val > 3000) Then 'Limit value is exceeded:
CLEAR_DIGOUT(1) 'Reset DIGOUT 1
SET_DIGOUT(0) 'Set DIGOUT 0

Else 'Limit value is not
exceeded:

CLEAR_DIGOUT(0) 'Reset DIGOUT 0
SET_DIGOUT(1) 'Set DIGOUT 1

EndIf 'End of control structure

#If … Then … {#Else … }

TiCoBasic 1.0, Manual June 2010

ADw

151

#If … Then … {#Else … } #EndIf
This preprocessor structure is used to conditionally compile a block of
instructions (#If…Then…#Else…#EndIf).

Syntax
#If condition Then

… 'instruction block

{#Else 'the Else-block is optional

… 'instruction block}

#EndIf

Parameters

Notes
The condition may only use the operator "="; neither Boolean
conditions using AND and OR nor bracing is allowed. You can
nest #If structures repeatedly; only limited by the available
memory.

condition Boolean condition (no braces or quotation marks)
of the form:
<SYSPAR> = value

If the condition is "true" the instructions after Then
are executed.
The system parameter <SYSPAR> and the corre-
sponding value are shown in the table below:

LOGIC

<SYSPAR> value Meaning
ADwin_
SYSTEM

ADWIN_GOLDII
ADWIN_PROII

"System" setting in the window
"Compiler Options".

Processor TiCo1 "Processor" setting in the
w indow "Compiler
Options".

#If … Then … {#Else … }

TiCoBasic 1.0, Manual June 2010

ADw

152

There is no single-line version as with If…Then.

When calling the compiler via Command Line Calling (see page
A-9) the system parameters refer to the command line options
/Sx and /Px.

See also
< = > Comparison, If … Then … {Else …} EndIf

Example
Rem set Processdelay to 800µs
#If Processor = TiCo1 Then
Rem 800µs = 40000 x 20ns
Processdelay = 40000

#EndIf

Import

TiCoBasic 1.0, Manual June 2010

ADw

153

Import
Import includes functions and subroutines from the specified library
file during compilation.

Syntax
Import {path}file

Parameters

Notes
General information about include files to be found in
chapter 5.5.2 on page 100.

Insert Import instructions at the beginning of your source code
(before you declare the variables). If you Import several library
files in a program, you have to also Import the files in any
functions you call that use these instructions.

Only those functions and subroutines which you call in your
source code are imported from the library file.

If the path name misses, only the standard directory is searched
(see Options Menu, Directory, page 57). Use the back slash
"\" in the path name to separate directory names.

The base directory for relative paths is–if the source code is
member of a project–the directory of the project file, otherweise
the directory of the source code file.

The following library files are delivered with TiCoBasic:

file File name of the library file without quotes. The file
extension is .TL1 for TiCo1.

CONST

STRING

path Path name of the library file (with drive), without
quotes.

CONST

STRING

math.tl1 Special mathematics instructions.

Import

TiCoBasic 1.0, Manual June 2010

ADw

154

See also
#Include

Example
Import math.tl1 'import mathe library
Rem import a user library
Import C:\MyFiles\ADwinLibs\dig2volt.TL1

In

TiCoBasic 1.0, Manual June 2010

ADw

155

In
In returns the content of a specified memory location of the I/O
address rangeof a TiCo processor.

Syntax
ret_val = In(addr)

You will find an overview of the register addresses (Gold and
Light-16) in your hardware documentation.

Parameters

Notes
Normally, there is no need to use the instruction In. Use the in-
structions of the include files instead to control the TiCo proces-
sor. In is provided for special taks only which are developped
in combination with our support. The documentation will there-
fore not contain register addresses.

If a project contains an externally triggered process, In may
only be used within a high-priority process.

See also
Out

addr Address of the memory location to be read out. LONG

ret_val Contents of the memory location. LONG

In

TiCoBasic 1.0, Manual June 2010

ADw

156

Example
Rem The example shows the use of the instructions In
Rem and Out symbolically. Do not execute this program!

Event:
 If (In(100h) <> 0) Then 'read address 100h
 Out (0, 255) 'set address 0 to value 255
Else

 Out (0, 0) 'set address 0 to value 0
EndIf

Inc

TiCoBasic 1.0, Manual June 2010

ADw

157

Inc
Inc increments the value of a local or global integer variable by one.

Syntax
Inc(var)

Parameters

Notes
Inc(val) is equivalent the program line: val=val+1 and it
may have shorter execution time.

See also
Dec, + Addition

Example
Dim index AS Long
Dim Data_1[1000] AS Long

Init:
index=1

Event:
Data_1[index] = ADC(1)'Transfer the measurement value

into
'the array

Inc(index) 'Increment index by 1
If (index>1000) Then End 'End the program after

'1000 measurements

var Name of a local or global Long-variable. VAR

CONST

LONG

#Include

TiCoBasic 1.0, Manual June 2010

ADw

158

#Include
#Include includes all the contents of an include file into the source
code.

Syntax
#Include {path}filename

Parameters

Notes
You find general information about include files in chapter 5.5.2
on page 100.

Insert the #Include instructions at the beginning of your
source code (before you declare the variables). You can import
other include files in the source code of an include file.

If any include file uses library functions, you have also to Include
the corresponding library files with Import.

If the path name misses, only the standard directory is searched
(see Options Menu Directory, page 57). Use the back slash "\"
in the path name to separate directory names.

The base directory for relative paths is–if the source code is
member of a project–the directory of the project file, otherweise
the directory of the source code file.

To include any of the include files delivered with TiCoBasic–the
files contain instruction to access hardware I/Os–you enter the
f i rst characters of the instruct ion #Include , press
[CTRL][SPACE] and select the required include file from the list.

filename Name of the file to be included (with the extension
.Inc), without quotes.

CONST

STRING

path Complete path with drive, or relative path. CONST

STRING

#Include

TiCoBasic 1.0, Manual June 2010

ADw

159

Please note: A program line with an #Include instruction
should not exceed 136 characters (maximum length for other
lines see page 127). Any further character of this line will not be
processed by the compiler.

See also
#Define, Import, Function … EndFunction, Sub … EndSub

Example
Rem find file in the given directory
#Include C:\Test\demofunc.Inc

Rem find file in standard directory
#Include demofunc.Inc

Rem relative path.
Rem The base directory is relative to the directory of
the
Rem project file (if the source file is member of a
project).
Rem If the source code is not a project member, the base
Rem directory is the directory of the source file.
#Include .\demofunc.Inc

Init:

TiCoBasic 1.0, Manual June 2010

ADw

160

Init:
The keyword Init: marks the start of the initializing program section.

Syntax
Init:

Parameters
- / -

Notes
See also overview of program sections in chapter 5.1.1 on
page 78.

The program section Init: is run once as soon as the process
is started. The delay between having processed the last instruc-
tion of the Init: section and starting the Event: section is so-
mewhat more than 2 × Processdelay.

The program section has the priority as set for the process
(menu entry "Options / Process"). With high priority the sec-
tion cannot be interrupted and should then be as short as pos-
sible.

With processor module Pro-CPU T11, the memory area can
only be set starting with revision E04.

See also
Dim, Event:, Finish:

Example
Dim val_1 AS Long
Init:
val_1 = -5

Lib_Function … Lib_

TiCoBasic 1.0, Manual June 2010

ADw

161

Lib_Function … Lib_EndFunction
With Lib_Function…Lib_EndFunction a function with passed
and return parameters is defined in a library file.

Syntax
Lib_Function lib_name(<LIB_PAR1> {, <LIB_
PAR2>, …})
AS <FCT_type>

{Dim var as <var_type>}

{#Define name expression}

 … 'Instruction block

name = …

Lib_EndFunction

Syntax of passed parameters <LIB_PAR>:
<by_type> var_name AS <var_type> {AT <mem_type>}

Lib_Function … Lib_

TiCoBasic 1.0, Manual June 2010

ADw

162

Parameters

Notes
You will f ind general information about l ibrary fi les in
chapter 5.5.3 on page 100.

Generate library functions (and library subroutines) in a sepa-
rate source code file. The compilation with "Build/Make lib
file" creates the library file. With Import those library mod-
ules are included into a process which are being called in the
process.

lib_name Name of the library function and of the return
value;
data type <FCT_type>.

<FCT_TYPE> Data type: Float, Long.

var_name Name of a passed parameter inside of library
function;
for arrays use the syntax with dimension brack-
ets: array[] or Data_n[].

<BY_TYPE> Methods for the transfer of parameters:
Byref: pass reference (pointer) to variable or

array.
Byval: pass value only.

<VAR_TYPE> Data type: Float, Long, String.

<mem_type> Useful for processor T10 only: Type of memory,
where the passed parameters are stored; to be
used only with arrays:
DRAM_EXTERN: external memory.
DM_LOCAL:local memory.

Lib_Function … Lib_

TiCoBasic 1.0, Manual June 2010

ADw

163

In a library function you can
• declare and use local variables and arrays.

Declare variables always at the beginning of the subroutine,
but never outside.

• use global variables and arrays which are passed as
parameters.

• assign a value to the function name, which will be the value
returned for the function in the source code.

In a library function you cannot
• define process sections such as Init:, Event:, or

Finish:.
• call a library function or subroutine from the same library file.

If necessary you have to put the function, which is to be
called, into a new library file and Import it from there.

• use SelectCase.
• declare symbolic names using #Define.
• access any hardware like analog or digital inputs or outputs.

There are 2 methods for passing parameters that differ as fol-
lows:

• BYREF: The library function can change the parameter, so
that the changed value is available in the program (the
address of the parameter is transferred).

• BYVAL: The library function can only access the value of the
parameter, but cannot change it. Thus, the parameter
remains the same for the program that calls the function.

Passed parameters should always be declared AT <mem_
type>, to save valuable processor time (<mem_type> must fit
with the declaration of the passed parameters in the calling pro-
gram, see Dim). If not, the library function has to detect the pa-
rameter’s memory type at run time.

If an array is passed as parameter, the syntax for definition and
call differs:

• Definition of the library function’s parameter with brackets:
Lib_Function funcname (… array[] …)

• Call with the parameter without brackets:
ret_val=funcname(… array …)

Lib_Function … Lib_

TiCoBasic 1.0, Manual June 2010

ADw

164

If arrays are used as passed parameters always define them as
Byref and without indicating any array size. You cannot use
FIFO arrays as passed parameters.

See also
Lib_Sub … Lib_EndSub, Import, Function … EndFunction, Sub
… EndSub

Example
'---------- Calculate a mean value ----------
Lib_Function average(BYREF array[] AS Long, BYVAL ptr
AS Long,

BYVAL cnt AS Long) AS Long
Dim i AS Long
average = 0
If (cnt > 0) Then
FOR i = ptr TO (ptr + cnt)
average = average + array[i]

NEXT i
average = average / cnt

EndIf
Lib_EndFunction

Lib_Function … Lib_

TiCoBasic 1.0, Manual June 2010

ADw

165

Calling the library function average is illustrated in the following
example, a "moving average filter":

Rem Import the library 'MEAN'
Import C:\MyFiles\ADwinLibs\MEAN.tl1
#Define cnt 10 'Number of the samples
#Define samples Data_1 'Number of measm. values
#Define filtered Data_2'Number of filtered measm.

'values
#Define length 1000 'Length of the array
Dim samples[length] AS Long'Source array
Dim filtered[length] AS Long'Destination array
Dim i AS Long 'Count variable

Init:
i = 1 'Initialize the count

variable
Processdelay = 40000 'Measurement with 1 kHz

Event:
samples[i] = ADC(1) 'Measure and save analog

values
Inc i 'Increment count variable
If (i> length) Then End'Are 1000 measurements

complete?
'If yes: process Finish

Finish:
FOR i = 1 TO (length - cnt)'For all measm. values
Rem Call library function "average"
filtered[i + cnt] = average(samples,i,cnt)
Rem Note the call with the passed array 'samples'
Rem *without* dimension brackets

NEXT i

Lib_Sub … Lib_EndSub

TiCoBasic 1.0, Manual June 2010

ADw

166

Lib_Sub … Lib_EndSub
The Lib_Sub…Lib_EndSub is used to define a subroutine with
passed parameters in a library file.

Syntax
Lib_Sub lib_name(<LIB_PAR1> {, <LIB_PAR2>, …})

{Dim var as <var_type>}

{#Define name expression}

… 'Instruction block

Lib_EndSub

Syntax of passed parameters <LIB_PAR>:
<by_type> var_name AS <var_type>

Parameters

Notes
You will f ind general information about l ibrary fi les in
chapter 5.5.3 on page 100.

Generate library subroutines (and library functions) in a sepa-
rate source code file. The compilation with "Build/Make lib

lib_name Name of the library subroutine.

var_name Name of a passed parameter inside of library
Sub;
for arrays use the syntax with dimension brack-
ets: array[] or Data_n[].

<By_type> Methods for the transfer of parameters:
Byref: pass reference (pointer) to variable and

array.
Byval: pass value only.

<var_type> Data types: Float, Long, String.

Lib_Sub … Lib_EndSub

TiCoBasic 1.0, Manual June 2010

ADw

167

file" creates the library file. With Import those library mod-
ules are included into a process which are being called in the
process.

In a library subroutine you can
• declare and use local variables and arrays.

Declare variables always at the beginning of the subroutine,
but never outside.

• use global variables and arrays which are passed as
parameters.

In a library subroutine you cannot
• define process sections such as Init:, Event:, or

Finish:.
• call a library function or subroutine from the same library file.

If necessary you have to put the function, which is to be
called, into a new library file and Import it from there.

• use SelectCase.
• declare symbolic names using #Define.
• access any hardware like analog or digital inputs or outputs.

There are 2 methods for passing parameters that differ as fol-
lows:

• BYREF: The library function can change the parameter, so
that the changed value is available in the program (the
method transfers the address of the parameter).

• BYVAL: The library function can only access the value of the
parameter, but cannot change it. Thus, the parameter
remains the same for the program that calls the function.

If an array is passed as parameter, the syntax for definition and
call differs:

• Definition of the library subroutine’s parameter with
brackets: Lib_Sub subname (… array[] …)

• Call with the parameter without brackets:
subname(… array …)

If arrays are used as passed parameters always define them as
Byref and without indicating any array size. You cannot use
FIFO arrays as passed parameters.

Lib_Sub … Lib_EndSub

TiCoBasic 1.0, Manual June 2010

ADw

168

See also
Lib_Function … Lib_EndFunction, Import, Function … End-
Function, Sub … EndSub

Example:
Rem Measurement value conversion from Digits(0…65535)
Rem to Volt(±10V)
Lib_Sub dig2volt(BYREF digit[] AS Long, BYVAL ptr AS
Long,

BYVAL cnt AS Long, BYVAL gain AS Long,
BYREF volt[] AS Float)

Dim i AS Long
FOR i = ptr TO (ptr + cnt)
volt[i] = ((digit[i] * 20 / 65536) - 10) / gain

NEXT i
Lib_EndSub

Lib_Sub … Lib_EndSub

TiCoBasic 1.0, Manual June 2010

ADw

169

Calling the library function dig2volt is illustrated in the following
example, a conversion of measurement values:

Rem The library 'DIG2VOLT' is imported
Import C:\MyFiles\ADwinLibs\DIG2VOLT.tl1

#Define cnt 1000 'Number of the samples
#Define ptr 1 'Start point of the
samples which are

'to be converted
#Define gain 1 'Gain of the PGA
#Define samples Data_1 'Memory for measurement
values
#Define scaled Data_2 'Memory for converted
measurement

'values
#Define length 1000 'Length of the array

Dim samples[length] AS Long'Source array
Dim i AS Long 'Count variable

Init:
i = 1 'Initialize the count

variable
Processdelay = 40000 'Measurement with 1 kHz

Event:
samples[i] = ADC(1) 'Measure and save analog
values
 Inc i 'Increment count variable
 If (i> length) Then End'Are 1000 measurements being
made?

'If yes: process Finish

Finish:
Rem Convert the measurement values by
Rem calling the library subroutine 'dig2volt'
dig2volt(samples,ptr,cnt,gain,scaled)
Rem Note the call with the passed array 'samples'
Rem *without* dimension brackets

Lib_Sub … Lib_EndSub

TiCoBasic 1.0, Manual June 2010

ADw

170

With processor module Pro-CPU T11, the memory area can
only be set starting with revision E04.

Max_Long

TiCoBasic 1.0, Manual June 2010

ADw

171

Max_Long
Max_Long returns the greater of 2 integer values.

Syntax
ret_val = Max_Long(val1, val2)

Parameters

Notes
- / -

See also
AbsI, Min_Long

Example
Event:
Par_10 = Max_Long(Par_1,Par_2)

val_1 Compared value 1 LONG

val_2 Compared value 2 LONG

ret_val The greater of both values. LONG

Min_Long

TiCoBasic 1.0, Manual June 2010

ADw

172

Min_Long
Min_Long returns the smaller of 2 integer values.

Syntax
ret_val = Min_Long(val1, val2)

Parameters

Notes
- / -

See also
AbsI, Max_Long

Example
Event:
Par_10 = Min_Long(Par_1,Par_2)

val_1 Compared value 1 LONG

val_2 Compared value 2 LONG

ret_val The smaller of both values. LONG

NOP

TiCoBasic 1.0, Manual June 2010

ADw

173

NOP
NOP (No OPeration) causes the processor to wait for one processor
cycle.

Syntax
NOP

Notes
The execution time of the instruction normally is one processor
cycle, which is 20ns.

With this instruction you can delay for a necessary waiting pe-
riod (e.g. after Set_Mux) if there is no other use of processing
time.

See also
NOPs, Sleep

NOPs

TiCoBasic 1.0, Manual June 2010

ADw

174

NOPs
NOPS causes the processor to wait for several processor cycles. The
waiting time refers to a multiple of NOP instructions (assembler: No
OPeration).

Syntax
NOPS(number)

Parameters

Notes
Use NOPS in high-priority processes only. For low-priority pro-
cesses, Sleep is the better alternative, especially for a high
number value which could else cause unexpectedly long
delays.

The use of NOPS takes less program memory than the appro-
priate number of NOP instructions.

If number is a constant, NOPS will replace the appropriate num-
ber of NOP instructions exactly. The use of a variable takes 2…4
clock cycles in addition, as does the access to external memory
or additional calculations.
Under special circumstances, the compiler will add an additio-
nal NOP instruction behind NOPS. If an exact waiting time is re-
quired, decrement number by 1 and insert the NOP instruction
(behind NOPs) manually into the program.

If the execution of NOPS takes very long, the variable
number may have a negative value. Use a positive con-
stant value instead.

See also
NOP, Sleep

number Number (≥1) of NOP instructions to insert. With
constants, 32767 is the maximum value.

LONG

NOPs

TiCoBasic 1.0, Manual June 2010

ADw

175

Example
- / -

Not

TiCoBasic 1.0, Manual June 2010

ADw

176

Not
Not inverts the bits of an argument.

Syntax
ret_val = Not(val)

Parameters

Notes
Not runs with bits only, not with Boolean expressions. Therefo-
re you cannot negate logic expressions (true / false) with it. Not
allowed: Not(Par_2 > 2).

See also
And, If … Then … {Else …} EndIf, Or, XOr

Example
Dim val1 AS Long
Dim val2 AS Long

val1 = -3
Rem -3 = 11111111111111111111111111111101b
val2 = Not(val1) 'Result: val2 = 010b = 2

val Value to be inverted (no logic expression). LONG

ret_val Inverted argument. LONG

Or

TiCoBasic 1.0, Manual June 2010

ADw

177

Or
The operator Or combines two integer values bit wise or two Boolean
expressions as a Boolean operator.

Syntax
ret_val = val_1 Or val_2 …val_2 'bit wise
operator

If ((expr1 Or (expr2)) Then 'Boolean
operator

Parameters

Notes
With Or you can only combine expressions of the same type (in-
teger or Boolean) with each other, mixing them is not possible.

You can use Boolean operators only in statements such as If
… Then … Else or Do … Until (variables cannot have Boo-
lean values).

If you use several Boolean operators in one line, you have to put
each operation into parentheses. This is not necessary for com-
bining of integer values.

See also
And, If … Then … {Else …} EndIf, Not, XOr

val_1, val_
2

Integer value. LONG

expr1,
expr2

Boolean expression with the value "true" or
"false".

LOGIC

Or

TiCoBasic 1.0, Manual June 2010

ADw

178

Example
Bit wise operator:
Dim val1, val2, val3 AS Long

val1 = 0100b
val2 = 0110b
val3 = val1 Or val2 'Result: val3 = 0110b

Boolean operator:
Dim x AS Long
Dim val4 AS Long

Init:
x = 15

Event:
If ((x < 3) Or (x > 9)) Then
val4 = 1

Else
val4 = 0

EndIf 'Result: val4 = 1

Out

TiCoBasic 1.0, Manual June 2010

ADw

179

Out
Out writes a value into a specified memory location into the I/O
memory range of the TiCo processor.

Syntax
Out(addr, value)

Parameters

Notes
Normally, there is no need to use the instruction Out. Use the
instructions of the include files instead to control the TiCo pro-
cessor. Out is provided for special taks only which are develop-
ped in combination with our support. The documentation will
therefore not contain register addresses.

See also
In

Example
Rem The example shows the use of the instructions In
Rem and Out symbolically. Do not execute this program!

Event:
If (In(100h) <> 0) Then 'read address 100h

Out (1, 12) 'set address 1 to value 12
EndIf

addr Address of the memory location to be written. LONG

value Value to be written. LONG

Processdelay

TiCoBasic 1.0, Manual June 2010

ADw

180

Processdelay
The system variable Processdelay defines the process delay (cycle
time) of a process.
Processdelay replaces the system variable Globaldelay which is
still valid for reasons of compatibility.

Syntax
ret_val = Processdelay

or

Processdelay = expr

Parameters

Notes
In a time-controlled process the section Event: is called re-
peatedly and in fixed time intervals by the internal counter. The
time interval between two cyclic calls is called process delay
and is counted in clock cycles.

The time interval of the Processdelay is 20ns.

With high-priority processes select a sufficiently large process
delay to avoid overloading the TiCo processor. As a rule of
thumb the processor workload (display field: "Busy x%" in the
status bar) should be under 90 percent and must not exceed
100 percent.

ret_val Current cycle time in clock cycles. LONG

expr Cycle time to be set: Number (≥1) of clock cycles. LONG

Processor Priority
High Low

T9 25ns 100µs
T10 25ns 50µs
T11 3,3ns 3,3ns = 0,003µs

Processdelay

TiCoBasic 1.0, Manual June 2010

ADw

181

If the time needed for processing the section Event: is larger
than the process delay, the next counter call and following will
be delayed. If this delay cannot be caught up within 250ms, the
communication between the ADwin system and the computer
can be interrupted.

You may set a constant process delay by assigning a value to
the variable Processdelay in the section Init:. You will then
overwrite the default value you have set in the dialog window
"Options / Process" under "Initial Processdelay".

You can set the variable only once in a section.

If the parameter Processdelay is changed in a process cycle
in the section Event:, the cycle time (processs delay) will be
changed immediately. This may be critical especially when the
cycle time has been shortened: Make sure that the execution
time of the program remains less than the newly set cycle time.

See also
Read_Timer

Example
Init:
Rem Set cycle time to 800µs
Processdelay = 40000

Processdelay

TiCoBasic 1.0, Manual June 2010

ADw

182

If you need a longer cycle time than may be set with
Processdelay you can use an auxiliary variable:
Init:
Rem Set max. cycle time of about 42.9 s
Processdelay = 2147483647
Rem initalize auxiliary variable
Par_1 = 0

Event:
Inc Par_1
Rem use 100fold cycle time
IF (Par_1 = 100) Then
Par_1 = 0
Rem run program

EndIf

ProcessN_Running

TiCoBasic 1.0, Manual June 2010

ADw

183

ProcessN_Running
The system variable Processn_Running returns the current status
of the specified process.

Syntax
ret_val = Processn_Running

Parameters

Notes
The system variable is read only.

See also
End

Example
Event:
Rem Get the status of process 2
Par_2 = Process2_Running

n Number of the requested process (0…4). CONST

LONG

ret_val Process status:
1 Process is running.
0 Process is stopped.
-1 Process is being stopped.

LONG

Read_Timer

TiCoBasic 1.0, Manual June 2010

ADw

184

Read_Timer
Read_Timer returns the current counter value of the timer.

Syntax
ret_val = Read_Timer()

Parameters

Notes
The counter value cannot be written.

You may determine a time interval from the difference of 2 timer
values. Please note that any read timer value will be reached
again after 42.9s

See also
Processdelay

Example
Dim timervalue AS Long

Event:
timervalue = Read_Timer()

ret_val Current counter value in units of 20ns. LONG

Rem, '

TiCoBasic 1.0, Manual June 2010

ADw

185

Rem, '
The compiler instructions Rem or "'" make it possible to insert com-
ments into the source code for a program. Any text in a program line
following the instruction is ignored by the compiler.

Syntax
Rem comment

instr : Rem comment

instr 'comment

Parameters

Notes
The instruction only applies to the line in which it is used. If a
comment requires more than one text line, then you must begin
each line with the instructions Rem or "'".

If you want to insert a Rem comment after an instruction, sepa-
rate it fromt he instruction by a colon ":". If you use "'" a colon
is not necessary.

Example
Rem This is a comment that needs more than
Rem one text line
'This is a comment line, too
Dim min AS Long: Rem comment after an instruction
Dim max AS Long 'Also a comment after an
instruction

comment Any character strings.

instr TiCoBasic instruction.

Ringbuffer

TiCoBasic 1.0, Manual June 2010

ADw

186

Ringbuffer
Using Dim DATA_n As Ringbuffer_For_x, a global DATA array is
dimensioned as ringbuffer for write or for read.

Syntax
Dim DATA_n[length] As Long As Ringbuffer_For_
Read

{At <Mem_Type>}

Dim DATA_n[length] As Long As Ringbuffer_For_
Write

{At <Mem_Type>}

Parameters

Notes
Using the data structure Ringbuffer is not an easy task.
Wrongly implemented, there may be errors which can hardly be
tracked. The use of the data structure Ringbuffer is therefore
reserved to experienced users of ADbasic and TiCoBasic. Plea-
se note the hints in chapter 5.3.3 on page 89.

Only DATA arrays may be used as ringbuffers. If so, a ringbuffer
arrays may not be used as "normal" array.

DATA_n Name of the declared DATA array (n: 1…16).

length Array size: Number (≥1) of the array elements of
the type Long.

CONST

LONG

<mem_
type>

memory, where the array elements are stored:
DRAM_EXTERN: external data memory.

Here the value range for length is to be set in
steps of 8:
length = 8×a+7; a ≥ 0

SRAM_Extern: external data memory in Pro II
modules (instead of DRAM).

DM_LOCAL: internal data memory (default).

Ringbuffer

TiCoBasic 1.0, Manual June 2010

ADw

187

After dimensioning, a ringbuffer should be initialized with
Ringbuffer_Clear in the Init: section.

For a ringbuffer array in external memory please note:
• If an invalid array size is set with length, the ringbuffer

array is automatically dimensioned with the next higher valid
array size. For example the compiler changes an array size
[1000] automatically into [1007].

• In a read ringbuffer, the data should be updated after
dimensioning with the instruction Refresh_RingBuffer
in the Init: section.

If you write data into a ringbuffer array faster than you read it,
previously stored data will be overwritten and are lost. To avoid
this you can use the instructions FIFO_Empty and FIFO_Full
to determine the amount of space in the array.

See also
Dim, Data_n, Refresh_RingBuffer, Ringbuffer_Empty,
RingBuffer_Full, "Global Arrays" on page 83, "The Data struc-
ture Ringbuffer" on page 89

Example
Rem Dimension the global array DATA_15 with
Rem 1007 Long elements as read ringbuffer
Dim Data_15[1007] As Long As Ringbuffer_For_Read

Refresh_RingBuffer

TiCoBasic 1.0, Manual June 2010

ADw

188

Refresh_RingBuffer
Refresh_RingBuffer updates the data in a read ringbuffer in the
external memory.

Syntax
Refresh_RingBuffer(data_no)

Parameters

Notes
For a ringbuffer in internal memory or a write ringbuffer in exter-
nal memory no update with Refresh_RingBuffer is re-
quired.

For a read ringbuffer in external memory data update (before
reading) is required in following cases:

• The read ringbuffer contains data and a value will be read for
the first time.

• After previously reading values, the ringbuffer contained
less than 8 values and afterwards new data has been written
into the ringbuffer.
In other words: You can avoid a regular update with
Refresh_RingBuffer, if after each reading step the
ringbuffer holds 8 values or more.

The update will not do harm in any case, i.e. values cannot be
read double and cannot be lost. In case of doubt it is better to
update once too much with Refresh_RingBuffer than miss-
ing an update.

See also
Ringbuffer (declaration), RingBuffer_Clear, Ringbuffer_Empty,
RingBuffer_Full, "The Data structure Ringbuffer" on page 89

data_no Number (1…16) of the ringbuffer array data_no. LONG

Refresh_RingBuffer

TiCoBasic 1.0, Manual June 2010

ADw

189

Example
Rem Use global array DATA_20 as ringbuffer
Dim DATA_12[999] As Long As Ringbuffer_For_Read At
DRAM_Extern

Init:
Rem initialize ringbuffer
RingBuffer_Clear(12)
Rem wait until the ringbuffer contains more than 7

values
Do
Until (RingBuffer_Full(12,PAR_1) > 7)
Rem refresh ringbuffer data
Refresh_RingBuffer(12)

Event:
Rem read 500 ringbuffer values, but always have more
Rem than 7 values left in it
If (RingBuffer_Full(12,PAR_1) > 507)
For i = 1 To 500
 PAR_10 = DATA_12
 DAC(2,PAR_10) 'do something with Par_10
Next i

EndIf

Finish:
For i = 1 To RingBuffer_Full(12,PAR_1)
PAR_10 = DATA_12

Next i

RingBuffer_Clear

TiCoBasic 1.0, Manual June 2010

ADw

190

RingBuffer_Clear
RingBuffer_Clear initializes the write or read pointer of a ring-
buffer.

Syntax
RingBuffer_Clear (data_no, par_x)

Parameters

Notes
The initialization of a ringbuffer is useful in 2 cases:

• Before first access to theringbuffer.
You should initialize in the Init: section in any case, since
the ringbuffer pointers are not initialized during
dimensioning.

• While the program is active, if you want to discard all data
contained in the ringbuffer (e.g. because of a measuring
error).

Pointer initialization will not change the values in the ringbuffer.

The global variable par_x only has a meaning for data ex-
change between ADwin CPU and TiCo processor. If so, the AD-
win CPU sets the par_x value to the number of values written
into or read from the ringbuffer; thus, RingBuffer_Empty can
calculate the number of free elements or RingBuffer_Empty
the number of used elements in the ringbuffer.

data_no Number (1…16) of the ringbuffer array data_no. LONG

par_x For data exchange ADwin CPU / TiCo only:
Global variable (Par_1…Par_80), which con-
tains a copy of the write or read pointer (handled
by the ADwin CPU) to the ringbuffer.
For any other use: Any variable, where the value
may be changed.

VAR

LONG

RingBuffer_Clear

TiCoBasic 1.0, Manual June 2010

ADw

191

If you initialize a ringbuffer with Ringbuffer_Clear while ex-
changing data between ADwin CPU and TiCo processor, you
have do as follows:

1. Make sure, that from now on no data is written into the ring-
buffer or read from it.

2. Re-initialize the data exchange in ADbasic with TDrv_Init.

3. Now you can resume to work with the ringbuffer.

See also
Ringbuffer (declaration), Refresh_RingBuffer, Ringbuffer_
Empty, RingBuffer_Full, "The Data structure Ringbuffer" on
page 89

Example
REM 1007 LONG elements as write ringbuffer
Dim DATA_11[1007] As Long As Ringbuffer_For_Write

Init:
Rem initialize read pointer of DATA_11 (using PAR_4)
Ringbuffer_Clear(11, PAR_4)

Ringbuffer_Empty

TiCoBasic 1.0, Manual June 2010

ADw

192

Ringbuffer_Empty
RingBuffer_Empty returns the number of free elements in a write
ringbuffer array.

Syntax
ret_val = RingBuffer_Empty (data_no, par_x)

Parameters

Notes
Initialize the write pointer of the ringbuffer with Ringbuffer_
Clear before acessing the ringbuffer the first time.

If you want to write data into a ringbuffer array, you can use
RingBuffer_Empty, to determine if the ringbuffer still has
enough empty elements.

Please note dimensioning in steps of 8 (see page 186).

The global variable par_x only has a meaning for data ex-
change between ADwin CPU (e.g. T11) and TiCo processor. If
so, the ADwin CPU reads data from the ringbuffer. After each
read cycle with Get_TiCo_RingBuffer, the ADwin CPU up-
dates its read pointer and copies the pointer value to the global
variable par_x of the TiCo processor. Using the par_x value,
RingBuffer_Empty calculates the number of free elements
of the ringbuffer.

data_no Number (1…16) of the Data ringbuffer array. LONG

par_x For data exchange ADwin CPU / TiCo:
Global variable (Par_1…Par_80), which con-
tains a copy of the read pointer (handled by the
ADwin CPU) to the ringbuffer.
For data exchange with external memory: 0.

VAR

LONG

ret_val Number of the free array elements. LONG

Ringbuffer_Empty

TiCoBasic 1.0, Manual June 2010

ADw

193

See also
Ringbuffer (declaration), RingBuffer_Full, Get_TiCo_Ring-
Buffer (ADbasic), "The Data structure Ringbuffer" on page 89

Example
REM 1007 LONG elements as write ringbuffer
Dim DATA_11[1007] As Long As Ringbuffer_For_Write

Init:
Ringbuffer_Clear(11, PAR_4)

Event:
Rem read number of unused elements in DATA_11 (using

PAR_4)
PAR_1 = RingBuffer_Empty(11, PAR_4)

RingBuffer_Full

TiCoBasic 1.0, Manual June 2010

ADw

194

RingBuffer_Full
RingBuffer_Full returns the number of used elements in a read
ringbuffer array.

Syntax
ret_val = RingBuffer_Full (data_no, par_x)

Parameters

Notes
Initialize the write pointer of the ringbuffer with Ringbuffer_
Clear before acessing the ringbuffer the first time.

Before reading data from the ringbuffer array, you should use
RingBuffer_Full to check if there is data in the ringbuffer. If
there is no data, an undefined value is returned from the ring-
buffer array.

Please note dimensioning in steps of 8 (see page 186).

The global variable par_x only has a meaning for data ex-
change between ADwin CPU and TiCo processor. If so, the AD-
win CPU writes data into the ringbuffer. After each write cycle
with Set_TiCo_RingBuffer, the ADwin CPU updates its wri-
te pointer and copies the pointer value to the global variable
par_x of the TiCo processor. Using the par_x value,
RingBuffer_Full calculates the number of used elements of
the ringbuffer.

data_no Number (1…16) of the Data ringbuffer array. LONG

par_x For data exchange ADwin CPU / TiCo:
Global variable (Par_1…Par_80), which con-
tains a copy of the write pointer (handled by the
ADwin CPU) to the ringbuffer.
For data exchange with external memory: 0.

VAR

LONG

ret_val Number of the used array elements. LONG

RingBuffer_Full

TiCoBasic 1.0, Manual June 2010

ADw

195

See also
Ringbuffer (declaration), Ringbuffer_Empty, Set_TiCo_Ring-
Buffer (ADbasic), "The Data structure Ringbuffer" on page 89

Example
REM 1007 LONG elements as read ringbuffer
Dim Data_12[1007] As Long As RingBuffer_For_Read

Init:
Ringbuffer_Clear(12, PAR_3)

Event:
Rem read number of used elements in DATA_12 (using PAR_

3)
Par_1 = RingBuffer_Full(12, PAR_3)

SelectCase

TiCoBasic 1.0, Manual June 2010

ADw

196

SelectCase
The SelectCase control structure is used to execute one of several
instruction blocks depending on a given value.

Syntax
SelectCase var

Case const1a{,const1b, …}

… 'Instruction block

CCase const2a{,const2b, …}

… 'Instruction block

CaseElse

… 'Instruction block

EndSelect

Parameters

Notes
This control structure cannot be used within a library function or
subroutine.

You may nest several SelectCase structures; the only limit is
the memory size.

Depending on the argument you can replace multiple nested IF
structures with SelectCase so that they will be more clearly
structured; another benefit is this structure is executed faster
than several consecutive If structures.

var Argument to be evaluated (no expression). LONG

const1a,
const1b,
const2a,
const2b

Value of var (0…255), where the following
instruction block will be executed.

CONST

LONG

SelectCase

TiCoBasic 1.0, Manual June 2010

ADw

197

If the argument to be evaluated does not correspond to one of
the Case constants, only the CaseElse instruction block is
executed (if there is any). This is also true when the argument
to be evaluated is beyond the value range of the constant.

CCase means "Continue Case": If a Case or CCase instruction
block has been executed, then a directly following CCase in-
struction block is executed, too.
In the example below not only ADC(5), but also ADC(7) are
executed. However, if Par_1=3, then only ADC(7) will be exe-
cuted.

If you change variables in the instruction blocks in such a man-
ner that the value of the argument is changed, this will only be
considered at the next SelectCase query.

The SelectCase structure creates an internal branch table lo-
cated in the data memory (DM), whose memory requirements
correspond to the greatest used Case-/CCase-constant. In or-
der to limit the memory requirements to a minimum, the value
range of constants is restricted to 0…255. There is:

Memory requirement in bytes = [(greatest constant value)+1] × 4

As an example the memory requirement with a max. Case con-
stant 200 is (200 + 1) × 4 = 804 Bytes; the maximum possible
memory requirement is 1KiB.

See also
Do … Until, For … To … {Step …} Next, If … Then … {Else …}
EndIf

SelectCase

TiCoBasic 1.0, Manual June 2010

ADw

198

Example
Event:
Par_1=2
SelectCase Par_1 'Evaluate Par_1
Case 0 'If Par_1 = 0?
Par_10 = ADC(1) 'Read out ADC(1)

Case 1 'If Par_1 = 1?
Par_10 = ADC(3) 'Read out ADC(3)

Case 2 'If Par_1 = 2?
Par_10 = ADC(5) 'read out ADC(5) and

ADC(7), too
'(by CCase)

CCase 3 'If Par_1 = 3?
Par_11 = ADC(7) 'Read out ADC(7)

Case 4,5,6,7,16 'If Par_1 = 4, 5, 6, 7 or
16?

Par_2 = DIGIN_WORD() 'read digital inputs
CaseElse 'Par_1: other values
DIGOUT_WORD(Par_10) 'Output value of Par_10 to

the
'digital outputs

EndSelect 'End of selection

Shift_Left

TiCoBasic 1.0, Manual June 2010

ADw

199

Shift_Left
The Shift_Left instruction shifts all bits of a value by a specified
number of places to the left. The empty bits at the right are filled with
zeroes.

Syntax
ret_val = Shift_Left(val,num)

Parameters

Notes
Shifting the bits n places to the left corresponds to the multipli-
cation with 2n. A possible overflow is not taken into account,
which means, a set bit is lost if it is left-shifted beyond the length
of an argument.

The execution time is similar to that one of a comparable multi-
plication operator.

See also
Shift_Right

Example
Dim val1, val2 AS Long

Event:
val1 = 1024
val2 = Shift_Left(val1, 2)'Result: val2=4096

val Argument. LONG

num Number of places the argument is shifted (0…31). LONG

ret_val Argument with shifted bits or.
0 for (num<0) and for (num>31).

LONG

Shift_Right

TiCoBasic 1.0, Manual June 2010

ADw

200

Shift_Right
The Shift_Right instruction shifts all bits of a value by a specified
number of places to the right. The empty bits at the left are filled with
zeroes.

Syntax
ret_val = Shift_Right(val,num)

Parameters

Notes
If the argument val is a positive number, shifting it num places
to the right corresponds to a division by 2n. A possible division
remainder is not taken into account, which means, a set bit is
lost if it is right-shifted beyond the length of an argument.

The execution time is shorter than the execution time of a com-
parable division. For instance val_2 = Shift_Right(val_
1,3) is faster than val_2 = val_1 / 8.

See also:
Shift_Left

Example
Dim val1, val2 AS Long

Event:
val1 = 1024
val2 = Shift_Right(val1, 3)'Result: val2=128

val Argument. LONG

num Number of places, which are shifted (0…31). LONG

ret_val Argument with shifted bits or.
0 for (num<0) and for (num>31).

LONG

Sleep

TiCoBasic 1.0, Manual June 2010

ADw

201

Sleep
Sleep causes the processor to wait for a certain time.

Syntax
Sleep(val)

Parameters

Notes
Since Sleep is executed as a count loop, it cannot be interrupt-
ed in high-priority process.

If possible, use a constant as argument. If the argument val re-
quires a calculation, it requires additional time; this time interval
is constant and takes a few clock cycles.
The following conditions require a calculation:

• The argument is an expression with variables or array
elements.

• The variable in the argument is declared in the memory area
DRAM_EXTERN.

• The argument is an array.

See also
NOP, NOPs

Example
Event:
SET_MUX(0) 'Set multiplexer
Sleep(25) 'Wait 2.5 µs (=25*100ns) =

settling
'time of the MUX

START_CONV(1) 'Start conversion

val Number (≥ 1) of time units to wait in 100ns. LONG

Sub … EndSub

TiCoBasic 1.0, Manual June 2010

ADw

202

Sub … EndSub
The Sub…EndSub commands are used to define a subroutine macro
with passed parameters.

Syntax
Sub macro_name({val_1, val_2, …})

{Dim var AS <VAR_TYPE>}

… 'Instruction block

EndSub

Parameters

Notes
You will find general information about macros in chapter 5.5.1
on page 99.

This instruction defines a subroutine-macro, which means the
whole instruction block between Sub and EndSub is inserted in
the place where the macro is called.

Subroutines help to make your source code more clearly-struc-
tured. Please note that each subroutine call will enlarge the
compiled file.

You may insert subroutines at the following 3 places:

1. In front of the section Init:

2. After the section Finish:

3. In a separate file which you include with #Include (only at
the locations 1. and 2.).

macro_
name

Name of the subroutine.

val_1, val_
2

Name of the passed parameter;
for arrays use the syntax with dimension brackets:
array[] or Data_n[].

LONG

Sub … EndSub

TiCoBasic 1.0, Manual June 2010

ADw

203

Be aware that in subroutines:
• no process sections such as Init:, Event:, or Finish:

can be defined,
• local variables can be defined at the beginning, which are

only available in the function and for the processing period.
This is true even when a variable has the same name as a
variable outside the function.

If a passed parameter is part of an expression inside a subrou-
tine the parameter should be set in braces. This avoids prob-
lems with precedence rules (e.g. BODMAS).

A subroutine is called with its name and with all its arguments
you have defined. Valid arguments include every expression
(also arrays), as long as it has the appropriate data type.
If you do not define arguments, you have to use the empty par-
entheses when calling the subroutine: name().

If an array (not an array element) is used as a passed parameter
the syntax is different for call and definition:

• Subroutine call without dimension brackets:
subname(array_pass)

• Subroutine definition with dimension brackets:
Sub subname(array_def[]) …

Values are assigned to elements of passed arrays as usual:
array_pass[2] = value

If a value is assigned to a passed parameter x within the sub-
routine, the subroutine’s call must not use a constant x, but a
variable or a single array element. If so, a passed parameter
can be used to hold a return value.

See also
#Include, Function … EndFunction

Example
- / -

XOr

TiCoBasic 1.0, Manual June 2010

ADw

204

XOr
The operator XOr (Exclusive-Or) combines two integer values bitwise.

Syntax
… val_1 XOr val_2 …

Parameters

See also
And, Not, Or

Example
Dim value AS Long
Event:
value = 0100b XOr 0110b
Rem Result: value = (4 XOr 6) = 0010b = 2

val_1, val_
2

Integer value. LONG

XOr

TiCoBasic 1.0, Manual June 2010

ADw

205

TiCoBasic 1.0, Manual June 2010

ADw

206

8.3 Gold II: TiCo processor
This section describes ADbasic instructions which allow the ADwin
CPU (T11) to access the TiCo processor.

Please note: Most instructions must be initialized using TDrv_Init
before data transfer.

Initialize TDrv_Init
Global variables Get_Par, Get_Par_Block

Set_Par, Set_Par_Block
Global arrays GetData_Long, SetData_Long
Ringbuffer Get_TiCo_RingBuffer, RingBuffer_Empty

Set_TiCo_RingBuffer, RingBuffer_Full
Processdelay TiCo_Get_Processdelay,

TiCo_Set_Processdelay
Process control TiCo_Start_Process, TiCo_Stop_Process

TiCo_Stop, TiCo_Start, TiCo_Reset,
TiCo_Reset_Mode

System information Get_TiCo_Status, Process_Status,
Workload

Data transfer TiCo_Flash, TiCo_Load

Get_Par

TiCoBasic 1.0, Manual June 2010

ADw

207

Get_Par
Get_Par returns the value of the global variable Par_x of a TiCo pro-
cessor.

Syntax
#Include ADwinGoldII.Inc

ret_val = Get_Par(tico_no, Par_no)

Parameters

Notes
Several values are read more quickly using Get_Par_Block.

See also
Get_Par_Block, GetData_Long, Set_Par, Set_Par_Block,
SetData_Long, TDrv_Init

Valid for
Gold II

tico_no Number (1…2) of TiCo processor. LONG

Par_no Number (1…80) of global variable. LONG

ret_val Value (-231…+231-1) of global variable. LONG

TiCoBasic 1.0, Manual June 2010

ADw

208

Example
see file C:\ADwin\ADbasic\Examples\Get_Par.bas.
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
TDrv_Init(tico_no,tset)

Event:
REM read Par_1 from TiCo and write value to Par_2 of ADwin
REM CPU
Par_2 = Get_Par(tico_no,1)

Get_Par_Block

TiCoBasic 1.0, Manual June 2010

ADw

209

Get_Par_Block
Get_Par_Block reads a number of global variables Par_x of the
TiCo processors and writes the values into an array.

Syntax
#Include ADwinGoldII.Inc

Get_Par_Block(tico_no, dest_array[],
dest_array_idx, Par_no, Par_count)

Parameters

Notes
- / -

See also
Get_Par, GetData_Long, Set_Par, Set_Par_Block, SetData_
Long, TDrv_Init

Valid for
Gold II

tico_no Number (1…2) of TiCo processor. LONG

dest_
array[]

Destination array, into which values are trans-
ferred.

ARRAY

LONG

dest_
array_idx

Destination start index (1…n): array element,
where the first value is stored.

LONG

start_idx Index (1…80) of the first global variable, that is
read.

LONG

count Number (1…80) of variables to be read. LONG

TiCoBasic 1.0, Manual June 2010

ADw

210

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim Data_1[80] As Long
Dim tset[150] As Long 'settings array for data

'transfer

Init:
TDrv_Init(tico_no,tset)

Event:
REM read Par_1…Par_80 from TiCo and write values to
REM Data_1[1]…Data_1[80] of ADwin CPU
Get_Par_Block(tico_no,Data_1,1,1,80)
REM read Par_20…Par_29 from TiCo and write values to
REM Par_5…Par_14 of ADwin CPU
Get_Par_Block(tico_no,PAR,5,20,10)

Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

211

Get_TiCo_RingBuffer
Get_TiCo_RingBuffer reads values from a ringbuffer of a TiCo
processor and writes the values into an array of ADwin CPU.

Syntax
#Include ADwinGoldII.Inc

ret_val =
Get_TiCo_RingBuffer(tdrv_datatable[],
src_array_no, dest_array[],

TiCoBasic 1.0, Manual June 2010

ADw

212

dest_array_idx,
maxcount, flowrate, tico_par, struct)

Parameters
tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

src_
array_no

Number (1…16) of write ringbuffer Data_n on the
TiCo processor.

FLOAT

dest_
array[]

Destination array, into which values are to be
transferred.

ARRAY

LONG

dest_
array_idx

Index (1…n) of the f irst element in dest_
array[] to be written.

LONG

maxcount Max. number (1…n) of transferred values. LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

tico_par Code number to transfer the read pointer to the
TiCo processor.
1…80: Number (1…80) of global variable Par_n

of the TiCo processor, into which the current
read pointer value is written.

0: Read pointer value is not transferred.

LONG

struct Code for measurement records:
0: Read arbitrary number of values.
>0: The number of transferred values must be a

multiple of struct.

LONG

Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

213

Notes
The instruction does not read more than maxcount values. If
the ringbuffer holds less values, all ringbuffer values are trans-
ferred.

While reading from a ringbuffer, Get_TiCo_RingBuffer
stores the last reading position, the read pointer, into the array
tdrv_datatable[]. If the instruction RingBuffer_Empty
of the TiCo processor is to run correctly, tico_par must hold
the number of a global variable. Thus, the read pointer value is
transferred into the global variable of the TiCo processor.

See also
Set_TiCo_RingBuffer, TDrv_Init

Valid for
Gold II

Example
- / -

ret_val Success status of instruction:
-1: Error: The TiCo write ringbuffer is dimensioned

wrongly.
≥0: Successful. The return value equals the num-

ber of transferred values.

LONG

TiCoBasic 1.0, Manual June 2010

ADw

214

Get_TiCo_Status
Get_TiCo_Status returns, whether the TiCo processor is active.

Syntax
#Include ADwinGoldII.inc

ret_val = Get_TiCo_Status()

Parameters

Notes
- / -

See also
Process_Status, Workload

Valid for
Gold II

Example
- / -

ret_val Status of TiCo processor:
0: Processor is stopped.
1: Processor is running.
-3: Error, no TiCo processor available.

LONG

GetData_Long

TiCoBasic 1.0, Manual June 2010

ADw

215

GetData_Long
GetData_Long reads values from a global array of a TiCo processor
and writes the values into a specified array.

TiCoBasic 1.0, Manual June 2010

ADw

216

Syntax
#Include ADwinGoldII.Inc

GetData_Long(tdrv_datatable[], src_array_no,
src_array_idx, count, dest_array[],
dest_array_idx, flowrate)

Parameters

Notes
It is to be assured that

• the global array src_array_no on the TiCo processor is
already dimensioned and

• the array dest_array has at least count elements.

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

src_
array_no

Number (1…16) of global array Data_x on the
TiCo processor.

LONG

src_
array_idx

Index (1…n) of the first element, to be read from
the global array src_array_no.

LONG

count Number (1…n) of transferred values. LONG

dest_
array[]

Destination array, into which values are trans-
ferred.

ARRAY

LONG

dest_
array_idx

Destination start index (1…n): Array element,
which is written first.

LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

GetData_Long

TiCoBasic 1.0, Manual June 2010

ADw

217

See also
Get_Par, Set_Par, SetData_Long, TDrv_Init

Valid for
Gold II

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset_41[150] As Long 'settings array for data

'transfer
Dim Data_4[200] As Long

Init:
REM initialize data transfer ADwin CPU <-> TiCo
TDrv_Init(tico_no,tset_41)

Event:
REM read 120 values from TiCo Data_2 (starting from Data_
REM 2[20])
REM into ADwin CPU Data_4 (starting from index 5).
REM flowrate is high
GetData_Long(tset_41,2,20,120,Data_4,5,3)

TiCoBasic 1.0, Manual June 2010

ADw

218

Process_Status
Process_Status returns the status of a process on a TiCo proces-
sor .

Syntax
#Include ADwinGoldII.Inc

ret_val = Process_Status(tico_no,
process_no_no)

Parameters

Notes
- / -

See also
TiCo_Get_Processdelay, TiCo_Set_Processdelay, TiCo_
Start_Process, TiCo_Stop_Process, Workload

Valid for
Gold II

tico_no Number (1…2) of TiCo processor. LONG

process_
no_no

Number (1) of TiCo process. LONG

ret_val Process status:
≠1:Process is running.
0: Prozess does not run, i.e. it is not loaded, not

started or stopped.

LONG

Process_

TiCoBasic 1.0, Manual June 2010

ADw

219

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim Data_4[200] As Long
Dim tset[150] As Long 'settings array for data

'transfer

Init:
TDrv_Init(tico_no,tset)

Event:
REM read status of TiCo process 1
Par_1 = Process_Status(tico_no,1)
REM if process is running, read TiCo Par_5
If (Par_1 = 1) Then
Par_2 = Get_Par(tico_no,5)

EndIf

TiCoBasic 1.0, Manual June 2010

ADw

220

RingBuffer_Empty
RingBuffer_Empty returns the number of free elements in a write
ringbuffer on a TiCo processor.

Syntax
#Include ADwinGoldII.Inc

ret_val = RingBuffer_Empty(tdrv_datatable[],
Data_no)

Parameters

Notes
For use of Get_TiCo_RingBuffer, a previous query with
Ringbuffer_Empty is not required.

See also
Get_TiCo_RingBuffer, RingBuffer_Full, TDrv_Init

Valid for
Gold II

Example
- / -

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

Data_no Number (1…16) of read ringbuffer Data_n on the
TiCo processor.

LONG

ret_val Number (0…n) of free elements in the write ring-
buffer.

LONG

RingBuffer_

TiCoBasic 1.0, Manual June 2010

ADw

221

RingBuffer_Full
RingBuffer_Full returns the number of used elements in a read
ringbuffer on a TiCo processor.

Syntax
#Include ADwinGoldII.Inc

ret_val = RingBuffer_Full(tdrv_datatable[],
Data_no)

Parameters

Notes
For use of Set_TiCo_RingBuffer, a previous query with
Ringbuffer_Full is not required.

See also
Set_TiCo_RingBuffer, RingBuffer_Empty, TDrv_Init

Valid for
Gold II

Example
- / -

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

Data_no Number (1…16) of read ringbuffer Data_n on the
TiCo processor.

LONG

ret_val Number (0…n) of used elements in the read ring-
buffer.

LONG

TiCoBasic 1.0, Manual June 2010

ADw

222

Set_Par
Set_Par sets the value of a global variable Par_x on a TiCo proces-
sor.

Syntax
#Include ADwinGoldII.Inc

Set_Par(tico_no, Par_no, value)

Parameters

Notes
Set_Par sets the value of the global variable, not regarding
whether a TiCo process is running. Since ADwin CPU and TiCo
processes do not run synchronously, changing the value of a
global variable during run-time may be totally unexpected to the
TiCo process.

If needed, we recommend to synchronize ADwin CPU and TiCo
processes with aid of a software handshake.

See also
Get_Par, Get_Par_Block, GetData_Long, Set_Par_Block,
SetData_Long, TDrv_Init

Valid for
Gold II

tico_no Number (1…2) of TiCo processor. LONG

Par_no Number (1…80) of global variable. LONG

value Value (-231…+231-1) of global variable. LONG

Set_Par

TiCoBasic 1.0, Manual June 2010

ADw

223

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
TDrv_Init(tico_no,tset)
Par_5=200

Event:
REM write value of Par_5 (ADwin CPU) to TiCo Par_2
Set_Par(tico_no,2,Par_5)

TiCoBasic 1.0, Manual June 2010

ADw

224

Set_Par_Block
Set_Par_Block writes values from an array into a number of global
variables Par_x of the TiCo processor.

Syntax
#Include ADwinGoldII.Inc

Set_Par_Block(tico_no, src_array[],
src_array_idx,
Par_no, Par_count)

Parameters

Notes
Set_Par_Block sets values of global variables, not regarding
whether a TiCo process is running or not. Since ADwin CPU
and TiCo processes do not run synchronously, changing the va-
lue of a global variable during run-time may be totally unexpec-
ted to the TiCo process.

If needed, we recommend to synchronize ADwin CPU and TiCo
processes with aid of a software handshake.

See also
Get_Par, Get_Par_Block, GetData_Long, Set_ParSetData_
Long, TDrv_Init

tico_no Number (1…2) of TiCo processor. LONG

src_
array[]

Source array, from which values are to be trans-
ferred.

ARRAY

LONG

src_
array_idx

Index of the array element, starting from which
values are read from src_array[].

LONG

Par_no Index (1…80) of the first global TiCo variable to be
written.

LONG

Par_count Number of transferred values. LONG

Set_Par_Block

TiCoBasic 1.0, Manual June 2010

ADw

225

Valid for
Gold II

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long'array for data transfer settings
Dim Data_1[40] As Long
Dim i As Long

Init:
TDrv_Init(tico_no,tset)
For i = 1 To 40
Data_1[i] = i*10

Next
Par_15=1111
Par_16=2222
Par_17=3333
Par_18=4444
Par_19=5555

Event:
REM write 40 values from Data_1 (starting from Data_1[1])
REM into Par_1…Par_40 (TiCo)
Set_Par_Block(tico_no,Data_1,1,1,40)

TiCoBasic 1.0, Manual June 2010

ADw

226

Set_TiCo_RingBuffer
Set_TiCo_RingBuffer writes values from an ADwin CPU array
into a ringbuffer on the TiCo processor.

Syntax
#Include ADwinGoldII.Inc

ret_val =
Set_TiCo_RingBuffer(tdrv_datatable[],

Set_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

227

dest_array_no, src_array[], src_array_idx,
maxcount, flowrate, tico_par, struct)

Parameters
tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

dest_
array_no

Number (1…16) of read ringbuffer Data_n on the
TiCo processor.

FLOAT

src_
array[]

Source array, from which values are transferred. ARRAY

LONG

src_
array_idx

Index (1…n) of the first element in src_array[]
to be read.

LONG

maxcount Max. number (1…n) of transferred values. LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

tico_par Code number to transfer the write pointer to the
TiCo processor.
1…80: Number (1…80) of global variable Par_n

of the TiCo processor, into which the current
write pointer value is written.

0: Write pointer value is not transferred.

LONG

struct Code for measurement records:
0: Read arbitrary number of values.
>0: The number of transferred values must be a

multiple of struct.

LONG

TiCoBasic 1.0, Manual June 2010

ADw

228

Notes
The instruction does not write more than maxcount values. If
the ringbuffer has less empty elements, only the empty ring-
buffer elements are filled.

While writing into a ringbuffer, Set_TiCo_RingBuffer stores
the last writing position, the write pointer, into the array tdrv_
datatable[]. If the instruction RingBuffer_Full of the Ti-
Co processor is to run correctly, the number of a global variable
has to be set in tico_par. Thus, the write pointer value is
transferred into the global variable of the TiCo processor.

See also
Get_TiCo_RingBuffer, TDrv_Init

Valid for
Gold II

Example
- / -

ret_val Success status of instruction:
-1: Error: The TiCo read ringbuffer is dimensioned

wrongly.
≥0: Successful. The return value equals the num-

ber of transferred values.

LONG

SetData_Long

TiCoBasic 1.0, Manual June 2010

ADw

229

SetData_Long
SetData_Long reads values from an array and writes them into a
global array of a TiCo processor.

TiCoBasic 1.0, Manual June 2010

ADw

230

Syntax
#Include ADwinGoldII.Inc

SetData_Long(tdrv_datatable[], dest_array_no,
dest_array_idx, count, src_array[],
src_array_idx, flowrate)

Parameters

Notes
It is to be assured that

• the global array dest_array_no on the TiCo processor is
already dimensioned and

• the array src_array has at least count elements.

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

dest_
array_no

Number (1…16) of global array Data_x on the
TiCo processor.

LONG

dest_
array_idx

Index (1…n) of the first element, to be written in
the global array dest_array.

LONG

count Number (1…n) of transferred values. LONG

src_
array[]

Source array, from where values are read. ARRAY

LONG

src_
array_idx

Source start index (1…n): Array element, which is
read first.

LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

SetData_Long

TiCoBasic 1.0, Manual June 2010

ADw

231

See also
Get_Par, GetData_Long, Set_Par, TDrv_Init

Valid for
Gold II

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer
Dim Data_1[150] As Long
Dim tset_41[150] As Long
Dim i As Long

Init:
REM initialize data transfer ADwin CPU <-> TiCo
TDrv_Init(tico_no,tset_41)
For i = 1 To 80
Data_1[i] = i

Next

Event:
REM read 120 values from TiCo Data_2 (starting from Data_
REM 2[1])
REM into ADwin CPU Data_1 (starting from Data_1[5]).
REM flowrate is high
SetData_Long(tset_41,2,1,120,Data_1,5,3)

TiCoBasic 1.0, Manual June 2010

ADw

232

TDrv_Init
TDrv_Init initializes the data transfer between ADwin CPUand a
TiCo processor.

Syntax
#Include ADwinGoldII.Inc

REM define settings array for TiCo x
Dim tdrv_datatable[150] As Long

TDrv_Init(tico_no, tdrv_datatable[])

Parameters

Notes
The instruction must be processed before data transfer bet-
ween ADwin CPU and TiCo processor. The instruction should
be set into the Init: section.

Most instructions accessing a TiCo processor require initiaiali-
zation of data transfer.

Initialization must be run for each TiCo processor separately.
For each processor an array tdrv_datatable[] with 150
elements has to be dimensioned, too.

The array tdrv_datatable[] is used by GetData_Long,
SetData_Long and Workload.

See also
Get_Par, Get_Par_Block, TiCo_Get_Processdelay, GetData_
Long, Set_Par, Set_Par_Block, TiCo_Set_Processdelay,
SetData_Long

tico_no Number (1…2) of TiCo processor. LONG

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number x.

ARRAY

LONG

TDrv_Init

TiCoBasic 1.0, Manual June 2010

ADw

233

Valid for
Gold II

Example
#Include ADwinGoldII.Inc
#Define tico_a 1 'TiCo no.
#Define tico_b 2 'TiCo no.
Dim Data_4[200] As Long
Dim Data_5[1000] As Long
Dim tset_1[150] As Long
Dim tset_2[150] As Long

Init:
REM initialize data transfer ADwin CPU <-> TiCo
TDrv_Init(tico_a,tset_1)
TDrv_Init(tico_b,tset_2)

Event:
REM read 120 values from TiCo Data_2 (starting from
REM Data_2[20]) into ADwin CPU Data_4 (starting from
REM index 5). flowrate is high
GetData_Long(tset_1,2,20,120,Data_4,5,3)
REM read 800 values from TiCo Data_7 (starting from
REM Data_5[9]) into ADwin CPU Data_5 (starting from
REM index 1). flowrate is high
GetData_Long(tset_2,7,9,800,Data_5,1,3)

TiCoBasic 1.0, Manual June 2010

ADw

234

TiCo_Flash
TiCo_Flash transfers a TiCoBasic binary file from an array into the
flash memory of a TiCo processor.

Syntax
#INCLUDE ADwinGoldII.inc

ret_val = TiCo_Flash(tico_no,array[])

Parameters

Notes
Use TiCo_Flash only in low priority processes.

tico_no Number (1…2) of TiCo processor. LONG

array[] Array which holds the TiCoBasic binary file to be
transferred.

ARRAY

LONG

ret_val Status of data transfer:
0: Data transfer successful.
-1: Error: Instruction may only be used with low

priority.
2: Error: Program memory too small.
3: Error: Data memory too small.
4: Error: Program and data memory too small.
5: Error: Wrong password.
6: Error: External memory memory too small.
7: Error: Flash memory too small.
12:Error: Binary file invalid for this TiCo proces-

sor.

LONG

TiCo_Flash

TiCoBasic 1.0, Manual June 2010

ADw

235

The instruction TiCo_Flash is used to transfer a TiCoBasic bi-
nary file–a compiled TiCo program–into the flash memory of a
TiCo processor. The following steps are required:

• Create a binary file in the development environment
TiCoBasic using Build Make Bin File.

• Transfer the binary file into a global array of the ADwin CPU.
A useful means is the function Data2File which is
provided in several programming languages.

• Transfer the data of the global array[] into the flash
memory using TiCo_Flash.

If array[] does not contain a TiCoBasic binary file the return
value is invalid.

See also
TiCo_Load

Valid for
DIO-32-TiCo Rev. E, Cnt-D Rev.E, Cnt-T Rev. E, Cnt-I Rev. E,
RSxxx-2 Rev. E, RSxxx-4 Rev. E, CAN-2 Rev. E

Example
- / -

TiCoBasic 1.0, Manual June 2010

ADw

236

TiCo_Get_Processdelay
TiCo_Get_Processdelay returns the Processdelay (cycle time)
of a process on a TiCo processor.

Syntax
#Include ADwinGoldII.Inc

ret_val =
TiCo_Get_Processdelay(tdrv_datatable[],
process_no)

Parameters

Notes
Using a timer controlled process, the Event: section is trigge-
red by the internal counter cyclical and with fixed time interval.
The time interval between 2 trigger signals, called cycle time or
Processdelay, is measured in counter clock cycles.

See also
Process_Status, TiCo_Set_Processdelay, TDrv_Init

Valid for
Gold II

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

ret_val Currently set cycle time (-231…+231-1) of TiCo
processor in clock cycles.
One clock cycle takes 20ns.

LONG

TiCo_Get_

TiCoBasic 1.0, Manual June 2010

ADw

237

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
TDrv_Init(tico_no,tset)

Event:
REM read processdelay of process 1 into Par_1
Par_1 = TiCo_Get_Processdelay(tset,1)

TiCoBasic 1.0, Manual June 2010

ADw

238

TiCo_Load
TiCo_Load transfers a TiCoBasic binary file from an array into the
memory of a TiCo processor.

Syntax
#INCLUDE ADwinGoldII.inc

ret_val = TiCo_Load(tico_no, array[])

Parameters

Notes
Use TiCo_Load only in low priority processes.

tico_no Number (1…2) of TiCo processor. LONG

array[] Array which holds the TiCoBasic binary file to be
transferred.

ARRAY

LONG

ret_val Status of data transfer:
0: Data transfer successful.
-1: Error: Instruction may only be used with low

priority.
1: Error: Invalid processor number.
2: Error: Program memory too small.
3: Error: Data memory too small.
4: Error: Program and data memory too small.
5: Error: Wrong password.
6: Error: External memory too small.
10:Error: Required external SRAM too small.
11:Error: Array contains no valid TiCoBasic binary

file.
12:Error: Binary file invalid for this TiCo proces-

sor.

LONG

TiCo_Load

TiCoBasic 1.0, Manual June 2010

ADw

239

The instruction TiCo_Load is used to transfer a TiCoBasic bi-
nary file–a compiled TiCo program–into the memory of a TiCo
processor. The following steps are required:

• Create a binary file in the development environment
TiCoBasic using Build Make Bin File.

• Transfer the binary file into a global array of the ADwin CPU.
A useful means is the function Data2File which is
provided in several programming languages.

• Transfer the data of the global array[] into the memory
using TiCo_Load.

If array[] does not contain a TiCoBasic binary file the return
value is invalid.

See also
TiCo_Flash

Valid for
DIO-32-TiCo Rev. E, Cnt-D Rev.E, Cnt-T Rev. E, Cnt-I Rev. E,
RSxxx-2 Rev. E, RSxxx-4 Rev. E, CAN-2 Rev. E

Example
- / -

TiCoBasic 1.0, Manual June 2010

ADw

240

TiCo_Reset
TiCo_Reset stops all TiCo processors and restarts them afterwards.

Syntax
#Include ADwinGoldII.Inc

TiCo_Reset()

Parameters
- / -

Notes
Stopping immediately interrupts any running process as well as
counters on the TiCo processors. Data are not changed by
stopping.

The TiCo processors are being started at the same time. Thus,
the instruction can be used to synchronize the TiCo processors.

See also
TiCo_Stop, TiCo_Start

Valid for
Gold II

Example
- / -

TiCo_Reset_

TiCoBasic 1.0, Manual June 2010

ADw

241

TiCo_Reset_Mode

TiCoBasic 1.0, Manual June 2010

ADw

242

TiCo_Reset_Mode
TiCo_Reset_Mode sets whether booting the ADwin CPU (T11) will
reset the TiCo processor or not.

Syntax
#Include ADwinGoldII.inc

TiCo_Reset_Mode(mode)

Parameters

Notes
The reset mode=1 is only functional if the TiCo processor is al-
ready running.

See also
TiCo_Reset, TiCo_Stop, TiCo_Start

Valid for
Gold II

Example
#Include ADwinGoldII.inc
INIT:
TiCo_Reset_Mode(1) 'reset TiCo processor with T11

'boot

mode Select reset mode while booting the T11.
0: Operating status of the TiCo processor

remains unchanged. Default.
1: The TiCo processor is stopped and restarted.

LONG

TiCo_Set_

TiCoBasic 1.0, Manual June 2010

ADw

243

TiCo_Set_Processdelay
TiCo_Set_Processdelay sets the Processdelay (cycle time) of
a TiCo process.

Syntax
#Include ADwinGoldII.Inc

TiCo_Set_Processdelay(tdrv_
datatable[], process_no,
value)

Parameters

Notes
- / -

See also
TiCo_Get_Processdelay, Process_Status, TDrv_Init

Valid for
Gold II

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

value Value to be set for Processdelay. LONG

TiCoBasic 1.0, Manual June 2010

ADw

244

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
TDrv_Init(tico_no,tset)
Processdelay = 6000 'set cycle time

Event:
REM set TiCo processdelay to run with same cycle time as
REM the
REM T12 process
TiCo_Set_Processdelay(tset,1,Processdelay/6)

TiCo_Start

TiCoBasic 1.0, Manual June 2010

ADw

245

TiCo_Start
TiCo_Start starts all TiCo processors.

Syntax
#Include ADwinGoldII.Inc

TiCo_Start()

Parameters
- / -

Notes
The TiCo processors are being started at the same time. Thus,
the instruction can be used to synchronize the TiCo processors.

See also
TiCo_Stop, TiCo_Reset

Valid for
Gold II

Example
- / -

TiCoBasic 1.0, Manual June 2010

ADw

246

TiCo_Start_Process
TiCo_Start_Process starts a process on a TiCo processor.

Syntax
#Include ADwinGoldII.Inc

TiCo_Start_Process(tdrv_datatable[],
process_no)

Parameters

Notes
The process must already be loaded to the TiCo processor.

See also
TiCo_Get_Processdelay, Process_Status, TiCo_Set_Process-
delay, TiCo_Start_Process, TiCo_Stop_Process, Workload

Valid for
Gold II

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

TiCo_Start_

TiCoBasic 1.0, Manual June 2010

ADw

247

Example
#Include ADwinGoldII.INC
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
Par_1 = 0
Processdelay = 100000
REM start TiCo process in parallel to ADwin CPU process
TDrv_Init(tico_no,tset)
TiCo_Start_Process(tset,1)

Event:
REM ... program

Finish:
REM stop TiCo process
TiCo_Stop_Process(tset,1)

TiCoBasic 1.0, Manual June 2010

ADw

248

TiCo_Stop
TiCo_Stop stops all TiCo processors.

Syntax
#Include ADwinGoldII.Inc

TiCo_Stop()

Parameters
- / -

Notes
Stopping immediately interrupts any running process as well as
counters on the TiCo processors. Data are not changed by
stopping.

See also
TiCo_Start, TiCo_Reset

Valid for
Gold II

Example
- / -

TiCo_Stop_

TiCoBasic 1.0, Manual June 2010

ADw

249

TiCo_Stop_Process
TiCo_Stop_Process stops a process on a TiCo processor.

Syntax
#Include ADwinGoldII.Inc

TiCo_Stop_Process(tdrv_datatable[],
process_no)

Parameters

Notes
The process must already be loaded to the TiCo processor.

See also
TiCo_Get_Processdelay, Process_Status, TiCo_Set_Process-
delay, TiCo_Start_Process, Workload

Valid for
Gold II

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

TiCoBasic 1.0, Manual June 2010

ADw

250

Example
#Include ADwinGoldII.INC
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
Par_1 = 0
Processdelay = 100000
REM start TiCo process in parallel to ADwin CPU process
TDrv_Init(tico_no,tset)
TiCo_Start_Process(tset,1)

Event:
REM ... program

Finish:
REM stop TiCo process
TiCo_Stop_Process(tset,1)

Workload

TiCoBasic 1.0, Manual June 2010

ADw

251

Workload
Workload returns the workload of a TiCo processor.

Syntax
#Include ADwinGoldII.Inc

ret_val = Workload(tdrv_datatable[])

Parameters

Notes
The return value is the average processor workload in der time
between the previous and the current call of Workload. There-
fore, the return value of the first call in a program is invalid.

The shortest time between two instruction calls should be at
least 100 times of Processdelay. Otherweise, the return val-
ue may have an error of more than 1%.

If the previous call of Workload dates back more than 85 sec-
onds, the return value is invalid. Simply call the instruction a
second time to receive a valid return value.

See also
TiCo_Get_Processdelay, Process_Status, TiCo_Set_Process-
delay, TiCo_Stop_Process, TDrv_Init

Valid for
Gold II

tdrv_
datatable
[]

Array holding settings for data transfer, e.g. TiCo
number.

ARRAY

LONG

ret_val Processor workload in percent (0.0 … 100.0) or
error value:
<0: TiCo processor is stopped or

no TiCo processor available.

FLOAT

TiCoBasic 1.0, Manual June 2010

ADw

252

Example
#Include ADwinGoldII.Inc
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
TDrv_Init(tico_no,tset)

Event:
REM read TiCo workload
FPar_1 = Workload(tset)

Workload

TiCoBasic 1.0, Manual June 2010

ADw

253

Pro II: TiCo

TiCoBasic 1.0, Manual June 2010

ADw

254

8.4 Pro II: TiCo Processor
This section describes instructions which allow the ADwin CPU to
access the TiCo processor on a Pro II module.

Please note: Most instructions must be initialized using P2_TDrv_
Init before data transfer.

Initialize P2_TDrv_Init, P2_Get_TiCo_Status
Global variables P2_Get_Par, P2_Get_Par_Block

P2_Set_Par, P2_Set_Par_Block
Global arrays P2_GetData_Long, P2_SetData_Long
Ring buffer P2_Get_TiCo_RingBuffer, P2_Ringbuffer_

Empty
P2_Set_TiCo_RingBuffer, P2_Ringbuffer_
Full

Processdelay P2_TiCo_Get_Processdelay,
P2_TiCo_Set_Processdelay

Process control P2_TiCo_Start_Process,
P2_TiCo_Stop_Process
P2_TiCo_Stop, P2_TiCo_Start, P2_TiCo_

Reset
System information P2_Get_TiCo_Status, P2_Process_Status

P2_Get_TiCo_Bootloader_Status, P2_Work-
load

Data transfer P2_TiCo_Flash, P2_TiCo_Load

P2_Get_Par

TiCoBasic 1.0, Manual June 2010

ADw

255

P2_Get_Par
P2_Get_Par returns the value of the global variable Par_x of a TiCo
processor of the specified module.

Syntax
#Include ADwinPro_All.Inc

ret_val = P2_Get_Par(module, tico_no, Par_no)

Parameters

Notes
Several values are read more quickly using P2_Get_Par_
Block.

See also
P2_Get_Par_Block, P2_GetData_Long, P2_Set_Par, P2_Set_
Par_Block, P2_SetData_Long, P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

Par_no Number (1…80) of the global variable. LONG

ret_val Value (-231…+231-1) of the globale variable. LONG

P2_Get_Par

TiCoBasic 1.0, Manual June 2010

ADw

256

Example
see file C:\ADwin\ADbasic\Examples\P2_GET_PAR.bas.
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
P2_TDrv_Init(module,tico_no,tset)

Event:
REM read Par_1 from TiCo and write value to Par_2 of ADwin
REM CPU
Par_2 = P2_Get_Par(module,tico_no,1)

P2_Get_Par_

TiCoBasic 1.0, Manual June 2010

ADw

257

P2_Get_Par_Block
P2_Get_Par_Block reads a number of global variables Par_x of
the TiCo processors on the specified module and writes the values
into an array.

Syntax
#Include ADwinPro_All.Inc

P2_Get_Par_Block(module, tico_no,
dest_array[], dest_array_idx, Par_no,
Par_count)

Parameters

Notes
- / -

See also
P2_Get_Par, P2_GetData_Long, P2_Set_Par, P2_Set_Par_
Block, P2_SetData_Long, P2_TDrv_Init

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

dest_
array[]

Destination array, into which values are trans-
ferred.

ARRAY

LONG

dest_
array_idx

Destination start index (1…n): Array element,
from which values are stored.

LONG

Par_no Index (1…80) of the first global variable to be
read.

LONG

Par_count Number (1…80) of variables to be read. LONG

P2_Get_Par_

TiCoBasic 1.0, Manual June 2010

ADw

258

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim Data_1[80] As Long
Dim tset[150] As Long 'settings array for data

'transfer

Init:
P2_TDrv_Init(module,tico_no,tset)

Event:
REM read Par_1…Par_80 from TiCo and write values to
REM Data_1[1]…Data_1[80] of ADwin CPU
P2_Get_Par_Block(module,tico_no,Data_1,1,1,80)
REM read Par_20…Par_29 from TiCo and write values to
REM Par_5…Par_14 of ADwin CPU
P2_Get_Par_Block(module,tico_no,PAR,5,20,10)

P2_Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

259

P2_Get_TiCo_Bootloader_Status
P2_Get_TiCo_Bootloader_Status returns the TiCo bootloader
status on the specified module.

Syntax
#Include ADwinPRO_ALL.inc

ret_val = P2_Get_TiCo_Bootloader_Status(module)

Parameters

Notes
The instruction can only be processed in a low priority process.

See also
P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

module Specified module address (1…15). LONG

ret_val TiCo bootloader status:
0: Bootloader is disabled.
1: Bootloader is enabled.
-1: Error; instruction used in low priority process.
-2: Error; modul cannot be accessed (timeout).
-3: Error; no TiCo processor on the module.

LONG

P2_Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

260

P2_Get_TiCo_RingBuffer
P2_Get_TiCo_RingBuffer reads values from a ringbuffer of a TiCo
processor and writes the values into an array of ADwin CPU.

Syntax
#Include ADwinPro_All.Inc

ret_val =
P2_Get_TiCo_RingBuffer(tdrv_datatable[],
src_array_no, dest_array[], dest_array_

P2_Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

261

idx,
maxcount, flowrate, tico_par, struct)

Parameters
tdrv_
datatable
[]

Array holding settings for data transfer, e. g.
module address and TiCo number.

ARRAY

LONG

src_
array_no

Number (1…16) of write ringbuffer Data_n on the
TiCo processor.

FLOAT

dest_
array[]

Destination array, into which values are to be
transferred.

ARRAY

LONG

dest_
array_idx

Index (1…n) of the first element in dest_
array[] to be written.

LONG

maxcount Max. number (1…n) of transferred values. LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

tico_par Code number to transfer the read pointer to the
TiCo processor.
1…80: Number (1…80) of global variable Par_n

of the TiCo processor, into which the current
read pointer value is written.

0: Read pointer value is not transferred.

LONG

struct Code for measurement records:
0: Read arbitrary number of values.
>0: The number of transferred values must be a

multiple of struct.

LONG

P2_Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

262

Notes
The instruction does not read more than maxcount values. If
the ringbuffer holds less values, all ringbuffer values are trans-
ferred.

While reading from a ringbuffer, P2_Get_TiCo_RingBuffer
stores the last reading position, the read pointer, into the array
tdrv_datatable[]. If the instruction RingBuffer_Empty
of the TiCo processor is to run correctly, this read pointer value
must be transferred into the appropriate global variable of the
TiCo processor.

See also
P2_Set_TiCo_RingBuffer, P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

ret_val Success status of instruction:
-1: Error: The TiCo write ringbuffer is dimensioned

wrongly.
≥0: Successful. The return value equals the num-

ber of transferred values.

LONG

P2_Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

263

P2_Get_TiCo_Status
P2_Get_TiCo_Status returns, whether TiCo processors are active
on the the specified module.

Syntax
#Include ADwinPRO_ALL.inc

ret_val = P2_Get_TiCo_Status(module)

Parameters

Notes
- / -

See also
P2_Process_Status, P2_Workload

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

module Specified module address (1…15). LONG

ret_val Status of TiCo processors.
-3: Error, no TiCo processors available.
-2: Error, not a Pro II module.
≥0: Bit pattern of the state of operation of proces-

sors:
Bit = 0: Processor is stopped.
Bit = 1: Processor is running.

LONG

Bits in ret_val 31:01 00
TiCo processor – 1

P2_Get_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

264

Example
- / -

P2_GetData_

TiCoBasic 1.0, Manual June 2010

ADw

265

P2_GetData_Long
P2_GetData_Long reads values from a global array of a TiCo pro-
cessor and writes the values into a specified array.

Syntax
#Include ADwinPro_All.Inc

P2_GetData_Long(tdrv_datatable[], src_array_
no,

P2_GetData_

TiCoBasic 1.0, Manual June 2010

ADw

266

src_array_idx, count, dest_array[],
dest_array_idx, flowrate)

Parameters

Notes
It is to be assured that

• the global array src_array_no on the TiCo processor is
already dimensioned and

• the array dest_array has at least count elements.

See also
P2_Get_Par, P2_Set_Par, P2_SetData_Long, P2_TDrv_Init

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

src_
array_no

Number (1…16) of global array Data_x on the
TiCo processor.

LONG

src_
array_idx

Index (1…n) of the first element, which is read
from the global array src_array_no.

LONG

count Number (1…n) of values to be transferred. LONG

dest_
array[]

Destination array where values are stored. ARRAY

LONG

dest_
array_idx

Destination start index (1…n): Array element,
from which values are stored.

LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

P2_GetData_

TiCoBasic 1.0, Manual June 2010

ADw

267

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset_41[150] As Long 'settings array for data

'transfer
Dim Data_4[200] As Long

Init:
REM initialize data transfer ADwin CPU <-> TiCo
P2_TDrv_Init(module,tico_no,tset_41)

Event:
REM read 120 values from TiCo Data_2 (starting from
REM Data_2[20])
REM into ADwin CPU Data_4 (starting from index 5).
REM flowrate is high
P2_GetData_Long(tset_41,2,20,120,Data_4,5,3)

P2_Process_

TiCoBasic 1.0, Manual June 2010

ADw

268

P2_Process_Status
P2_Process_Status returns the status of a process on a TiCo pro-
cessor of the specified module.

Syntax
#Include ADwinPro_All.Inc

ret_val = P2_Process_Status(module, tico_no,
process_no)

Parameters

Notes
- / -

See also
P2_TiCo_Get_Processdelay, P2_TiCo_Set_Processdelay,
P2_TiCo_Start_Process, P2_TiCo_Stop_Process, P2_Work-
load

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

process_
no

Number (1) of TiCo process. LONG

ret_val Process status:
≠1:Process is running.
0: Prozess does not run, i.e. it is not loaded, not

started or stopped.

LONG

P2_Process_

TiCoBasic 1.0, Manual June 2010

ADw

269

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim Data_4[200] As Long
Dim tset[150] As Long 'settings array for data

'transfer

Init:
P2_TDrv_Init(module,tico_no,tset)

Event:
REM read status of TiCo process 1
Par_1 = P2_Process_Status(module,tico_no,1)
REM if process is running, read TiCo Par_5
If (Par_1 = 1) Then
Par_2 = P2_Get_Par(module,tico_no,5)

EndIf

P2_

TiCoBasic 1.0, Manual June 2010

ADw

270

P2_Ringbuffer_Empty
P2_Ringbuffer_Empty returns the number of free elements in a
write ringbuffer on a TiCo processor

Syntax
#Include ADwinPro_All.Inc

ret_val =
P2_Ringbuffer_Empty(tdrv_datatable[],
Data_no)

Parameters

Notes
For use of P2_Get_TiCo_RingBuffer, a previous query with
P2_Ringbuffer_Empty is not required.

See also
P2_Get_TiCo_RingBuffer, P2_Ringbuffer_Full, P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

Data_no Number (1…16) of write ringbuffer Data_n on the
TiCo processor.

LONG

ret_val Number (0…n) of free elements in the write ring-
buffer.

LONG

P2_

TiCoBasic 1.0, Manual June 2010

ADw

271

P2_Ringbuffer_Full
P2_Ringbuffer_Full returns the number of used elements in a
read ringbuffer on a TiCo processor.

Syntax
#Include ADwinPro_All.Inc

ret_val = P2_Ringbuffer_Full(tdrv_datatable[],
Data_no)

Parameters

Notes
For use of P2_Set_TiCo_RingBuffer, a previous query with
P2_Ringbuffer_Full is not required.

See also
P2_Set_TiCo_RingBuffer, P2_Ringbuffer_Empty, P2_TDrv_
Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

tdrv_
datatable
[]

Array holding settings for data transfer, e. g.
module address and TiCo number.

ARRAY

LONG

Data_no Number (1…16) of read ringbuffer Data_n on the
TiCo processor.

LONG

ret_val Number (0…n) of used elements in the read ring-
buffer.

LONG

P2_Set_Par

TiCoBasic 1.0, Manual June 2010

ADw

272

P2_Set_Par
P2_Set_Par sets the value of a global variable Par_x on a TiCo pro-
cessor of the specified module.

Syntax
#Include ADwinPro_All.Inc

P2_Set_Par(module, tico_no, Par_no, value)

Parameters

Notes
P2_Set_Par sets the value of the global variable, not regar-
ding whether a TiCo process is running. Since ADwin CPU and
TiCo processes do not run synchronously, changing the value
of a global variable during run-time may be totally unexpected
to the TiCo process.

If needed, we recommend to synchronize ADwin CPU and TiCo
processes with aid of a software handshake.

See also
P2_Get_Par, P2_Get_Par_Block, P2_GetData_Long, P2_Set_
Par_Block, P2_SetData_Long, P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

Par_no Number (1…80) of the global variable. LONG

value Value (-231…+231-1) of the globale variable. LONG

P2_Set_Par

TiCoBasic 1.0, Manual June 2010

ADw

273

Example
#Include ADwinPRO_ALL.INC
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
P2_TDrv_Init(module,tico_no,tset)
Par_5=200

Event:
REM write value of Par_5 (ADwin CPU) to TiCo Par_2
P2_Set_Par(module,tico_no,2,Par_5)

P2_Set_Par_

TiCoBasic 1.0, Manual June 2010

ADw

274

P2_Set_Par_Block
P2_Set_Par_Block writes values from an array into a number of
global variables Par_x of the TiCo processor on the specified module.

Syntax
#Include ADwinPro_All.Inc

P2_Set_Par_Block(module, tico_no, src_array[],
src_array_idx, Par_no, Par_count)

Parameters

Notes
P2_Set_Par_Block sets values of global variables, not regar-
ding whether a TiCo process is running or not. Since ADwin
CPU and TiCo processes do not run synchronously, changing
the value of a global variable during run-time may be totally un-
expected to the TiCo process.

If needed, we recommend to synchronize ADwin CPU and TiCo
processes with aid of a software handshake.

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

src_
array[]

Source array, from which values are to be trans-
ferred.

ARRAY

LONG

src_
array_idx

Index of the array element, starting from which
values are read from array[].

LONG

Par_no Index (1…80) of the first global TiCo variable to be
written.

LONG

Par_count Number of transferred values. LONG

P2_Set_Par_

TiCoBasic 1.0, Manual June 2010

ADw

275

See also
P2_Get_Par, P2_Get_Par_Block, P2_GetData_Long, P2_Set_
ParP2_SetData_Long, P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
see Datei C:\ADwin\ADbasic\Examples\P2_Set_Par_
Block.bas.
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer
Dim Data_1[40] As Long
Dim i As Long

Init:
P2_TDrv_Init(module,tico_no,tset)
For i = 1 To 40
Data_1[i] = i*10

Next
Par_15=1111
Par_16=2222
Par_17=3333
Par_18=4444
Par_19=5555

Event:
REM write 40 values from Data_1 (starting from Data_1[1])
REM into Par_1…Par_40 (TiCo)
P2_Set_Par_Block(module,tico_no,Data_1,1,1,40)
REM write Par_15…Par_19 (ADwin CPU) into Par_50…Par_54
REM (TiCo)
P2_Set_Par_Block(module,tico_no,PAR,15,50,5)

P2_Set_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

276

P2_Set_TiCo_RingBuffer
P2_Set_TiCo_RingBuffer writes values from an ADwin CPU
array into a ringbuffer on the TiCo processor.

Syntax
#Include ADwinPro_All.Inc

ret_val =
P2_Set_TiCo_RingBuffer(tdrv_datatable[],

P2_Set_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

277

dest_array_no, src_array[], src_array_idx,
maxcount, flowrate, tico_par, struct)

Parameters
tdrv_
datatable
[]

Array holding settings for data transfer, e. g.
module address and TiCo number.

ARRAY

LONG

dest_
array_no

Number (1…16) of read ringbuffer Data_n on the
TiCo processor.

FLOAT

src_
array[]

Source array, from which values are transferred. ARRAY

LONG

src_
array_idx

Index (1…n) of the first element in src_array[]
to be read.

LONG

maxcount Max. number (1…n) of transferred values. LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

tico_par Code number to transfer the write pointer to the
TiCo processor.
1…80: Number (1…80) of global variable Par_n

of the TiCo processor, into which the current
write pointer value is written.

0: Write pointer value is not transferred.

LONG

struct Code for measurement records:
0: Read arbitrary number of values.
>0: The number of transferred values must be a

multiple of struct.

LONG

P2_Set_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

278

Notes
The instruction does not write more than maxcount values. If
the ringbuffer has less empty elements, only the empty ring-
buffer elements are filled.

While writing into a ringbuffer, P2_Set_TiCo_RingBuffer
stores the last writing position, the write pointer, into the array
tdrv_datatable[]. If the instruction RingBuffer_Full of
the TiCo processor is to run correctly, the number of a global va-
riable has to be set in tico_par. Thus, the write pointer value
is transferred into the global variable of the TiCo processor.

See also
P2_Get_TiCo_RingBuffer, P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

ret_val Success status of instruction:
-1: Error: The TiCo read ringbuffer is dimensioned

wrongly.
≥0: Successful. The return value equals the num-

ber of transferred values.

LONG

P2_SetData_

TiCoBasic 1.0, Manual June 2010

ADw

279

P2_SetData_Long
P2_SetData_Long reads values from an array and writes them into
a global array of a TiCo processor on the specified module.

P2_SetData_

TiCoBasic 1.0, Manual June 2010

ADw

280

Syntax
#Include ADwinPro_All.Inc

P2_SetData_Long(tdrv_datatable[],
dest_array_no, dest_array_idx, count,
src_array[], src_array_idx, flowrate)

Parameters

Notes
It is to be assured that

• the global array dest_array_no on the TiCo processor is
already dimensioned and

• the array src_array has at least count elements.

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

dest_
array_no

Number (1…16) of global array Data_x on the
TiCo processor.

LONG

dest_
array_idx

Index (1…n) of the first element, to be written in
the global array dest_array_no.

LONG

count Number (1…n) of transferred values. LONG

src_
array[]

Source array, from where values are read. ARRAY

LONG

src_
array_idx

Source start index (1…n): Array element, which is
read first.

LONG

flowrate Evaluation for low priority processes only: Code
for data flow rate
1: slow.
2: medium.
3: fast.

LONG

P2_SetData_

TiCoBasic 1.0, Manual June 2010

ADw

281

See also
P2_Get_Par, P2_GetData_Long, P2_Set_Par, P2_TDrv_Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer
Dim tset_41[150] As Long
Dim Data_1[150] As Long
Dim i As Long

Init:
REM initialize data transfer ADwin CPU <-> TiCo
P2_TDrv_Init(module,tico_no,tset_41)
For i = 1 To 80
Data_1[i] = i

Next

Event:
REM read 120 values from TiCo Data_2 (starting from
REM Data_2[1])
REM into ADwin CPU Data_1 (starting from Data_1[5]).
REM flowrate is high
P2_SetData_Long(tset_41,2,1,120,Data_1,5,3)

- / -

- / -

P2_TDrv_Init

TiCoBasic 1.0, Manual June 2010

ADw

282

P2_TDrv_Init
P2_TDrv_Init initializes the data transfer between ADwin CPU and
a TiCo processor.

Syntax
#Include ADwinPro_All.Inc

REM define settings array for TiCo y on module x
Dim tdrv_datatable[150] As Long

P2_TDrv_Init(module, tico_no,tdrv_datatable[])

Parameters

Notes
The instruction must be processed before data transfer bet-
ween ADwin CPU and TiCo. The instruction should be set into
the Init: section.

Most instructions accessing a TiCo processor require initiaiali-
zation of data transfer.

Initialization must be run for each TiCo processor separately.
For each processor an array tdrv_datatable[] with 150
elements has to be dimensioned, too.

The array tdrv_datatable[] is used by P2_GetData_
Long, P2_SetData_Long, P2_Workload.

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

P2_TDrv_Init

TiCoBasic 1.0, Manual June 2010

ADw

283

See also
P2_Get_Par, P2_Get_Par_Block, P2_TiCo_Get_Processde-
lay, P2_GetData_Long, P2_Set_Par, P2_Set_Par_Block, P2_
TiCo_Set_Processdelay, P2_SetData_Long

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
#Include ADwinPro_All.Inc
#Define module_a 4 'address of module a
#Define tico_a 1 'TiCo no.
#Define module_b 7 'address of module b
#Define tico_b 1 'TiCo no.
Dim Data_4[200] As Long
Dim Data_5[1000] As Long
Dim tset_41[150] As Long
Dim tset_71[150] As Long

Init:
REM initialize data transfer ADwin CPU <-> TiCo
P2_TDrv_Init(module_a,tico_a,tset_41)
P2_TDrv_Init(module_b,tico_b,tset_71)

Event:
REM read 120 values from module a, TiCo Data_2 (starting
REM from
REM Data_2[20]) into ADwin CPU Data_4 (starting from
REM index 5).
REM flowrate is high
P2_GetData_Long(tset_41,2,20,120,Data_4,5,3)
REM read 800 values from module b, TiCo Data_7 (starting
REM from
REM Data_7[9]) into ADwin CPU Data_5 (starting from index
REM 1).
REM flowrate is high
P2_GetData_Long(tset_71,7,9,800,Data_5,1,3)

P2_TiCo_Get_

TiCoBasic 1.0, Manual June 2010

ADw

284

P2_TiCo_Get_Processdelay
P2_TiCo_Get_Processdelay returns the Processdelay (cycle
time) of a process on a TiCo processor on the specified module.

Syntax
#Include ADwinPro_All.Inc

ret_val = P2_TiCo_Get_Processdelay(
tdrv_datatable[], process_no)

Parameters

Notes
Using a timer controlled process, the Event: section is trigge-
red by the internal counter cyclical and with fixed time interval.
The time interval between 2 trigger signals, called cycle time or
Processdelay, is measured in counter clock cycles.

See also
P2_Process_Status, P2_TiCo_Set_Processdelay, P2_TDrv_
Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

ret_val Current cycle time (-231…+231-1) of the TiCo pro-
cessor in clock cycles. One clock cycle takes
20ns.

LONG

P2_TiCo_Get_

TiCoBasic 1.0, Manual June 2010

ADw

285

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
P2_TDrv_Init(module,tico_no,tset)

Event:
REM read processdelay of process 1 into Par_1
Par_1 = P2_TiCo_Get_Processdelay(tset,1)

P2_TiCo_Flash

TiCoBasic 1.0, Manual June 2010

ADw

286

P2_TiCo_Flash
P2_TiCo_Flash transfers a TiCoBasic binary file from an array into
the flash memory of a TiCo processor.

Syntax
#Include ADwinPRO_ALL.inc

ret_val = P2_TiCo_Flash(module, tico_no,
array[])

Parameters

Notes
Use P2_TiCo_Flash only in low priority processes.

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

array[] Array holding the data to be transferred. ARRAY

LONG

ret_val Status of data transfer:
0: Data transfer successful.
-2: no module at this address or module has no

TiCo processor.
-1: Error: Instruction may only be used with low

priority.
1: Error: Invalid prcoessor number.
2: Error: Program memory too small.
3: Error: Data memory too small.
4: Error: Program and data memory too small.
5: Error: Wrong password.
6: Error: External memory memory too small.
7: Error: Flash memory too small.
12:Error: Binary file invalid for this TiCo proces-

sor.

LONG

P2_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

287

The instruction P2_TiCo_Flash is used to transfer a TiCo-
Basic binary file–a compiled TiCo program–into the flash me-
mory of a TiCo processor. The following steps are required:

• Create a binary file in the development environment
TiCoBasic using Build Make Bin File.

• Transfer the binary file into a global array of the ADwin CPU.
A useful means is the function Data2File which is
provided in several programming languages.

• Transfer the data of the global array[] into the flash
memory using P2_TiCo_Flash.

If array[] does not contain a TiCoBasic binary file the return
value is invalid.

See also
P2_TiCo_Load

Valid for
CAN-2 Rev. E, CNT-D Rev. E, Cnt-I Rev. E, Cnt-T Rev. E, DIO-
32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

P2_TiCo_Load

TiCoBasic 1.0, Manual June 2010

ADw

288

P2_TiCo_Load
P2_TiCo_Load transfers a TiCoBasic binary file from an array into
the memory of a TiCo processor.

Syntax
#Include ADwinPRO_ALL.inc

ret_val = P2_TiCo_Load(module,tico_no,array[])

Parameters

Notes
Use P2_TiCo_Load only in low priority processes.

module Specified module address (1…15). LONG

tico_no Number (1…2) of TiCo processor on the module. LONG

array[] Array holding the data to be transferred. ARRAY

LONG

ret_val Status of data transfer:
0: Data transfer successful.
-1: Error: Instruction may only be used with low

priority.
-2: no module at this address or module has no

TiCo processor.
1: Error: Invalid processor number.
2: Error: Program memory too small.
3: Error: Data memory too small.
4: Error: Program and data memory too small.
5: Error: Wrong password.
6: Error: External memory too small.
10:Error: Required external SRAM too small.
11:Error: Array contains no valid TiCoBasic binary

file.
12:Error: Binary file invalid for this TiCo proces-

sor.

LONG

P2_TiCo_Load

TiCoBasic 1.0, Manual June 2010

ADw

289

The instruction P2_TiCo_Load is used to transfer a TiCoBasic
binary file–a compiled TiCo program–into the memory of a TiCo
processor. The following steps are required:

• Create a binary file in the development environment
TiCoBasic using Build Make Bin File.

• Transfer the binary file into a global array of the ADwin CPU.
A useful means is the function File2Data which is
provided in several programming languages.

• Transfer the data of the global array[] into the memory
using P2_TiCo_Load.

See also
P2_TiCo_Flash

Valid for
-RSxxx4 Rev. E, CAN-2 Rev. E, CNT-D Rev. E, Cnt-I Rev. E,
Cnt-T Rev. E, DIO-32-TiCo Rev. E, RSxxx-2 Rev. E

Example
- / -

P2_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

290

P2_TiCo_Reset
P2_TiCo_Reset stops the TiCo processors on the specified modules
and restarts them afterwards.

Syntax
#Include ADwinPro_All.Inc

P2_TiCo_Reset(module_pattern)

Parameters

Notes
Stopping immediately interrupts any running process as well as
counters on the addressed TiCo processors. Data are not
changed by stopping.

The TiCo processors on the addressed modules are being start-
ed at the same time. Thus, the instruction can be used to syn-
chronize the addressed TiCo processors.

See also
P2_TiCo_Stop, P2_TiCo_Start

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

module_
pattern

Bit pattern to address the modules, where TiCo
processors are to be reset:
Bit = 0: Ignore module.
Bit = 1: Reset TiCo processors on the module.

LONG

Bits in module_pattern 31:15 14 13 … 01 00
Module address – 15 14 … 2 1

P2_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

291

Example
- / -

P2_TiCo_Set_

TiCoBasic 1.0, Manual June 2010

ADw

292

P2_TiCo_Set_Processdelay
P2_TiCo_Set_Processdelay sets the Processdelay (cycle
time) of a TiCo process on the specified module.

Syntax
#Include ADwinPro_All.Inc

P2_TiCo_Set_Processdelay(tdrv_datatable[],
process_no, value)

Parameters

Notes
- / -

See also
P2_TiCo_Get_Processdelay, P2_Process_Status, P2_TDrv_
Init

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

value Value to be set for Processdelay. LONG

P2_TiCo_Set_

TiCoBasic 1.0, Manual June 2010

ADw

293

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
P2_TDrv_Init(module,tico_no,tset)
Processdelay = 6000 'set cycle time

Event:
REM set TiCo processdelay to run with same cycle time as
REM the T11 process
P2_TiCo_Set_Processdelay(tset,1,Processdelay/6)

P2_TiCo_Start

TiCoBasic 1.0, Manual June 2010

ADw

294

P2_TiCo_Start
P2_TiCo_Start starts the TiCo processors on the specified modu-
les.

Syntax
#Include ADwinPro_All.Inc

P2_TiCo_Start(module_pattern)

Parameters

Notes
The TiCo processors on the addressed modules are being star-
ted at the same time. Thus, the instruction can be used to syn-
chronize the addressed TiCo processors.

See also
P2_TiCo_Stop, P2_TiCo_Reset

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

module_
pattern

Bit pattern to address the modules, where TiCo
processors are to be started:
Bit = 0: Ignore module.
Bit = 1: Start TiCo processors on the module.

LONG

Bits in module_pattern 31:15 14 13 … 01 00
Module address – 15 14 … 2 1

P2_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

295

P2_TiCo_Start_Process
P2_TiCo_Start_Process starts a process on a TiCo processor.

Syntax
#Include ADwinPro_All.Inc

P2_Tico_Start_Process(tdrv_datatable[],
process_no)

Parameters

Notes
The process must already be loaded to the TiCo processor.

See also
P2_TiCo_Get_Processdelay, P2_Process_Status, P2_TiCo_
Set_Processdelay, P2_TiCo_Start_Process, P2_TiCo_Stop_
Process, P2_Workload

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

tdrv_
datatable
[]

Array holding settings for data transfer, e. g.
module address and TiCo number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

P2_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

296

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
Par_1 = 0
Processdelay = 100000
P2_TDrv_Init(module,tico_no,tset)
REM start TiCo process in parallel to ADwin CPU process
P2_Tico_Start_Process(tset,1)

Event:
REM ... program

Finish:
REM stop TiCo process in parallel to ADwin CPU process
P2_Tico_Stop_Process(tset,1)

P2_TiCo_Stop

TiCoBasic 1.0, Manual June 2010

ADw

297

P2_TiCo_Stop
P2_TiCo_Stop stops the TiCo processors on the specified modules.

Syntax
#Include ADwinPro_All.Inc

P2_TiCo_Stop(module_pattern)

Parameters

Notes
Stopping immediately interrupts any running process as well as
counters on the addressed TiCo processors. Data are not chan-
ged by stopping.

See also
P2_TiCo_Start, P2_TiCo_Reset

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
- / -

module_
pattern

Bit pattern to address the modules, where TiCo
processors are to be stopped:
Bit = 0: Ignore module.
Bit = 1: Stop TiCo processors on the module.

LONG

Bits in module_pattern 31:15 14 13 … 01 00
Module address – 15 14 … 2 1

P2_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

298

P2_TiCo_Stop_Process
P2_TiCo_Stop_Process stops a process on a TiCo processor.

Syntax
#Include ADwinPro_All.Inc

P2_Tico_Stop_Process(tdrv_datatable[],
process_no)

Parameters

Notes
The process must already be loaded to the TiCo processor.

See also
P2_TiCo_Get_Processdelay, P2_Process_Status, P2_TiCo_
Set_Processdelay, P2_TiCo_Start_Process, P2_Workload

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

process_
no

Number (1) of TiCo process. LONG

P2_TiCo_

TiCoBasic 1.0, Manual June 2010

ADw

299

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
Par_1 = 0
Processdelay = 100000
P2_TDrv_Init(module,tico_no,tset)
REM start TiCo process in parallel to ADwin CPU process
P2_Tico_Start_Process(tset,1)

Event:
REM ... program

Finish:
REM stop TiCo process in parallel to ADwin CPU process
P2_Tico_Stop_Process(tset,1)

P2_Workload

TiCoBasic 1.0, Manual June 2010

ADw

300

P2_Workload
P2_Workload returns the workload of a TiCo processor on the spe-
cified module.

Syntax
#Include ADwinPro_All.Inc

ret_val = P2_Workload(tdrv_datatable[])

Parameters

Notes
The return value is the average processor workload in der time
between the previous and the current call of Workload. There-
fore, the return value of the first call in a program is invalid.

The shortest time between two instruction calls should be at
least 100 times of Processdelay. Otherweise, the return val-
ue may have an error of more than 1%.

If the previous call of Workload dates back more than 85 sec-
onds, the return value is invalid. Simply call the instruction a
second time to receive a valid return value.

See also
P2_TiCo_Get_Processdelay, P2_Process_Status, P2_TiCo_
Set_Processdelay, P2_TiCo_Stop_Process, P2_TDrv_Init

tdrv_
datatable
[]

Array holding settings for data transfer, e.g.
module address and TiCo number.

ARRAY

LONG

ret_val Processor workload in percent (0.0 … 100.0) or
error value:
<0: TiCo processor is stopped or

module has no TiCo processor or
no module at the given module address.

FLOAT

P2_Workload

TiCoBasic 1.0, Manual June 2010

ADw

301

Valid for
CAN-2 Rev. E, CNT-D Rev. E, CNT-I Rev. E, CNT-T Rev. E,
DIO-32-TiCo Rev. E, RSxxx-2 Rev. E, RSxxx-4 Rev. E

Example
#Include ADwinPro_All.Inc
#Define module 4 'module address
#Define tico_no 1 'TiCo no.
Dim tset[150] As Long 'settings array for data

'transfer

Init:
P2_TDrv_Init(module,tico_no,tset)

Event:
REM read TiCo workload
FPar_1 = P2_Workload(tset)

How to Solve Problems?

TiCoBasic 1.0, Manual June 2010

ADw

302

9 How to Solve Problems?
If problems already occur during installation, please refer to the
documentation for your ADwin system. Make sure all settings have
been carried out properly and completely. Also check if the base
address, the processor type, etc. are set correctly in the menu Opti-
ons\Compiler. If your problems still persist, please give your local
technical support office a call.
If you need help of a more substantial nature, you can contact us
directly; you find the address inside the manual’s cover page.

Short-Cuts in TiCoBasic

TiCoBasic 1.0, Manual June 2010

ADw

A-1

Appendix
A.1 Short-Cuts in TiCoBasic
To display short-cuts of code snippets, open <TiCoBasicCS.xml> in
the folder C:\ADwin\TiCoBasic\Common\ with a browser.

Short cut key Function Matching menu item
F1 Show he lp top ic fo r

marked instruction.
CTRL-F1 Show online help con-

tent.
Help Content

F2 Show declarat ion of
marked instruction.

CTRL-F2 Jump to declaration of
marked instruction.

F3 Find next forward. Edit Find Next
SHIFT-F3 Find next backwards.
CTRL-F3 Find Text at cursor posi-

tion forward.
CTRL-SHIFT-F3 Find Text at cursor posi-

tion backwards.
CTRL-F5 Initialize ADwin-CPU for

communicat ion w i th
TiCo processor.

CTRL-SHIFT-F5 Stop and reset TiCo pro-
cessor at once.

F6 Create library. Build Make Lib
File

F7 Create binary file. Build Make Bin
File

F8 Compile source code. Build Compile
CTRL-F8 Start process.

F9 Stop process.
CTRL-SPACE Insert or complete a dec-

laration.

Short-Cuts in TiCoBasic

TiCoBasic 1.0, Manual June 2010

ADw

A-2

Legend:

CTRL-SHIFT-
SPACE

Show parameters of a
sub / function.

CTRL-A Select all. Edit Select All
CTRL-B Comment marked lines Source context menu:

Comment Block
CTRL-SHIFT-B Uncomment marked

lines
Source context menu:
Uncomment Block

CTRL-C Copy. Edit Copy
CTRL-F Find text. Edit Find
CTRL-G Jump to a line.
CTRL-H Replace text. Edit Replace
CTRL-I Indent marked lines Source context menu:

Indent
CTRL-SHIFT-I Outdent marked lines Source context menu:

Outdent

CTRL-N New source code file. File New
CTRL-O Open source code file. File Open
CTRL-P Print source code file. File Print
CTRL-R Co lour mark used

parameters
Parameter window:
Icon

CTRL-S Save source code file. File Save
CTRL-V Paste. Edit Paste
CTRL-X Cut. Edit Cut
CTRL-Z Undo input. Edit Undo

CTRL-SHIFT-Z Redo input. Edit Redo
CTRL-K + K Insert / delete bookmark.
CTRL-K + N Jump to next bookmark.
CTRL-K + P Jump to previous book-

mark.
CTRL-K + X Insert a code snippet.

Short cut key Function Matching menu item

Short-Cuts in TiCoBasic

TiCoBasic 1.0, Manual June 2010

ADw

A-3

A-B: Press keys A and B at the same time.

A+B: Press key A first, release and then press key B.

ASCII-Character Set

TiCoBasic 1.0, Manual June 2010

ADw

A-4

A.2 ASCII-Character Set

! " # $ % & '

() * + , - . /

1 2 3 4 5 6 7

8 9 : ; < = > ?

0

A B C D E F G

H I J K L M N O

@

Q R S T U V W

X Y Z [\] ^ _

P

a b c d e f g

h i j k l m n o

`

q r s t u v w

x y z { | } ~ �

p

(g)

BS1 TAB2 LF3 CR4

NUL SOH STX ETX EOT ENQ ACK BEL

VT FF SO SI

CAN EM SUB GS

DLE DC1 DC2 DC3 DC4 NAK SYN ETB

ESC FS RS US

SPC5

00h 0 01h 1 02h 2 03h 3 04h 4 05h 5 06h 6 07h 7

08h 8 09h 9 0Ah 10 0Bh 11 0Ch 12 0Dh 13 0Eh 14 0Fh 15

10h 16 11h 17 12h 18 13h 19 14h 20 15h 21 16h 22 17h 23

18h 24 19h 25 1Ah 26 1Bh 27 1Ch 28 1Dh 29 1Eh 30 1Fh 31

20h 32 21h 33 22h 34 23h 35 24h 36 25h 37 26h 38 27h 39

28h 40 29h 41 2Ah 42 2Bh 43 2Ch 44 2Dh 45 2Eh 46 2Fh 47

30h 48 31h 49 32h 50 33h 51 34h 52 35h 53 36h 54 37h 55

38h 56 39h 57 3Ah 58 3Bh 59 3Ch 60 3Dh 61 3Eh 62 3Fh 63

40h 64 41h 65 42h 66 43h 67 44h 68 45h 69 46h 70 47h 71

48h 72 49h 73 4Ah 74 4Bh 75 4Ch 76 4Dh 77 4Eh 78 4Fh 79

50h 80 51h 81 52h 82 53h 83 54h 84 55h 85 56h 86 57h 87

58h 88 59h 89 5Ah 90 5Bh 91 5Ch 92 5Dh 93 5Eh 94 5Fh 95

60h 96 61h 97 62h 98 63h 99 64h 100 65h 101 66h 102 67h 103

68h 104 69h 105 6Ah 106 6Bh 107 6Ch108 6Dh109 6Eh 110 6Fh 111

70h 112 71h 113 72h 114 73h 115 74h 116 75h 117 76h 118 77h 119

78h 120 79h 121 7Ah 122 7Bh 123 7Ch124 7Dh125 7Eh 126 7Fh 127
1 Backspace, 2 Tabulator, 3 Linefeed,

4 Carriage Return, 5 Space

License Agreement

TiCoBasic 1.0, Manual June 2010

ADw

A-5

A.3 License Agreement
Between the buyer of TiCoBasic – termed the Licensee –
and Jäger Computergesteuerte Messtechnik GmbH, Rheinstraße 2 -
4, 64653 Lorsch – termed hereinafter Jäger Messtechnik GmbH – the
following license agreement is concluded:

1. OBJECT OF THE LICENSE AGREEMENT

1.1 Object of the license agreement is the software of the compiler and the
development system TiCoBasic (hereinafter termed TiCoBasic soft-
ware) as well as the printed user manual "TiCoBasic: The Real-Time
Development Tool for ADwin Systems" (hereinafter termed "printed
materials").

1.2 The company Jaeger Messtechnik GmbH draws your attention to the
fact that it is not possible according to the state of the art to develop
computer software in such a way that no errors occur in all applications
and combinations. Only a computer software which is basically practi-
cable according to the user documentation is object of the license
agreement.

2. EXTENT OF USAGE
2.1 Jaeger Messtechnik GmbH grants the Licensee a single, non-exclu-

sive and individual right of use. This means that you may use the
enclosed copy of the TiCoBasic software only on a single computer
and only in one single location. The Licensee may transfer the TiCo-
Basic software in physical form (that is stored on a storage device)
from one computer to another computer, provided that it is only used
individually on one single computer at any time. A usage other than
these restrictions is not permitted.

2.2 Programs generated by the Licensee with the TiCoBasic software,
may be distributed and used without restriction.

3. SPECIAL RESTRICTIONS
The Licensee is not permitted to

License Agreement

TiCoBasic 1.0, Manual June 2010

ADw

A-6

a) pass or otherwise give to any third party access to the TiCoBasic soft-
ware without prior written consent of Jaeger Messtechnik GmbH,

4. electronically transfer the TiCoBasic software from one com-
puter to another over a network or a data transfer channel,

5. change or modify, translate, reverse engineer, decompile or
disassemble the TiCoBasic software without prior written
consent of Jaeger Messtechnik GmbH.

6. OWNERSHIP
6.1 Upon purchasing the product, only title to the physical storage device,

where the TiCoBasic software has been stored, is passed to the Lic-
ensee. No title to the rights of the TiCoBasic software itself is passed
to the Licensee.

6.2 Jaeger Messtechnik GmbH reserves all rights for publication, copying,
processing and commercialization of the TiCoBasic software.

7. COPYRIGHTS
7.1 The TiCoBasic software and the printed materials are protected by

copyright.

For backup purposes the Licensee may generate a single copy
of the TiCoBasic software. He must reproduce the copyright no-
tice of Jaeger Messtechnik GmbH on the copy. The copyright
notice on the TiCoBasic software must not be removed.

7.2 It is expressly not permitted to fully or partially copy or reproduce the
TiCoBasic software as well as the printed materials in its original or
modified form or merged or included in other software.

8. GRANT OF LICENSE
8.1 The right to use the TiCoBasic software can only be granted to a third

party with prior written consent of Jaeger Messtechnik GmbH. The Lic-
ensee must then completely delete the software which he has installed
and pass it to the third party. (The transfer has to include the original
data carrier with the documentation, backup version included). The
license may furthermore only be transferred to a third party, if the latter
agrees for the benefit of Jaeger Messtechnik GmbH to the terms and
conditions of this License Agreement and to the General Conditions of
the company Jaeger Messtechnik GmbH.

License Agreement

TiCoBasic 1.0, Manual June 2010

ADw

A-7

8.2 You must not rent, lease or lend the TiCoBasic software.

9. PERIOD OF AGREEMENT
9.1 The period of the License Agreement is unlimited.

9.2 The right of the Licensee for using the TiCoBasic software voids auto-
matically without notice of termination, if he violates a condition of this
License Agreement. Upon termination of the license, the Licensee
must destroy the original data medium and all copies of the TiCoBasic
software, possible modified copies included, as well as the printed
materials.

10.CLAIM FOR DAMAGES AND PENALTY UPON VIOLATION
OF THE CONTRACT

10.1If the Licensee violates conditions of this License Agreement he must
pay damages.

10.2Notwithstanding, Jaeger Messtechnik GmbH will charge a penalty of
20,000.00 EURO for violation of the copyright, unauthorized usage of
the software, and unauthorized distribution of the software to third par-
ties.

10.3The title to omission on completion of the contract is not influenced by
the claim for damages and the penalties.

11.MODIFICATIONS AND UPDATES
Jaeger Messtechnik GmbH is entitled to update the TiCoBasic soft-
ware upon its own discretion. Jaeger Messtechnik GmbH is not
obliged to have updates of the TiCoBasic software available for the
Licensee.
For extensive updates Jaeger Messtechnik GmbH reserves the right
to charge an additional fee.

12.WARRANTY AND LIABILITY OF JAEGER MESSTECHNIK
GMBH

a) Jaeger Messtechnik GmbH assumes warranty to the Licensee that at
the moment of delivery the data medium, on which the TiCoBasic soft-
ware is stored, is error-free in accordance with the accompanying

License Agreement

TiCoBasic 1.0, Manual June 2010

ADw

A-8

materials, when applied under normal operating conditions and under
normal maintenance conditions.

13.If the data medium is faulty, the Licensee is granted a
replacement within the warranty period of 6 months from the
date of delivery. He must return the data medium as well as
a copy of the invoice to Jaeger Messtechnik GmbH or to the
distributor from whom he has purchased the product.

14.If a fault as described in Section 10 b) is not eliminated within
an adequate period of time by replacement of the product,
the Licensee may choose between either allowance (price
reduction) or conversion (rescission of the License Agree-
ment). The Licensee is not entitled to any further claims.

15.For the reasons mentioned in Section 1.2 Jaeger Messtech-
nik GmbH does not assume liability for the absence of
defects with regards to the TiCoBasic software. In particular
Jaeger Messtechnik GmbH does not assume warranty for
the fact that the TiCoBasic software meets the requirements
and purposes of the Licensee or is compatible to other pro-
grams he is working with. The Licensee is responsible for
the correct choice and the consequences of using the TiCo-
Basic software, as well as for the results he intends to obtain
or has obtained. The same applies for the printed materials
which are delivered with the TiCoBasic software.

16.Jaeger Messtechnik does not assume liability for damages,
unless Jäger Messtechnik GmbH has caused damages by
intention or by gross negligence. Liability because of prop-
erties assured by Jaeger Messtechnik GmbH remains unaf-
fected. Liability is excluded for consequential damages,
which are not part of the assurance given above.

17.Jaeger Messtechnik GmbH does not assume liability for
damages caused by viruses, which are passed on by the
data medium. The Licensee is hold responsible for checking
the data medium for viruses, before installing the TiCoBasic
software on his computer.

18.FINAL CONDITIONS

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-9

The invalidity of some individual conditions does not affect the validity
of the License Agreement.
In addition to the conditions of this License Agreement the General
Terms and Conditions of Jaeger Messtechnik GmbH apply.

A.4 Command Line Calling
The TiCoBasic compiler cannot only be activated through the user
interface, but it can also be directly called in Windows or DOS (with a
so-called "command line call"). The compiler works the same in both
cases, it can compile a source code file and generate a binary or
library file.
The compiler will only be called after you have entered your license
key in TiCoBasic.
Please note the general hints about Command line calls in Windows
on page 14.

A.4.1 Syntax
There are command line calls to create binary files (main option /M)
and to create a library file (main option /L).
You add command line options, beginning with a slash /, some of
which have optional parameters. If an option is missing, the compiler
will use a default setting; nevertheless, we recommend to type all
options to avoid ambiguities1.
While creating a binary file, more than one source code files may be
compiled. Thus, some options are specified globally for all files, while
other options are specified for each file separately (see option /PRO-
CESS).
As an alternative, options of a single call may be written into a make-
file and the compiler called with main option /MAKE.
At last there are the main options /H to display a short help text, and
/VER to display the compiler version number.
The command line call is entered in a single line; option letters are
case sensitive.

1. As an example, a call with all options given remains correct, even
when a default setting is being changed.

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-10

Syntax
TiCoBasicCompiler /M [/A"dest"] [/IP"path"]

[/LP"path"] [/Lx] [/Sx] [/P1] /PROCESS
src.bas [/ET | /EA | /EN | /EE /EEAx

/EEMx /EEVx /EEOx][/PNx] [/PH | /PL] [/PDx]
[/Ox] [/Vx]

TiCoBasicCompiler /L src.bas [/A"dest"]
[/IP"path"]

[/LP"path"] [/Lx] [/Sx] [/P1] [/Ox]

TiCoBasicCompiler /MAKE"makefile"

TiCoBasic /H

TiCoBasic /VER

Optional settings are given in brackets []. The character | separates
options, which are mutually exclusive.
File names can be written without, with relative or with absolute path
names. The base directory for a file name without or with relative path
name is the working directory, from which the command line is called.

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-11

Main Options

Options

/M Generate a binary file with the extension .TIn.

n Process number; see option /PNx.

/L Generate a library file with the extension .TLx .

x Processor type; see option /Px.

/MAKE Read main option, file name and other options of a
single call from the makefile.
The text in the makefile may be written using sev-
eral lines. Options outside the makefile are not
permitted

/H Display a short help text.

/VER Display compiler version number.

src.bas File name of the source code to be compiled; type
with suffix .bas. With main option /M, specify after
/PROCESS.
Compiler warnings are written into the f i le
src.wrn, error messages into the file src.err.

/A"dest" [Path and] name of the binary or library file <dest>
which is to be generated, without suffix. The default
is the file name src.
The file suffix .TIn (binary file) or .TLx (library file)
is attached automatically.

/IP"path" Directory, where include files are searched.
This setting overwrites the TiCoBasic standard
directory and should thus be used with caution.

/LP"path" Directory, where library files are searched.
This setting overwrites the TiCoBasic standard
directory and should thus be used with caution.

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-12

/Lx Language for warnings and error messages.
/LE
/LG

English. Default.
German

/Sx Hardware, for which the file is compiled:
/SGII
//SPI

I

Gold II
Pro II; Default

/Px Processor type, for which the file is compiled:
/P1 TiCo processor 1

/PROCESS Keyword for options of the following source code
file. Has to be repeated for each source code file.
Use only in combiation with main option /M.

/ET Create timer triggered process, see also chapter
7.1.1 on page 110. Default.
Excludes /EE and /EN.

/EE Create externally triggered process, see also chap-
ter 7.1.2 on page 111; requires options /EEA,
/EEM, /EEV, /EEO.
Schließt /ET and /EN aus.

/EEAn Hardware address n (decimal), which is evaluated
for the event signal.

/EEMn Mask value n (decimal), which is used for OR-dis-
junction with the address.

/EEVn Campring value n (decimal).
/EEOx Comparing operator x:

1: < smaller than
2: = equal
3: <= smaller than or equal
4: > greater than
6: >= greater than or equal
8: <> not equal

/EN Create process without trigger, see chapter 7.1.3
on page 112.
Excludes /EE and /ET.

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-13

A.4.2 Notes
The order of options is arbitrary. Command line calls are case sensi-
tive.
If option /A is not used, the generated binary or library file is saved in
the same directory, as the source code.
If warnings or errors occur during compilation, they are saved in the
files <src.WRN> and <src.ERR>. The error messages are the same
as those that TiCoBasic displays in the info window (see
chapter 4.10.1).
The files <src.WRN> and <src.ERR> are saved in the same direc-
tory, as the source code. If you use the option /A, the files are saved
in the directory where the binary or library file is created.
We recommend you delete the files containing the warnings and error
messages before compilation, so that you can very easily check if the
compilation has proceeded without any errors.

A.4.3 Examples
C:\ADwin\TiCoBasic\TiCoBasiccompiler.exe /L
Z:\Myfiles\test.bas

This command line compiles the source code <test.bas> and
generates the library file <test.TL9> in the directory

/PNx Number x (1…4) of the process. Default: 1.
/PH Create process with high priority. Default. See also

chapter 7.1 on page 110.
/PL Create process with low priority (time triggered pro-

cess only). See also chapter 7.1 on page 110.
/PDx Set cycle time (Processdelay) of the process to x.

Default: 3000. See also chapter 7.2.1 on page 113.
/Ox Set optimize level x (0, 1, 2) of the compiler, see

also Process Options dialog box (page 50).
/O0
/O1
/O2

Optimize level 0 (=don’t optimize)
Optimize level 1 (Default)
Optimize level 2

/Vx Set process version x, see Process Options dialog
box (page 50). Default: 1.

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-14

<Z:\Myfiles\>.
Since nothing else is indicated, the default setting is used:

• save generated file in the directory of the source code file.
• use english warnings and error messages.
• Hardware: ADwin-Pro II.
• TiCo processor 1.
• Optimize level: 1.

If you do the call from the directory <C:\ADwin\TiCoBasic>,
you can shorten this line to:
TiCoBasicCompiler.exe /L Z:\Myfiles\test.bas

The shortest version is when the source code is stored in the di-
rectory <C:\ADwin\TiCoBasic> (here without file name exten-
sion):
TiCoBasicCompiler /L test.bas

Anyway, we recommend the complete version–at least for au-
tomation of the call:
TiCoBasiccompiler /L test.bas /A"test" /LE /SPII /P1
/O1

TiCoBasicCompiler /M /LE /SGII /P1 /PROCESS
- bas_dmo6f.bas /ET /PN3 /PH /O1

Compiles the demo file <bas_dmo6f.bas> into a binary file for
a Gold II system with TiCo processor. It is a timer triggered pro-
cess with number 3 and high priority.

TiCoBasicCompiler /M /A"Y:\somewhere\your_file" /LE
/SGII /P1
 /PROCESS C:\user\my_file.bas /ET /PN3 /PH /O1

The binary file now is saved as <Y:\somewhere\your_
file.TL1>; It is a timer triggered process with number 3 and
high priority .

A.4.4 Command line calls in Windows
The term and functionality "command line call" come from DOS, where
commands to the operating system DOS had to be entered in com-
mand lines. Entering such command lines is still possible under Win-
dows.

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-15

There are several ways to enter commands under Windows:

– Open a Command Prompt window (from Windows start menu,
directory Programs / Accessories).

The compiler call needs the Windows environment anyway.
Thus, the call works only from the Command Prompt window,
not from original DOS-mode.

– Select Run in the start menu and enter a command line in the
input window.

– For frequently needed command lines create an icon on the
desktop. When you generate an icon enter the command line
directly.

One or more command lines can be combined in one batch file
<*.bat> , for example in order to compile several source code files
of a project with only one call.
When you call a command line you have to transfer the relevant
options and parameters.

Command Line Calling

TiCoBasic 1.0, Manual June 2010

ADw

A-16

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-17

A.5 Index

Symbols
- · 122
· 126
#Define · 135
#Else · 151
#EndIf · 151
#If · 151
#Include · 158
* · 123
+ · 121
/ · 124
: · 127
< = > · 129
= · 128
^ · 125
’ (Rem) · 185

Numerics
150h, see device no.

A
AbsI · 130
absolute value

integer number · 130
ActiveX

communication to ADwin
system · 117

ADconfig · 118
Add Open Files to Project · 61
Add to Project

context menu · 17
project window · 61

addition · 121
ADtools · 74
ADtools, set bar · 58
ADWIN_GOLDII · 151
ADWIN_PROII · 151

ADWIN_SYSTEM · 151
And · 131
arithmetic functions

- · 122
* · 123
+ · 121
/ · 124
^ · 125
Dec · 134
Inc · 157

arrays
allocate memory area · 86
DATA_n · 133
global · 83

first element · 84
initialize · 78
local · 85

first element · 86
overview · 80

(Dim) AS · 137
ASCII-character set · 4
assign a value · 82
assignment (=) · 128
(Dim …) AT · 137
autocomplete, instruction or

variable · 36
autoindent · 54
AutoSave · 47
autostart · 47

B
bar, menu · 43

binary file
see also library
create · 47

from command line · 9
from TiCoBasic · 47

transfer to TiCo processor · 41
binary notation · 82

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-18

bit shifting
left · 199
right · 200

bookmark · 34
Bootloader

menu entry · 58
bootloader

programming · 41
break, see stop process
BTL file

directory settings · 57
busy display · 67
bypass waiting time · 173

C
case sensitivity · 16
Case, CCase, CaseElse (Select-

Case …) · 196
change license key · 10
change to TiCoBasic · 5
clear parameter scan · 40
code size · 68
code snippets · 37
color settings · 55
command line

call · 9
line length

standard · 76
with #Include · 158

upper case / lower case · 76
Comment Block · 23
comment, see remarks
communication

between ADwin CPU and TiCo
processor · 118

between processes · 116
with the TiCo processor · 116

comparison
< = > · 129

compiler
AutoSave · 47
call · 47
command line call · 9
compiler message, error /

status · 68
preprocessor statement · 126
set options · 48

compiler instructions
#Define · 135
#If … Then · 151
#Include · 158

conditional jump
If … Then · 149
SelectCase · 196

constant · 78
context menu

project window · 61
source code window · 17

control block
context menu · 17
mark · 33

control structures · 99
toggle folding · 23

counter
internal, clock cycle · 113
read · 184

cursor position · 67
cycle time · 113

D
data exchange

between processes · 116
with the TiCo processor · 116

data loss
on initialize · 12
on reset · 12
ringbuffer · 90

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-19

data memory
see also memory
allocate · 86
overview, internal, external · 87

data structures
global arrays · 83
global variables · 82
local variables and arrays · 85
overview · 80
Ringbuffer · 89

data types
overview · 82

data word, numbering of bits · 2
Data_n · 83

dimensioning · 137
overview · 133

Dec · 134
decimal notation · 82
decimal separator · 82
declaration

jump to · 35
see dimensioning
show all · 39
show single info · 38

declarations
display all · 72

decrement · 134
Define, see #Define
definition of macros, position in the

program · 79
demo mode · 10
design of an TiCoBasic

program · 76
development environment

bars and windows · 13
directory settings · 57
short-cuts · 1
start · 9

device no.
definition · 118
set · 49

Dim · 137
dimensioning

instruction Dim · 137
memory area · 86
position in the program · 78

directory settings · 57
Disable Trace · 17
display

all declarations · 39
current information · 15
memory usage: CPU, PM, DM,

DX · 67
passed parameters · 38
single declaration info · 38
syntax highlighting · 21

display declarations · 72
division

by 2 · 200
simple · 124

DM, see memory
DM_LOCAL

Dim · 137
Do … Until · 140
DRAM_EXTERN

Dim · 137
DX, see memory

E
editor

general · 54
print settings · 56
syntax highlighting · 55

editor bar · 19
Else (If … Then) · 149
Enable Trace · 17
End · 142
EndFunction · 146
EndIf (If … Then) · 149
EndSelect (SelectCase …) · 196
EndSub · 202
enter license key · 10

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-20

equal to = · 129
error

forced by Cut&Paste · 46
try lower optimization level · 53

error message, compiler · 68
Ethernet · 117
evaluate

operators · 97
Event

program section · 143
set signal source · 52

event
external signal · 108
externally controlled · 111
lost signal

externally controlled
process · 115

timer-controlled process · 115
measure time difference · 103
timer controlled

· 110
without trigger · 112

exclusive Or operation · 204
exponential notation · 82
expressions

evaluate · 97
symbolic names · 78

external data memory (DX) · 88
external data memory (SX) · 88
external event signal · 108
external memory (SDRAM) · 87

F
F1: call help · 16
Felder

Ringbuffer · 186
FIFO · 89
file name

binary file · 47
library · 48

find
declaration of

instruction/variable · 35
examples · 29
regular expressions · 31
text · 26
text quickly · 25

Finish: · 144
fold text ranges · 23
font settings · 55
For … Next · 145
format, smart · 21
Function · 146

library
definition · 161

macro · 146
position in the program · 79

function
general features · 99
library

general · 100

G
Get_Par · 207
Get_Par_Block · 209
Get_TiCo_RingBuffer · 211
Get_TiCo_Status · 214
GetData_Long · 215
global arrays, see arrays, global
global variables · 71
global variables, see variables, glo-

bal
Globaldelay · 180
Gold2cess_Status · 218
goto line · 35
greater than >, >= · 129

H
halt

TiCo processor · 12

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-21

halt, see stop process
Hardware access

read · 155
write · 179

Header · 56
help

call selected · 16
F1 · 16

hexadecimal notation · 82

I
If · 149

see also #If · 151
Import · 153
In · 155
Inc · 157
Include · 158

directory settings · 57
Include a file: #Include · 158
Include a library: Import · 153

include
include-file, general · 100

increment · 157
indent

lines · 23
TiCoBasic sections · 54

info range · 68
info window · 68
Init: · 160
initialize · 12, 78
input license key · 10
insert code snippets · 37
instruction

autocomplete · 36
declaration info · 38
display passed parameters · 38
jump to declaration · 35
measure processing time · 102
separator (:) · 127

instruction reference · 119

integer numbers
value range · 82

internal counter
clock cycle · 113

internal memory
data (DM) · 88
SRAM · 87

interrupt, see stop process

J
jump to declaration · 35
jump to program line · 35
jump, conditional

If … Then · 149
SelectCase · 196

K
keyboard, settings display · 67

L
language · 57
less than <, <= · 129
Lib_EndFunction · 161
Lib_EndSub · 166
Lib_Function · 161
Lib_Sub · 166
library

create
from command line · 9
from TiCoBasic · 48

directory settings · 57
function · 161
general · 100
Import · 153
position in the program · 79
subroutine · 166
toggle folding · 23

library file
create · 47

license agreement · 5

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-22

license key · 10
line length, max.

standard · 76
with #Include · 158

lines
change to comment · 23
indenting · 23
jump to · 35
numbering · 54
smart format · 21

Load Bin File · 58
logic functions

And · 131
Not · 176
Or · 177
Shift_Left · 199
Shift_Right · 200
XOr · 204

long, see integer numbers

M
macro

function · 146
general features · 99
position in the program · 79
toggle folding · 23

Make Bin File, Make Lib File · 47
manual indenting · 23
Mark Control block · 33
Max_Long · 171
Maximum

integer values · 171
maximum line length

standard · 76
with #Include · 158

measure processing time · 102
measurement graph · 74

memory
see also data memory
allocate · 86
areas (PM, DM, DX) · 87
calculate need of · 68
workload · 67

menu
bar · 43
build · 47
edit · 46
file · 45
help · 59
options · 48
select · 14
tools · 58
view · 46
window · 59

Min_Long · 172
Minimum

integer values · 172
multiplication

by 2 · 199
simple · 123

N
names, local variables · 85
negative sign · 98
new in TiCoBasic · 5
Next (For …) · 145
none: without event trigger · 112
NOP · 173
NOPs · 174
Not · 176
not equal to <> · 129
notation of numbers · 82
notes, see remarks
number, see device no.
numerical values, notation · 82

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-23

O
operating system

directory settings · 57
load, see initialize

operators
And · 131
evaluate · 97
negative sign · 98
Or · 177
priority · 97
XOr · 204

Optimierung
Speicherzugriff · 107

optimize
calculate polynoms quickly · 125
constants instead of

variables · 104
general · 102
measure faster · 104
measure processing time · 102
register access · 103
setting waiting time · 105
use waiting times · 105

options setting
ADtools · 58
compiler · 48
directory · 57
editor · 54
general · 54
language · 57
print · 56
process · 50
syntax highlight · 55

Or · 177
Or operation · 177
Out · 179
outdent lines · 23

P
P2_Get_Par · 255

P2_Get_Par_Block · 257
P2_Get_TiCo_Bootloader_Status ·

259
P2_Get_TiCo_RingBuffer · 260
P2_Get_TiCo_Status · 263
P2_GetData_Long · 265
P2_Process_Status · 268
P2_Ringbuffer_Empty · 270
P2_Ringbuffer_Full · 271
P2_Set_Par · 272
P2_Set_Par_Block · 274
P2_Set_TiCo_RingBuffer · 276
P2_SetData_Long · 279
P2_TDrv_Init · 282
P2_TiCo_Flash · 286
P2_TiCo_Get_Processdelay · 284
P2_TiCo_Load · 288
P2_TiCo_Reset · 290
P2_TiCo_Set_Processdelay · 292
P2_TiCo_Start · 294
P2_TiCo_Start_Process · 295
P2_TiCo_Stop · 297
P2_TiCo_Stop_Process · 298
P2_Workload · 300
Par_n · 82
parameter scan · 40
parameter window · 63
parameters, see variables, global
parse and indent · 54
passed parameters, display · 38
PM, see memory
polynoms, calculate quickly · 125
power · 125

replace in polynom · 125
pre-processor

overview instructions · 126
pre-processor instructions

#Define · 135
#If … Then · 151
#Include · 158

Print layout · 56

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-24

print settings · 56
priority

operators · 97
problems

slow editor · 54
process

autostart · 47
communication · 116
externally controlled · 111
operating modes for timing · 114
options, show · 14
processing time · 114
query status · 183
setting options · 50
stop, see stop process
time characteristic · 113
timer controlled

low priority · 110
high priority · 110

without event trigger · 112
process control

End · 142
ProcessN_Running · 183

process cycle
call

by event · 108
time interval · 113

process optimization, see optimize
Process_Status · 218
Processdelay · 113

syntax · 180
time resolutions · 113

Processn_Running · 183
Processor · 151

program architecture
jump

If … Then · 149
SelectCase · 196

library
function · 161
Lib_Sub · 166

loop
Do … Until · 140
For … Next · 145

modules
function · 146
subroutine Sub · 202

remarks Rem · 185
program design · 76
program improvement, see optimize
program line, jump to · 35
program memory · 88
program section

event: · 78
Finish: · 78
Init: · 78
overview · 78

program structure
overview · 99
include-file · 100
library · 100
module (macro) · 99
toggle folding · 23

project
general · 42
highlight used parameters · 40
window · 61

Prozessn_Running · 183

R
Read_Timer · 184
Refresh_RingBuffer · 188
register access · 103
regular expressions · 31
Rem · 185

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-25

remarks · 185
replace

examples · 30
regular expressions · 31
text · 26

reset
TiCo processor · 12

Ringbuffer
dimensioning · 137
overview · 186

ringbuffer
check number of elements · 91
data loss · 90
design of data structure · 89

RingBuffer_Clear · 190
RingBuffer_Empty · 192, 220
Ringbuffer_For_Read · 186
Ringbuffer_For_Write · 186
RingBuffer_Full · 194, 221

S
Save All Files of Project · 61
SDRAM, see memory
search · 26

declaration of
instruction/variable · 35

examples · 29
regular expressions · 31

SelectCase · 196
separator : · 127
Set_Par · 222
Set_Par_Block · 224
Set_TiCo_RingBuffer · 226
SetData_Long · 229
settings

print · 56
Shift_Left · 199
Shift_Right · 200
(bit) shifting

left · 199
right · 200

Short-cuts · 1
show

declarations · 39
line numbers · 54
process options window · 14

show declarations · 72
Sleep · 201
smart format · 21
snippets · 37
source code

creating · 16
formatting · 21
information · 14
status bar · 67
structured display · 21
to do’s · 70
use in a project · 61

source code status bar · 14
special char, find · 31
SRAM, see memory
SRAM_EXTERN

Dim · 137
stack size · 68
starting TiCoBasic · 9
status bar · 67
status bar of source code

window · 14
status message, compiler · 68
Step (For …) · 145
stop

TiCo processor · 12
stop process

itself
in Event: · 142

structure
Coloured display of source

code · 21
indent lines · 23
program sections · 99
toggle folding · 23

Sub · 202

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-26

subroutine
general features · 99
library

definition (Lib_Sub) · 166
general · 100

macro · 202
position in the program · 79

subtraction · 122
SX, see memory
symbolic names · 78
syntax

highlighting · 21, 55
system variable

overview · 85
Processdelay · 180
ProcessN_Running · 183

T
tab

size · 54
TCP/IP

see Ethernet
TDrv_Init · 232
terminate, see stop process
text

find And replace · 26
find quickly · 25
fold ranges · 23
indenting · 23
smart format · 21

Then (If … Then) · 149
TiCo bootloader

menu entry · 58
TiCo bootloader, programming · 41
TiCo processor

reset / stop · 12
TiCo_Flash · 234
TiCo_Get_Processdelay · 236
TiCo_Load · 238
TiCo_Reset · 240
TiCo_Reset_Mode · 242

TiCo_Set_Processdelay · 243
TiCo_Start · 245
TiCo_Start_Process · 246
TiCo_Stop · 248
TiCo_Stop_Process · 249
TiCo-11 · 151
TiCoBasic

demo mode · 10
license agreement · 5
start · 9

TiCoBasic: differences to
ADbasic · 5

TiCoBasicCompiler, command
line · 9

time
cycle time · 113

time saving
constants instead of

variables · 104
measure faster · 104
register access · 103
setting waiting time · 105
use waiting times · 105

timer event · 108
timer, see counter
timing

see optimize
operating modes

externally controlled
process · 115

general · 114
timer-controlled process · 115

To (For …) · 145
to do list · 70
toggle folding · 23
tool bar · 14
toolbox · 61
Tools

bootloader · 58
load binary file · 58
TGraphTiCo · 58

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-27

tools
TBin · 74
TButton · 74
TDigit · 74
TFifo · 74
TGraph · 74
TLed · 74
TMeter · 74
TPar_FPar · 74
TPoti · 74
TProcess · 74

U
Uncomment Block · 23
Unmark Control block · 33
Until (Do …) · 140
upper / lower case letters · 16
USB · 117
user defined instructions and

variables · 78
user surface · 13
utility programs, see ADtools

V
value range · 82

variables
autocomplete · 36
declaration info · 38
display · 63
global · 82

highlight used · 40
name · 80

initialize · 12, 78
jump to declaration · 35
local · 85

allocate memory area · 86
name length · 85

overview · 80
switch hex/decimal display · 64
symbolic names · 78
see also system variable

view
to do list · 70

W
wait

NOP · 173
setting waiting time exactly · 105
Sleep · 201

Warten
NOPs · 174

Window
source code status bar · 14

Index

TiCoBasic 1.0, Manual June 2010

ADwin

A-28

window
compiler options · 48
declarations · 72
global variables · 71
info range · 68
info window · 68
overview · 13
parameter · 63
process Options · 50
project · 61
source code information · 14
status bar · 67
to do list · 70
toolbox · 61

without event trigger · 112
Workload · 251
workload

definition · 114
display · 67

workspace size · 68

X
XOr · 204

TiCoBasic 1.0, Manual June 2010

Instruction Index

A.6 Instructions in this manual
Symbols
< = > (comparison) 151
+ (addition) 140
+ (String addition) 141
- (subtraction) 143
* (multiplication) 144
/ (division) 145
^ (power) 146
= (assignment) 150
: colon 149
" " (String) 271
#Define 170
#If … Then … {#Else …}
#EndIf 201

#Include 206
#…, preprocessor state-
ment 148

A-B
AbsF 153
AbsI 154
And 155
ArcCos 157
ArcSin 158
ArcTan 159
Asc 160

C
Cast_FloatToLong 161
Cast_LongToFloat 162
Chr 163
Cos 164
CPU_Sleep 165

D
DATA_n 167
Dec 169
Dim 172
Do … Until 175

E-F
End 177
Event: 178
Exit 180
Exp 181
FFT 300

FFT_Calc 312
FFT_Calc_DM 314
FFT_Calc_DX 316
FFT_Init 311
FFT_Mag 305
FFT_Mag_Scale 309
FFT_Phase 307
FFT_Scale 303
FIFO 182
FIFO_Clear 184
FIFO_Empty 186
FIFO_Full 187
Finish: 188
Flo40ToStr 192
FloToStr 190
For … To … {Step …}
Next 194

Function … EndFunction
196

G-J
If … Then … {Else …} En-
dIf 199

Import 203
Inc 205
Init: 208
IO_Sleep 210

K-L
Lib_Function … Lib_End-
Function 212

Lib_Sub … Lib_EndSub
217

LN 222
LngToStr 223
Log 225
LowInit: 226

M-O
Max_Float 228
Max_Long 230
Min_Float 229
Min_Long 231
Mod 320
NOP 234

Not 235
Or 236

P
P1_Sleep 238
P2_Sleep 240
Peek 242
Poke 243
Processdelay 245
Processn_Running 249
Process_Error 248

R
Read_Timer 250
Rem 252
Reset_Event 253
Restart_Process 254

S
SelectCase 255
Shift_Left 258
Shift_Right 260
Sin 262
Sleep 263
Sqrt 265
Start_Process 266
Stop_Process 269
" " (String) 271
StrComp 273
StrLeft 275
StrLen 278
StrMid 279
StrRight 282
Sub … EndSub 285

T-Z
Tan 288
Trace_Mode_Pause 289
Trace_Mode_Resume290
ValF 291
ValI 294
XOr 296

TiCoBasic 1.0, Manual June 2010

	TiCoBasic
	Table of contents
	1 Conventions
	2 Introduction
	3 TiCoBasic for ADbasic users
	4 Development Environment
	4.1 Basic Steps
	4.1.1 Starting the Development Environment
	4.1.2 Check or change TiCoBasic licenses
	4.1.3 Initializing Communication
	4.1.4 Basic Elements of the Development Environment

	4.2 Creating source code
	4.2.1 Calling online help
	4.2.2 Context menu in source code window
	4.2.3 Editor bar

	4.3 Formatting source code
	4.3.1 Syntax highlighting
	4.3.2 Smart formatting
	4.3.3 Indenting text lines
	4.3.4 Changing lines into comment
	4.3.5 Folding text ranges

	4.4 Searching and replacing
	4.4.1 Finding text quickly
	4.4.2 Finding and replacing text
	4.4.3 Regular expression
	4.4.4 Marking control blocks
	4.4.5 Using bookmarks
	4.4.6 Jump to a program line
	4.4.7 Jumping to declaration of instruction or variable

	4.5 Writing programs with ease
	4.5.1 Autocomplete for instruction or variable
	4.5.2 Inserting code snippets
	4.5.3 Displaying instruction parameters
	4.5.4 Displaying declaration of instruction or variable
	4.5.5 Displaying declarations of a file
	4.5.6 Displaying used global variables and arrays

	4.6 Transferring a TiCo binary file to TiCo processor
	4.6.1 Transferring a TiCo binary file
	4.6.2 Programming the TiCo bootloader

	4.7 Managing Projects
	4.8 Menus
	4.8.1 File Menu
	4.8.2 Edit Menu
	4.8.3 View Menu
	4.8.4 Build Menu
	4.8.5 Options Menu
	4.8.6 Tools Menu
	4.8.7 Window Menu
	4.8.8 Help Menu

	4.9 Windows
	4.9.1 Toolbox
	4.9.2 Project Window
	4.9.3 Parameter Window
	4.9.4 Process Window
	4.9.5 Register window
	4.9.6 Status Bar

	4.10 Info range
	4.10.1 Info window
	4.10.2 ToDo List
	4.10.3 Global Variables
	4.10.4 Declarations

	4.11 ADtools

	5 Programming Processes
	5.1 Program Design
	5.1.1 The Program Sections
	5.1.2 User defined instructions and variables

	5.2 Variables and Arrays
	5.2.1 Overview
	5.2.2 Data Structures
	5.2.3 Data Types
	5.2.4 Entering Numerical Values
	5.2.5 Global Variables (Parameters)
	5.2.6 Global Arrays
	5.2.7 System Variables
	5.2.8 Local Variables and Arrays

	5.3 Variables and Arrays - Details
	5.3.1 Variables and Arrays in the Data Memory
	5.3.2 Memory Areas
	5.3.3 The Data structure Ringbuffer

	5.4 Expressions
	5.4.1 Evaluation of Operators

	5.5 Selection structures, Loops and Modules
	5.5.1 Subroutine and Function Macros
	5.5.2 Include-Files
	5.5.3 Libraries

	6 Optimizing Processes
	6.1 Measuring the Processing Time
	6.2 Useful Information
	6.2.1 Accessing Hardware Addresses
	6.2.2 Constants instead of Variables
	6.2.3 Faster Measurement Function
	6.2.4 Setting Waiting Times Exactly
	6.2.5 Using Waiting Times
	6.2.6 Optimization of memory access

	7 Processes in the ADwin System
	7.1 Process Management
	7.1.1 Timer controlled process
	7.1.2 Externally controlled process
	7.1.3 Process without trigger (None)

	7.2 Time Characteristics of Processes
	7.2.1 Processdelay
	7.2.2 Workload of the TiCo processor
	7.2.3 Different Operating Modes in the Operating System

	7.3 Communication
	7.3.1 Data Exchange between Processes
	7.3.2 Communication with the TiCo processor
	7.3.3 Communication between ADwin CPU and TiCo Processor
	7.3.4 The Device Number

	8 Instruction Reference
	8.1 Instruction Syntax
	8.2 Basic Instructions TiCoBasic
	+ Addition
	- Subtraction
	* Multiplication
	/ Division
	^ Power
	#…, Preprocessor Statement
	: Colon
	=, Assignment
	< = > Comparison
	AbsI
	And
	Data_n
	Dec
	#Define
	Dim
	Do … Until
	End
	Event:
	Finish:
	For … To … {Step …} Next
	Function … EndFunction
	If … Then … {Else …} EndIf
	#If … Then … {#Else … } #EndIf
	Import
	In
	Inc
	#Include
	Init:
	Lib_Function … Lib_EndFunction
	Lib_Sub … Lib_EndSub
	Max_Long
	Min_Long
	NOP
	NOPs
	Not
	Or
	Out
	Processdelay
	ProcessN_Running
	Read_Timer
	Rem, '
	Ringbuffer
	Refresh_RingBuffer
	RingBuffer_Clear
	Ringbuffer_Empty
	RingBuffer_Full
	SelectCase
	Shift_Left
	Shift_Right
	Sleep
	Sub … EndSub
	XOr

	8.3 Gold II: TiCo processor
	Get_Par
	Get_Par_Block
	Get_TiCo_RingBuffer
	Get_TiCo_Status
	GetData_Long
	Process_Status
	RingBuffer_Empty
	RingBuffer_Full
	Set_Par
	Set_Par_Block
	Set_TiCo_RingBuffer
	SetData_Long
	TDrv_Init
	TiCo_Flash
	TiCo_Get_Processdelay
	TiCo_Load
	TiCo_Reset
	TiCo_Reset_Mode
	TiCo_Reset_Mode
	TiCo_Set_Processdelay
	TiCo_Start
	TiCo_Start_Process
	TiCo_Stop
	TiCo_Stop_Process
	Workload

	8.4 Pro II: TiCo Processor
	P2_Get_Par
	P2_Get_Par_Block
	P2_Get_TiCo_Bootloader_Status
	P2_Get_TiCo_RingBuffer
	P2_Get_TiCo_Status
	P2_GetData_Long
	P2_Process_Status
	P2_Ringbuffer_Empty
	P2_Ringbuffer_Full
	P2_Set_Par
	P2_Set_Par_Block
	P2_Set_TiCo_RingBuffer
	P2_SetData_Long
	P2_TDrv_Init
	P2_TiCo_Get_Processdelay
	P2_TiCo_Flash
	P2_TiCo_Load
	P2_TiCo_Reset
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start
	P2_TiCo_Start_Process
	P2_TiCo_Stop
	P2_TiCo_Stop_Process
	P2_Workload

	9 How to Solve Problems?
	Appendix
	A.1 Short-Cuts in TiCoBasic
	A.2 ASCII-Character Set
	A.3 License Agreement
	A.4 Command Line Calling
	A.4.1 Syntax
	A.4.2 Notes
	A.4.3 Examples
	A.4.4 Command line calls in Windows

	A.5 Index
	Instructions in this manual

