ADwin Driver
Driver for Python

python

ADwin Driver Python, Manual version 1.2, April 2010

For any questions, please don’t hesitate to contact us:

Hotline:
Fax:
E-Mail:
Internet

+49 6251 96320
+49 6251 568 19
info@ADwin.de
www.ADwin.de

JAGER

Computergesteuerte
Messtechnik GmbH
Jager Computergesteuerte
Messtechnik GmbH
Rheinstralle 2-4
D-64653 Lorsch
Germany

ADwin Driver Python, Manual version 1.2, April 2010

Table of contents

Typographical Conventions e v
1 Information about this Manual i 1
2 ADWin-Python driver e 2
2.1 Interface for the development environment 2
2.2 Communication with the ADwin system 2

3 Installing the ADwin Driver for Python 5
3.1 Installing ADWIN oo 5
3.1.1 Installation under Linux or Mac OS. i 5
3.1.2 Installation unter WINdOWSot 5

3.2 Installingthe ADwin module e 5
3.3 Accessing the ADWIN SYStEM 6
3.4 Accessing an ADwin systemviaother PCs. 6

4 General information about ADwin functions i 7
4.1 LOCAtING BITOIS . . . o ittt e et et e e e 7
4.1.1 Raising an exXCeption.ottt 7
4.1.2 Explicitly querying error Codest 8
4.1.3 Using the return value of functions 8

4.2 The "DeviCeNO. 9
4. 3 Dala tYPES . . ot e 9
4.4 2-diMmensional @rraysottt 9

5 Description of the ADwin functions 11
5.1 System control and system information. 12
5.2 Process CONtrol 15
5.3 Transfer of global variables 19
5.3.1 Global LONG variables (Par_1 ...Par_80) 19
5.3.2 Global FLOAT variables (FPar_1 ... FPar_80)....................... 21

5.4 Transferof data arrays. 23
5.4 1 DAtA AITaYS oo it 23
542 FIFO armaysS. . . oot 26
5.4.3 Dataarrayswith stringdata 30
55Queryingthe error code 32
AN X . . A-1
AL Example programs. A-1

A 2 B0 MESSaAgES . . v ittt e e e e A-6
A3 1Index of fUNCHIONS. A-7

ADwin Driver Python, Manual version 1.2, April 2010 1

A\

&

®

<C:\ADwin\ .>
Program text

Var_1

Typographical Conventions

"Warning" stands for information, which indicate damages of hardware or soft-
ware, test setup or injury to persons caused by incorrect handling.

You find a "note" next to

— information, which absolutely have to be considered in order to guaran-
tee an error free operation.

— advice for efficient operation.

"Information” refers to further information in this documentation or to other
sources such as manuals, data sheets, literature, etc.

File names and paths are placed in <angle brackets> and characterized in the
font Courier New.

Program instructions and user inputs are characterized by the font Courier
New.

ADbasic source code elements such as instructions, variables, comments and
other text are characterized by the font Courier New and are printed in color
(see also the editor of the ADbasic development environment).

Bits in data (here: 16 bit) are referred to as follows:

Bit No. 15 14 13 01 00
Bit value 2156 | 214 | 213 | | 9l-p | 20—
Synonym MSB - - - - LSB

ADwin Driver Python, Manual version 1.2, April 2010

1 Information about this Manual

This manual contains comprehensive information about the ADwin driver for
Python.

Additional information is available in:

— the manual "ADwin Installation”, which describes all interface installa-
tions for the ADwin systems.

Begin your installation with this manual.

— the manual "ADbasic", which contains all instructions for the compiler
ADbasic. With this comfortable real-time development tool you are pro-
gramming your ADwin system.

— the hardware manuals for the ADwin systems you are using.

It is assumed that you are familiar with your Python environment.

Please note:

For ADwin systems to function correctly, adhere strictly to the information pro-
vided in this documentation and in other mentioned manuals.

Programming, start-up and operation, as well as the modification of program
parameters must be performed only by appropriately qualified personnel.

Qualified personnel are persons who, due to their education, experience
and training as well as their knowledge of applicable technical stan-
dards, guidelines, accident prevention regulations and operating condi-
tions, have been authorized by a quality assurance representative at the
site to perform the necessary acivities, while recognizing and avoiding
any possible dangers.

(Definition of qualified personnel as per VDE 105 and ICE 364).

This product documentation and all documents referred to, have always to be
available and to be strictly observed. For damages caused by disregarding the
information in this documentation or in all other additional documentations, no
liability is assumed by the company Jager Computergesteuerte Mess-
technik GmbH, Lorsch, Germany.

This documentation, including all pictures is protected by copyright. Reproduc-
tion, translation as well as electronical and photographical archiving and mod-
ification require a written permission by the company Jager
Computergesteuerte Messtechnik GmbH, Lorsch, Germany.

OEM products are mentioned without referring to possible patent rights, the
existence of which, may not be excluded.

Hotline address: see inner side of cover page.

ADwin Driver Python, Manual version 1.2, April 2010

Qualified personnel

Availability of the
documents

®

Legal information

Subject to change.

2 ADwin-Python driver

The ADwin system consists of an independent on-board CPU, which executes
measurement and control tasks very fast and reliably, as well as of an interface
under Windows, Linux or Mac OS in order to control the ADwin system with
Python.

Consequently you transfer all time-critical processes to the ADwin system, but
with Python you still have control of the processes and data processing.

Please note: You need a Python interpreter version 2.4 or higher. Older ver-
sions have not been tested.
How to program the ADwin system

ADwin systems are fast, reliable and flexible. You apply the easy-to-learn pro-
gramming language ADbasic in order to use all these advantages.

Before you can apply the here described Python instructions, we recommend
to familiarize yourself with ADbasic. Please use the ADbasic manual and the
programming instructions as help. The descriptions will help you to understand
the ADwin system more easily.

Controlling the ADwin systems with Python

Now it's time to start working with this manual.

The sections 2.1 and 2.2 explain how Python and ADwin communicate with
each other and deepen your knowledge for the ADwin concept.

In chapter 3 the installation and the integration of the new commands are
described.

The general use of the Python driver is explained in chapter 4, its functions in
chapter 5 which can also be used as a kind of reference documentation.

2.1 Interface for the development environment

The ADwin-Python driver is the interface for the Python development environ-
ment for the communication with ADwin systems.

The combination of Python with an ADwin system offers you totally new pos-
sibilities. The intelligence and computing power of an ADwin system on the
one hand and the various Python functions for managing, analysis and docu-
mentation of measuring values on the other hand join into a powerful concept.

Typical applications are:
— Control of test stands
— Generating signals

— Measuring with intelligence, collecting data with complex trigger condi-
tions

— Open-loop and closed-loop control
— Online processing, data reduction

— Hardware-in-the-loop, simulation of sensor signals

2.2 Communication with the ADwin system

With the development environment you can control processes in the ADwin-
system, as well as getting data from there or sending data. Your are program-
ming processes with the real-time development tool ADbasic, create a binary
file and transfer it to the ADwin system (see ADbasic manual or online help).

ADwin Driver Python, Manual version 1.2, April 2010

Data and instructions between Python and the ADwin system are processed
according to the following illustration.

ADwin Real-Time
Python & Python [lereﬁry USB ;)peratmg sys- |
module adwin32.dll/ PN em open-loop/
libadwin.so/ Ether- data memory closed-loop
adwin32. application
ek net | processes
IADbasic | & 1...10

ADwin Applica-

PC System tion

Fig. 1 — ADwin-Python Interface

The library (Windows: adwin32._dl1, Linux: libadwin.so, Mac OS:
adwin32 . framework) is the main interface to the ADwin system for all appli-
cations and is therefore used by the ADwin-Python driver, too. With this inter-
face several programs can communicate with the ADwin system at the same
time: Thus, various development environments, under Windows for example
Python, ADbasic and ADtools can work with the ADwin system simulta-
neously.

The library functions communicate with the real-time operating system of the
ADwin system. Therefore you must load the operating system (e.g. the file
<adwin9.btl>) after each power-up. After a successful loading the system
will be able to receive and execute processes, receive instructions from the PC
and exchange data with it. The processes programmed in ADbasic, include
the program code for measurement, open-loop or closed-loop control of your
application.

The real-time operating system performs the following tasks:

— Management of up to 10 real-time processes with low or high priority
(selectable). Processes with low priority can be interrupted by pro-
cesses with high priority, the latter cannot be interrupted by other pro-
cesses.

— Providing global variables:
» 80 integer variables (Par_1 ... Par_80), predefined.
» 80 float variables (FPar_1 ... FPar_80), predefined.
e 200 data arrays (DATA_1 ... DATA_200), length and data type
can be set individually.

You can read and change the values of these variables or data arrays
at any time.

— Communication between ADwin system and PC (via program library).

The communication process is running with medium priority on the AD-
win system and can interrupt low-priority processes for a short time. It
interprets and processes all instructions, which you send from the PC to
the ADwin system: Control instructions and instructions for data ex-
change.

ADwin Driver Python, Manual version 1.2, April 2010

adwin32.dl1

Real-time operating
system

10 processes

Data memory

Communication

The following table shows examples for each group.

Control instructions, for example:

Load_Process |transfers a process to the system.

Start_Process |starts a process.

Instructions for data exchange, for example:

Get_Par provides the current value of a parameter.

Set_Par changes the value of a parameter.

GetData_Long |provides the value from a DATA array.

@ The communication process never sends data to the PC without being
asked to do so. This assures that data are transferred to the PC only if
you have requested these data.

ADwin Driver Python, Manual version 1.2, April 2010

3 Installing the ADwin Driver for Python

3.1 Installing ADwin
For the installation you need an up-to-date ADwin CDROM.

3.1.1 Installation under Linux or Mac OS
Please follow the installation guide in the manual "ADwin Linux / Mac".

After successful installation you will find the files in the folders below
</opt/adwin/share> (standard installation):

Driver and examples for Python -/python
Documentation for the ADwin module ./doc/python
Examples for ADbasic ./examples/samples_ADwin

Continue with chapter 3.2 "Installing the ADwin module”.

3.1.2 Installation unter Windows

If you have already installed an ADwin system and software skip this section If ADwin is installed
and continue with chapter 3.2.

Else, if an ADwin system is to be newly installed, please start the installation Else: New installation
with the manual "ADwin installation" which is delivered with the ADwin hard-
ware. It describes how to @

— install the software from the ADwin CDROM.
— install the communciation driver under Windows.

— install the hardware in the PC (if necessary) and
set up the hardware connections between PC and ADwin system.

After successful installation you will find the files in folders below <C :\ADwin>
(standard installation):

Driver and examples for Python -\Developer\Python\..
Examples for ADbasic -\ADbasic\samples_ADwin
Test program for ADwin-Gold, \Tools\Test\ADtest.exe
ADwin-light-16 and plug-in boards

Test program for ADwin-Pro -\Tools\Test\ADpro.exe

Continue with the next section "Installing the ADwin module".

3.2 Installing the ADwin module

If you want to work with Python and the ADwin system you have to install the
ADwin module.

Follow these steps:

— Enter the following in the command line:
e Windows: $> python setup.py install
e Linux/Mac: $> python ./setup.py install

Now the ADwin module is copied into the folder site-packages of the
Python installation.

— The ADwin module can be used now.

With import ADwin you include the ADwin module and with
adw = ADwin.ADwin() you create a new instance of the ADwin class
with the name adw.

ADwin Driver Python, Manual version 1.2, April 2010

The functions of the driver are described in chapter 5. A list of functions in
alphabetical order can be found in section A.3.

3.3 Accessing the ADwin system

During installation of hardware and software you have successfully checked
the access to the ADwin system. Please use an example program from
chapter A.1 in the annex to check the communication from Python to the
ADwin system.

If the example program runs correctly all driver functions will operate properly
with the ADwin system

3.4 Accessing an ADwin system via other PCs

If an ADwin system is connected to a host PC, but is not accessible within an
Ethernet network directly, you can nevertheless get a connection using the pro-
gram ADwinTcpipServer.

Detailed information about the use of ADwinTcpipServer is given on the
program'’s online help.

ADwin Driver Python, Manual version 1.2, April 2010

4 General information about ADwin functions

4.1 Locating errors
There are 3 possibilities to locate errors upon execution of an ADwin function:
— Raising an exception upon run-time errors (exception handling)

Each error provides an exception, which will be described in a separate
program part.

We recommend to process errors with this method.
— Explicitly querying error codes with Get_Last_Error (see next page)

To handle each error get the error number after each access to the AD-
win system.

This method is recommended when you do not use any exceptions.
— Using the return value of functions (see next page)

When using certain commands the return value contains an error code.
It helps to make case differentiation in the program sequence.

Since not all instructions return an error code, a complete error handling
is not possible.

4.1.1 Raising an exception

You can configure the ADwin-Python module so that an exception is raised
with the name ADwinError when run-time errors occur. Structure the pro-
gram as follows:

Provide ADwin functions and error routines
from ADwin import ADwin, ADwinError

make an instance of the ADwin class, raise exception
RAISE_EXCEPTIONS = 1
adw = ADwin(0x150, RAISE_EXCEPTIONS)

error handling with try / except
try:
the Python program

except ADwinError, e:
print “****_ e # error handling

The class attribute raiseExceptions determines the action of the module
during a run-time error. With the value 1 the module generates an exception
when a run-time error occurs. If you prevent exceptions using the value 0, you
have to to query explicitly the error code after each access to the ADwin sys-
tem (see below).

In the program section try you enter the Python program that also contains
the accesses to the ADwin system. If an error occurs this part of the program
will be executed with the exception attribute ADwinError.

ADwin Driver Python, Manual version 1.2, April 2010

4.1.2 Explicitly querying error codes

If you configure the class attribute raiseExceptions in such a way that it
does not raise any exceptions during run-time errors, you have to query the
error number with the function Get_Last_Error after each access to the
ADwin system.

For each error number you will get the text with the functions Get_Last__
Error_Text. A list of all error messages is in section A.2 in the annex.

The functions Get_Last_Error and Get_Last_Error_Text are
described from page 32 onward.

In the following example the undefined array DATA_1 is accessed; the occur-
ring error does not raise an exception (due to the setting of raiseExcep-
tions = 0). Instead, the error is queried with Get_Last_Error:

>>> import ADwin

>>> adw=ADwin.ADwin()

>>> adw.raiseExceptions = 0

>>> a = adw.GetData_lLong(1,1,10)

>>> adw.Get_Last_Error_Text(adw.Get_Last_Error())

"The Data is too small.*®

4.1.3 Using the return value of functions

The return value of some functions contains an error code, which you can use
to differentiate in the program sequence.

Important:

— If run-time errors raise an exception (see chapter 4.1.1), the functions
do not return an error code (type noneType).

— The functions use different values to indicate an error.

— Thereturned error code has nothing to do with the list of error messages
in the annex.

— The return value is not always unambigous. If for instance Get_Pro-
cessdelay returns the value 255, it is not quite clear if an error has
ocurred or if the parameter Processdelay contains the value 255.

The return value of the following functions is not unambigous, that
means it can be understood as error or as value:

* Fifo_Empty

e Fifo_Full

e Get_Par

e Get_FPar

« Get_Processdelay

* Free_Mem

For an explicit error handling you have to raise an exception or to query
error codes (see above).

ADwin Driver Python, Manual version 1.2, April 2010

4.2 The "DeviceNo."

A "Device No." is the number of a specified ADwin system connected to a PC.
An ADwin system is always accessed via the "Device No."

The "Device No." for the ADwin system is generated with the program ADcon- @
fig. You will find more information about the program’s usage in the online help

of ADconfig. Under Windows an online help is available, under Linux you call

the help with:

adconfig --helpor
man /opt/adwin/share/man/man8/adconfig.8

You indicate the DeviceNo when you generate an instance of an ADwin
class; the default value is 336 (0x150 in hexadecimal notation). That is, you
generate an instance for each ADwin system.

4.3 Datatypes

The functions and parameters of the ADwin-Python driver use the following
data types:

Data type Definition
str unsigned integer 16 Bit
int signed integer 32 Bit
float float >32 Bit

From Python versions 3 and higher int corresponds to the formerly used
long and thus allows any possible high numbers.

In contrast to Python, ADbasic uses the following data types:

Data type Definition
String unsigned integer 32 Bit
Long signed integer 32 Bit
Float float 32 Bit

4.4 2-dimensional arrays

In ADbasic global DATA arrays can be declared 2-dimensional (2D). But the
functions of the ADwin-Python driver here use only one-dimensional arrays.

In general there the following rule applies for the relation of an elementin a 2D-
array from ADbasic to an element in a 1D-array from Python:

ADbasic Python
DATA n[i]1Lil array(s-(i-1)+j-1)

Here s is the second dimension of DATA n when declared in ADbasic.

As an example a 2D-array may be declared in ADbasic as follows NP
DIM DATA_8[7]1[3] AS FLOAT "i.e. s=3 -O -
7
The 7x3 elements of the array are read in Python with GetData_Float: ¥

transfer elements 1..21 from DATA 8 into array
array = adw.GetData Float(8,1,21)

ADwin Driver Python, Manual version 1.2, April 2010

The data are transferred in the following order: Please note, that in Python
array indexes begin at 0, but in ADbasic at 1:

Index of DATA_8 [2102] | [2002] | [20031 | [21[2] | ... | [7]02] | [7112] | [7103]
Index of array [0] [1] [2] [3]1 | ... | [18] | [29] | [20]

Thus, the function GetData_ Float returns element DATA_8[7]1[2] in
array[19].

With s=3 the general rule results to:

ADbasic Python
DATA n[1]111] array[3-(1-1]+1-1] = array[0]
DATA n[1]1[2] array[3-(1-1]+2-1] = array[1]
DATA n[7112]1 array[3-(7-1]+2-1] = array[19]
DATA n[71[31 array[3-(7-1]+3-1] = array[20]

ADwin Driver Python, Manual version 1.2, April 2010

5 Description of the ADwin functions

The description of the functions is divided into the following sections:
— System control and system information, page 12

— Process control, page 15

— Transfer of global variables, page 19

— Transfer of data arrays, page 23

— Querying the error code, page 32

In annex A.3 you find an overview of all functions.

Please pay attention to chapter 4, where general aspects for the use of ADwin
functions are described.

Instructions for accessing analog and digital inputs and outputs are not
included in the ADwin-Python driver. These applications can be programmed
in ADbasic.

The following program structure belongs to each Python program:

Provide ADwin functions and error routines
from ADwin import ADwin, ADwinError

Generate an instance of the ADwin class, raise exceptions
adw = ADwin(0x150, 1)

Error handling with try / except (see chapter 4.1)
try:
program section to be monitored

except ADwinError, e:
print ****" e # error handling

It is assumed that with adw an instance of the ADwin class has already been
generated when using the examples of the ADwin functions.

ADwin Driver Python, Manual version 1.2, April 2010

>

A\

Program structure

11

Boot

12

5.1 System control and system information

Initialization of the ADwin system and information about the operating status.

Boot initializes the ADwin system and loads the operating system.

Boot(str Filename)

Parameters
Filename Path and file name of the operating system file (see table
below)
Notes

The initialization deletes all processes on the system and sets all globall
variables to 0.

The operating system file to be loaded depends on the processor type
of the system you want to communicate with. The following table shows
the file names for the different processors.

The files are located in the directory <C:\ADwin\> or Zopt/ad-
win/share/btl/, which can be called with the class attribute
adw.ADwindir.

ADwin type | Processor Operating system file
ADwin-9 T9 ADwin9.btl
ADwin9s.btl?!
ADwin-10 T10 ADwinl0.btl
ADwin-11 T11 ADwinll.btl

You can also use the processors T2...T8; in this case call our support
(address on the back of the cover page).

The computer will only be able to communicate with the ADwin system
after the operating system has been loaded. Load the operating system
again after each power up of the ADwin system.

Loading the operating system with Boot takes about one second. As an
alternative you can also load the operating system via ADbasic devel-
opment environment. (Ilcon B).

Example

Please note the advice about the program structurte on page 11.
Load operating system for T10 processor
adw.Boot(adw.ADwindir + *\\ADwinlO.btl")

1. Optimized operating system with a slightly smaller memory require-
ment.

ADwin Driver Python, Manual version 1.2, April 2010

ADwin

Description of the ADwin functions

Test_Version tests, if the right operating system is loaded for the processor Test_Version
and if the processor can be accessed.

int Test Version()

Parameters
Return value 0: OK
#0:error.
Example

print "Test Version:", adw.Test Version()

Processor_Type returns the processor type of the system. Processor_Type

int Processor_Type()

Parameters
Return value Parameter for the processor of the system.
0: Error 8: T8
2: T2 9: T9
4: T4 1010: T10
5. T5 1011: T11
Example

print "Processor_Type:", adw.Processor_Type()

Workload returns the average processor workload since the last call of Workload
Workload .

int Workload(Q)

Parameters
Return value 0...100: Processor workload (in percent)
255: Error
Notes

The processor workload is evaluated for the period between the last and
the current call of Workload. If you need the current processor work-
load, you must call the function twice and in a short time interval (approx.
1ms).

Example
print "Workload:", adw.Workload()

ADwin Driver Python, Manual version 1.2, April 2010 13

ADwin

Description of the ADwin functions

Free_Mem Free_Mem returns the free memory of the system for the different memory
types.

int Free_Mem(int Mem_Spec)

Parameters

Mem_Spec Memory type:
0 : all memory types (T2, T4, T5, T8 only)
1 : internal program memory (PM_LOCAL); up from T9
2 : extra program memory (EM_LOCAL); T11 only
3 :internal data memory (DM_LOCAL); up fromT9
4 : external DRAM memory (DRAM_EXTERN); up fromT9

Return value #255: Usable free memory
255: Error

Example
Query the free memory in the external DRAM
print “"Free Mem:", adw.Free Mem(1), "Bytes®

14 ADwin Driver Python, Manual version 1.2, April 2010

5.2 Process control
Instructions for the control of single processes on the ADwin system.

There are the processes 1...10 and 15. The processes have the following func-
tions:

— 1...10: You write the process in ADbasic yourself.
— 15: Controls flashing of the LED on ADwin-Gold or ADwin-Pro.

Process 15 is part of the operating system and is started automatically after
booting. For detailed information see manual ADbasic, chapter "Process Man-
agement".

Load_Process loads the binary file of process to the ADwin system.

Load_Process(str Filename)

Parameters
Filename Path and file name of the binary file to be loaded.

Notes
You generate binary files in ADbasic with "Bui ld » Make Bin File".

If you switch off your ADwin system all processes are deleted: Load the
necessary processes again after power-up

You may load up to 10 processes to an ADwin system. Running pro-
cesses are not influenced by loading additional processes (with different
process numbers).

Example
Load the Testprg.T91 file: Processor T9, Process no. 1
The file Testprg.T91l can be found in the current
directory
adw.Load Process("Testprg.T91")

Start_Process starts a process.

Start_Process(int ProcessNo)

Parameters
ProcessNo Process number (1...10, 15).

Notes

Start_Process has no effect, if you indicate the number of a process,
which

* is already running orr

» has the same number as the calling processor or

* has not yet been loaded to the ADwin system.

Example
adw.Start_Process(1)# start Process 1

ADwin Driver Python, Manual version 1.2, April 2010

Load Process

A\

Start_Process

15

Stop_Process

Clear_Process

16

Stop_Process stops a process.

Stop_Process(int ProcessNo)

Parameters
ProcessNo Process number (1...10, 15).

Notes

The function has no effect, if you indicate the number of a process,
which

¢ has already been stopped or

« has not yet been loaded to the ADwin systemt.

Example
adw.Stop_Process(2)# stops process 2

Clear_Process deletes a process from memory.

Clear_Process(int ProcessNo)

Parameters
ProcessNo Process number (1...10, 15).

Notes

Loaded processes need memory space in the system. With Clear_
Process you can delete processes from the program memory to get
more space for other processes.

If you want to delete a process, proceed as follows:
e Stop the running process with Stop_Process. A running
process cannot be deleted.
e Check with Process_Status, if the process has really stopped.
¢ Delete the process from the memory with Clear_Process.

Process 15 in Gold and Pro systems is responsible for flashing the LED;
after deleting this process the LED does not flash any more.

Please note, that clearing processes can lead to memory fragmentation.
You find more information in the ADbasic manual, section "Memory
fragmentation".

Example
Delete process 2 from memory.
Declared DATA and FIFO arrays remain.
adw.Stop_Process(2)
while adw.Process_Status(2) <> O:
pass
adw.Clear_Process(2)

ADwin Driver Python, Manual version 1.2, April 2010

Process_Status returns the status of a process.

int Process_Status(int ProcessNo)

Parameters
ProcessNo Process number (1...10, 15).

Return value Status of the process:
1: Process is running.
0 : Process is not running, that means, it has not been
loaded, started or stopped.
<0:Process is being stopped, that means, it has received
Stop_Process, but still waits for the last event.

Example
Return the status of process 2
print "Process_Status 2:", adw.Process_Status(2)

Set_Processdelay sets the parameter Processde lay for a process.

Set Processdelay(int ProcessNo, int Processdelay)

Parameters
ProcessNo Process number (1...10).

Process- Value (1...231-1) to be set for the parameter
delay Processdelay of the process (see table below).

Notes

The parameter Processdelay controls the time interval between two
events of a time-controlled process (see manual or online help ADba-
sic).

For each process there is a minimum time interval: If you fall below the
minimum time interval you will get an overload of the ADwin processor
and communication will fail.

The time interval is specified in a time unit that depends on processor
type and process priority:

Processor type Process priority
high low
T9 25ns 100ps
T10 25ns 50pus
T11 3.3ns 0.003pus =3.3ns
Example

Set Processdelay 2000 of process 1.
adw.Set_Processdelay(1,2000)

If process 1 is time-controlled, has high priority and runs on a T9 pro-
cessor, process cycles are called every 50 ps (=2000*25ns).

ADwin Driver Python, Manual version 1.2, April 2010

Process_Status

Set_Processdelay

17

ADwin

Description of the ADwin functions

Get_Processdelay Get_Processdelay returns the parameter Processdelay for a process.

int Get Processdelay(int ProcessNo)

Parameters
ProcessNo Process number (1...10).

Return value #255: The currently set value (1...231-1) for the parameter
Processdelay of a process.
255: Error or value of Processdelay.
Please note chapter 4.1.3.

Notes

The parameter Processde lay controls the time interval between two
events of a time-controlled process (see Set_Processdelay as well
as the manual or online help of ADbasic).

The parameter Processdelay replaces the former parameter Glo-
baldelay.

Example
Get Processdelay of the ADbasic process 1
print "Processdelay 1:°, adw.Get_ Processdelay(l)

18 ADwin Driver Python, Manual version 1.2, April 2010

5.3 Transfer of global variables

Instructions for data transfer between PC and ADwin system with the pre-
defined global variables PAR_1 ... PAR_80 and FPAR_1 ... FPAR_80.

5.3.1 Global LONG variables (Par_1 ... Par_80)
There are 80 global LONG variables. They have the following range of values:

Par_1 ... Par_80: -2147483648 ... +2147483647
=-231 42811

Set_Par sets a global LONG variable to the specified value.

Set_Par(int Index, int Value)

Parameters
Index Number (1 ... 80) of a global LONG variable Par_1 ...
Par_80.
Value Value to be set for the LONG variable.
Example

Set values of all LONG variables
for i1 in range(l, 81): adw.Set_Par(i, i)

Get_Par returns the value of a global LONG variable.

int Get Par(int Index)

Parameters

Index Number (1 ... 80) of a global LONG variable Par_1 ...
Par_80.

Return value #255: Current value of the variable.
255: Error or value the variable.
Please note chapter 4.1.3.

Example
Read the values of the LONG variables Par_1.Par_10
print "Get Par:",
for i in range(l1,11): print adw.Get_Par(i),

ADwin Driver Python, Manual version 1.2, April 2010

Set_Par

Get_Par

19

ADwin

Description of the ADwin functions

Get_Par_Block Get_Par_Block transfers a specified number of global LONG variables into
an array.

ctypes.c_long_Array Get_Par_Block(int Startindex,
int Count)

Parameters

Startindex Number (1 ... 80) of the global LONG variable Par_1 ...
Par_80, to be transferred first.

Count Number (>1) of LONG variables to be transferred.

Return value Destination array for the values of the LONG variables.
The array is created anew.

Example

Read the values of the variables Par_10 ... Par_39 and store in
ArraylLong starting from element O:

ArrayLong = adw.Get_Par_Block(10,30)

Get_Par_All Get_Par_AlI transfers all 80 global LONG variables into an array.
ctypes.c_long_Array Get_Par_ AlIlI(Q)

Parameters

Return value Destination array for the values of the LONG variables.
The array is created anew.

Example

Read the values of the variables PAR_1 ... PAR_80 and store in
ArrayLong

ArrayLong = adw.Get_Par_AlIlI(Q)

Note: Since the indexing of Python arrays begins at 0 Par_9 for in-
stance is found in ArrayLong[8].

20 ADwin Driver Python, Manual version 1.2, April 2010

ADwin

Description of the ADwin functions

5.3.2 Global FLOAT variables (FPar_1 ... FPar_80)

There are 80 global FLOAT variables. They have the following range of values:

FPar 1 .. FPar_80: negative: —3.402823-10"38 ... ~1.175494.1038
Zero

positive: +1.175494 - 1038 ... +3.402823 - 10*38

Set_FPar sets a global FLOAT variable to the specified value. Set_FPar
Set _FPar(int Index, float Value)

Parameters
Index Number (1 ... 80) of a global FLOAT variable FPar_1 ...
FPar_80.
Value Value to be set for the FLOAT variable.
Example

Set Float variable FPar 6 to 34.7
adw.Set_FPar(6, 34.7)

Get_Par returns the value of a global FLOAT variable. Get_FPar
float Get_FPar(int Index)

Parameters

Index Number (1 ... 80) of a global FLOAT variable FPar_1 ...
FPar_80.

Return value #255.0: Current value of the variable.
255.0: Error or value of the variable.
Please note chapter 4.1.3.

Example
Read the value of the FLOAT variable FPAR_56
print "FPar_56:", adw.Get_ FPar(56)

ADwin Driver Python, Manual version 1.2, April 2010

21

ADwin

Description of the ADwin functions

Get_FPar_Block Get_FPar_Block transfers the specified number of global FLOAT variables
into an array

ctypes.c_float _Array Get FPar_Block(int Startindex,
int Count)

Parameters

Startlndex Number (1 ... 80) of the first global FLOAT variable FPar_
1 ... FPar_80 to be transferred.

Count Number (>1) of FLOAT variables to be transferred.

Return value Destination array for the values of the FLOAT variables.

Example

Read the values of the variables PAR_10 ... PAR_34 and store in
ArrayFloat starting from element O:

ArrayFloat = adw.Get_FPar_Block(10,25)

Get_FPar_All Get_FPar_AlI transfers all 80 global FLOAT variables into an array.
ctypes.c_float _Array Get_FPar AlIlI(Q

Parameters
Return value Destination array for the values of the FLOAT variables.

Example

Read the values of the variables PAR_1 ... PAR_80 and store in
ArrayFloat starting from element 1:

ArrayFloat = adw.Get_FPar_AllIQ)

22 ADwin Driver Python, Manual version 1.2, April 2010

5.4 Transfer of data arrays

Instructions for data transfer between PC and ADwin system with global DATA
arrays (DATA_1...DATA_200):

— Data arrays

— FIFO arrays

— Data arrays with string data

You have to declare each array before using itin ADbasic (see ADbasic man-
ual).

5.4.1 Data arrays

Declare each array before using it in ADbasic with
DIM DATA_n AS LONG/FLOAT

The value range of an array element depends on the data type:

— LONG: 2147483648 ... +2147483647
— FLOAT: negative: —3.402823 - 10*38 ... —1.175494 . 10738
Zero

positive: +1.175494 - 10738 ... +3.402823 - 10*38

Data_Length returns the length of a LONG, FLOAT or STRING array, declared
in ADbasic, that means the number of elements.

int Data_Length(int DataNo)

Parameters
DataNo Number (1...200) of an array Data_1...Data_200.

Return value >0: Declared length of the array (= number of elements)
0: Error, array is not declared
-1: Other error

Notes
To determine the length of a string in a STRING DATA array you use the
instruction String_Length.

Example

In ADbasic DATA_ 2 is dimensioned as:
DIM DATA_2[2000] AS LONG

In Python the length of the array DATA 2 is determined as follows:
print "length Data _2:", adw.Data_Length(2)

ADwin Driver Python, Manual version 1.2, April 2010

Data_Length

23

SetData_Long SetData_Long transfers LONG data from the PC into a DATA array of the
ADwin system.

SetData_Long(list]array]|ctypes.c_long_Array
PC_Array, int DataNo, int Startindex, int Count)

Parameters
PC_Array Source array from which data are transferred.
DataNo Number (1...200) of destination array DATA_1 ... DATA_

200.

Startlndex Number (>1) of the first element in the destination array
into which data is transferred.

Count Number (>1) of LONG data to be transferred.

Example

Transfer first 100 elements of the source array ArraylLong into the el-
ements 30...129 of the destination array DATA_3:

dataType = ctypes.c_long * 100

ArrayLong = dataType(0)

for i in range(100): ArrayLong[i] = i+100
adw.SetData_Long(ArrayLong, 3, 1, 100)

GetData_Long GetData_Long transfers LONG data from a DATA array of the ADwin system
into an array

ctypes.c_long_Array GetData Long(int DataNo,
int Startindex, int Count)

Parameters
DataNo Number (1...200) of source array DATA_1 ... DATA_200.
Startlndex Number (>1) of the first element in the source array to be
transferred.
Count Number (>1) of LONG data to be transferred.

Return value Newly created destination array that contains the trans-
ferred values.

Example

Transfer elements 1...100 from source array DATA_2 into the destina-
tion array ArrayLong starting from index O:

ArrayLong = adw.GetData Long(2,1,100)

24 ADwin Driver Python, Manual version 1.2, April 2010

SetData_Float transfers FLOAT data from the PC into a DATA arrray of the
ADwin system.

SetData_Float(list]array|ctypes.c_float_Array PC_Ar-
ray, int DataNo, int Startindex, int Count)

Parameters
PC_Array Source array from which data are transferred.
DataNo Number (1...200) of destination array DATA_1 ... DATA_

200.

Startlndex Number (>1) of the first element in the destination array,
into which data is transferred.

Count Number (>1) of FLOAT data to be transferred.

Example

Transfer first 80 elements of the source array ArrayFloat into the el-
ements 20...99 of the destination array DATA_3:

dataType = ctypes.c_Ffloat * 80

ArrayFloat = dataType(0)

for i1 in range(80): ArrayFloat[i] = 1+100.1234
adw.SetData_Float(ArrayFloat, 3, 20, 80)

GetData_Float transfers FLOAT data from a DATA array of ADwin system
into an array.

ctypes.c_float _Array GetData Float(int DataNo,
int Startindex, int Count)

Parameters
DataNo Number (1...200) of source array DATA_1 ... DATA_200.
Startlndex Number (>1) of the first element in the source array to be
transferred.
Count Number (>1) of FLOAT data to be transferred.

Return value Newly created destination array that contains the trans-
ferred values.

Example

Transfer elements 1...100 from source array DATA_2 into the destina-
tion array ArrayFloat starting from index O:

ArrayFloat =adw.GetData Float(2,1,100)

ADwin Driver Python, Manual version 1.2, April 2010

SetData_Float

GetData_Float

25

Fifo_Empty

Fifo_Full

26

5.4.2 FIFO arrays

Instructions for data transfer between PC and ADwin system with global DATA
arrays (DATA_1...DATA_200), which are declared as FIFO.

You must declare each FIFO array before using it in ADbasic (see "ADbasic"
manual): DIM DATA_x[n] AS TYPE AS FIFO

The value range of a FIFO array element depends on the data type:
— LONG: -2147483648 ... +2147483647
— FLOAT: negativ: —3.402823 - 10*38 .. ~1.175494 . 10738
zero
positiv: +1.175494 - 1038 ... +3.402823 - 10738

To ensure that the FIFO is not full, the FIFO_EMPTY function should be used
before writing into it. Similarly, the FIFO_FULL function should be used to
check if there are values which have not yet been read, before reading from the
FIFO.

Fifo_Empty returns the number of empty elements in a FIFO array.
int Fifo_Empty(int FifoNo)
Parameters
FifoNo Number (1...200) of FIFO array DATA_1 ... DATA_200.

Return value #255: Number of empty elements in the FIFO array.
255: Error or number of empty elements.
Please note chapter 4.1.3.

Example

In ADbasic DATA_S5 is dimensioned as:
DIM DATA 5[100] AS LONG AS FIFO

In Python you will get the number of empty elements (<100) in
DATA_5:
print "Fifo Empty 5:", adw.Fifo_Empty(5)

Fifo_Full returns the number of used elements in a FIFO array.
int Fifo_Full(int FifoNo)

Parameters
FifoNo Number (1...200) of FIFO array DATA_1 ... DATA_200.

Return value #255: Number of the used elements in the FIFO array.
255: Error or number of used elements.
Please note chapter 4.1.3.

Example

In ADbasic DATA 12 is dimensioned as:
DIM DATA_12[2500] AS FLOAT AS FIFO

In Python you will get the number of used elements (<2500) in DATA_
12:
print “"Fifo Full 12:°, adw.Fifo_Full(12)

ADwin Driver Python, Manual version 1.2, April 2010

Fifo_Clear initializes the write and read pointers of a FIFO array. After- Fifo_Clear
wards, the data in the FIFO array are no longer available.

Fifo_Clear(int FifoNo)

Parameters
FifoNo Number (1...200) of FIFO array DATA_1 ... DATA_200.

Notes

During start-up of an ADbasic program the FIFO pointers of an array
are not initialized automatically. We therefore recommend to call Fifo_
Clear at the beginning of your ADbasic program.

Initializing the FIFO pointers during program run is useful, if you want to
clear all data of the array (because of a measurement error for instance).

Example
Clear data in the FIFO array DATA_45
adw_Fifo_Clear(45)

SetFifo_Long transfers LONG data from the PC into a FIFO array of the SetFifo_Long
ADwin system.

SetFifo_Long(int FifoNo,
list]array|ctypes.c_long Array PC Array, int Count)

Parameters
FifoNo Number (1...200) of FIFO array DATA_1 ... DATA_200.
PC_Array Source array, from which data are transferred.
Count Number (>1) of elements to be transferred.

Example

Check FIFO destination array DATA 12 for enough free elements and
transfer 1000 elements from the source array ArraylLong:

dataType = ctypes.c_long * 1000

ArrayLong = dataType(0)

for 1 in range(1000): ArrayLong[i] =i

if adw.Fifo_Empty(12) >= 1000:
adw.SetFifo_Long(12, ArrayLong, 1000)

ADwin Driver Python, Manual version 1.2, April 2010

27

GetFifo_Long

SetFifo_Float

28

GetFifo_Long transfers LONG data from a FIFO array into an array on the
PC.

ctypes.c_long_Array GetFifo_Long(int FifoNo,

int Count)
Parameters
FifoNo Number (1...200) of FIFO array DATA_1 ... DATA_200.
Count Number (>1) of the elements to be transferred.

Return value Generated destination array that contains the transferred
values.

Example

Check FIFO source array DATA_2 for enough used elements and trans-
fer 3000 elements of DATA_2 into ArrayLong starting from index O:

if adw.Fifo_Full(2) >= 3000:
ArrayLong = adw.GefFifo_Long(2,3000)

SetFifo_Float transfers FLOAT data from the PC into a FIFO array of the
ADwin sytem.

SetFifo_Float(int FifoNo,
list]array|ctypes.c_float_Array PC_Array, int Count)

Parameters
FifoNo Number (1...200) of FIFO array DATA_1 ... DATA_200.
PC_Array Pointer to the source array, from which data are trans-
ferred.
Count Number (>1) of the elements to be transferred.
Example

Check FIFO destination array DATA_12 for enough free elements and
transfer 1000 elements of the source array ArrayFloat:

dataType = ctypes.c_float * 1000

ArrayFloat = dataType(0)

for i in range(1000): ArrayFloat[i] = 1+0.1234

if adw.Fifo_Empty(12) >= 1000:
adw.SetFifo_Float(12, ArrayFloat, 1000)

ADwin Driver Python, Manual version 1.2, April 2010

ADwin

Description of the ADwin functions

GetFifo_Float transfers FLOAT data from a FIFO array of the ADwin sys- GetFifo_Float
tem into an array of the PC.

ctypes.c_float_Array GetFifo_Float(int FifoNo, int

Count)

Parameters
FifoNo Number (1...200) of FIFO array DATA_1 ... DATA_200.
Count Number (>1) of elements to be transferred.

Return value Generated destination array that contains the transferred
values.

Example

Check FIFO source array DATA_ 2 for enough used elements and trans-
fer 200 elements of DATA_2 into ArrayFloat starting from index O:

if adw_Fifo Full(2) >= 200:
ArrayFloat = adw.GetFifo_Float(2, 200)

ADwin Driver Python, Manual version 1.2, April 2010

29

5.4.3 Data arrays with string data

Instructions for data transfer between PC and ADwin system with global DATA
arrays (DATA_1...DATA_200) that contain string data.

@ You must declare each DATA array before using it in ADbasic (see manual
"ADbasic"): DIM DATA_x[n] AS STRING.

An element in the DATA array of type STRING may contain a character with
ASCllvalue 0 ... 127. The ASCII value O (termination char or NULL) marks the
end of a string in a DATA array.

String_Length String_Length returns the length of a data string in a DATA array.
int String_Length(int DataNo)

Parameters
DataNo Number (1...200) of array DATA_1 ... DATA_200.

Return value #-1: String length = number of characters.
-1: Error

Notes

String_Length counts the characters in a DATA array up to the ter-
mination char (NULL). The termination char is not counted as character.

To determine the declared length of a DATA array you use the instruction
Data_Length.

Example

In ADbasic DATA 2 is dimensioned as:
DIM DATA_2[2000] AS STRING
DATA 2 = "Hello World"

In Python the length of the array DATA_2 is determined as:
adw.String_Length(2)# returns 11

SetData_String SetData_String transfers a string into a DATA array.
SetData_String(int DataNo, str String)

Parameters
DataNo Number (1...200) of destination array DATA_1 ... DATA_
200.
String String to be transferred..
Notes

SetData_String appends the termination char (NULL) to each trans-
ferred string.

Example
adw.SetData_String(2, "Hello World")

The string "Hello World" is written into the array DATA_2 and the termi-
nation char is added.

30 ADwin Driver Python, Manual version 1.2, April 2010

GetData_String transfers a string from a DATA-array to the PC.

(ctypes.c_char_Array, int) GetData String(
int DataNo, int MaxCount)

Parameters
DataNo Number (1...200) of source array DATA_1 ... DATA_200.
MaxCount Max. number (>1) of the transferred characters without ter-

mination char.
Return value Tuple with 2 elements:

— Array with the transferred string from the source
array.

— Status:
#-1: Number of transferred characters (without ter-
mination char).
-1: Error

Notes

If the string in the DATA array contains a termination char (NULL), the
transfer stops exactly there, that is the termination char will not be trans-
ferred. The number of read characters without termination char is the re-
turn value.

If MaxCount is greater than the number of string chars defined in
ADbasic, you will receive the error "Data too smal 1" via Get_Last__
Error().

If you set MaxCount to a high value, the function will have an appropri-
ately long execution time, even if the transferred string is short.
For time-critical applications with large strings, it may be faster to pro-
ceed as follows:
* You determine the actual number of chars in the string using
String_Length().
* You read the string with Getdata_String() and pass the actual
number of chars as MaxCount.

Example

Get the current string from DATA_2 and copy it to ArrayString:
count = adw.String_Length(2)
ArrayString, recv = adw.GetData_ String(2,count)

ADwin Driver Python, Manual version 1.2, April 2010

GetData_String

31

Get_Last_Error

Get_Last_Error_Text

32

5.5 Querying the error code

The following instructions are only useful in certain circumstances. Therefore
pay attention to chapter 4.1 "Locating errors".

Get_Last Error returns the number of the error that occured at last in the
ADwin program library.

int Get _Last Error()

Notes

The function is only useful when you do not use any exceptions for error
handling (see chapter 4.1 on page 7). In this case you have to query the
error number after each access to the ADwin system and act accord-
ingly; after a successful access the error number is automatically set to
0.

Even if several errors occur, Get_Last_Error will only return the num-
ber of the error that occured last.

To each error number you will get the text with the function Get_Last
Error_Text. You will find a list of all error messages in section A.2 in
the annex.

The call of Get_Last_Error itself does not influence the error number.

Example
raiseExceptions = 0: In case of a run-time error
no exception is raised
adw. raiseExceptions = 0
Status = adw.Process_Status(2)
read error number after each access
to the ADwin system
ErrNum = Get_Last Error()
if ErrNum: print "error: ", \
adw.Get_Last_Error_Text(ErrNum)

Get_Last Error_Text returns the error text to a given error number.

str Get_lLast_Error_Text(int Last Error)

Parameters
Last _Error Error number = return value of the function Get_Last_
Error.

Return value Error text.

Notes

The function can be called in combination with Get_Last_Error.

Example
raiseExceptions = 0
adw. raiseExceptions = 0
Status = adw.Process_Status(2)
ErrNum = Get_Last Error()
print “error: ", adw.Get_Last Error_Text(ErrNum)

ADwin Driver Python, Manual version 1.2, April 2010

Annex

A.1 Example programs

The ADwin driver for Python contains simple example programs that describe
the interaction between Python and the ADwin system. All examples contain
both the executable files and the source codes.

The Python examples use the Qt-Toolkit, version 4, and the Python module
PyQt4. Toolkit and module are available in the internet from Riverbank:
http://www.riverbankcomputing.co.uk/software/pyqgt/down-
load.

A complete example consists of a Python and an ADbasic program. Both pro-
grams characteristically perform the following different tasks:

— The Python program starts, monitors and stops a process on the ADwin
system and displays the transferred data.

Files can be found in the ADwin directory, see chapter 3.1 on page 5.

— The ADbasic program defines the processes running on the ADwin
system, as well as measurement, open and closed loop control, and
time-critical evaluation.

The following examples are available:
— BAS_DMOL1: Online evaluation of measurement values
— BAS_DMOZ2: Online setting of control parameters

— BAS_DMOS3: The example <BAS_ DMO3> acquires a sequence of mea-
surement values and displays them as curve.

— BAS_DMOY7: Signal generation

All example programs are written for ADwin-Gold with the device no. 0x150
(336). For different settings of the ADwin systems you have to adapt the
source code and recompile.

For Windows, follow these steps:

— Open the ADbasic source code <BAS DMOx.bas> and adapt the set-
tings under **Options » Compiler".

For ADwin-Pro | there are separate example programs in the directory
<C:\ADwin\ADbasic\samples_ADwin_Pro\>.

— For ADwin-light-16 the source code remains unchanged.

If you use ADwin-Gold Il or ADwin-Pro Il you have to include the cor-
responding include files and adapt the instructions ADC and DAC.

— Generate a new binary file with ""Build » Make Bin File".

— In the Python source code
» change the constant DEVICENUMBER to the number of the
specified ADwin system.
« adaptthe name of the operating system files <ADwin9 _btl>and
the name of the binary file <BAS_DMOx.T91> an.

For Linux, these steps be used appropriately. The compiler use under Linux is
described in the manual "ADwin for Linux/Mac".

ADwin Driver Python, Manual version 1.2, April 2010

A-1

http://www.riverbankcomputing.co.uk/software/pyqt/download

BAS_DMO1

A-2

Online evaluation of measurement values

The example <BAS_DMO1> acquires measurement values in cycles, evaluates
them online and displays the result.

The example executes the following tasks:

— The Python program loads the ADwin operating system for the T9 pro-
cessor: <ADwin9.btl>.

— The Python program loads the ADbasic binary file for the T9 as process
1: <BAS_DMO1.T91>.

— With the button Start you start - o — 3
» the loaded ADbasic -
process 1 and
e the timer.

Min-Value Max-Value

29491 36045
The ADbasic process acquires
1000 measurement values at ana-
log input 1, evaluates the minimum
and maximum value and saves the
two values in the global variables PAR_1 and PAR_2. This measurement
cycle is repeated until the process is stopped. After the first measure-
ment cycle the process sets the global PAR_10 to value 1.

Stop Quit

The timer checks five times per second if the global variable PAR_10
has the value 1. If so, the function reads the values of the global vari-
ables PAR_1 und PAR_2 and displays them in the windows for minimum
and maximum values.

If you have no signal at the analog input 1 the displayed values fluctuate
around zero, that is around the value 32768.

— With the button Stop you stop
e the ADbasic process 1 and
e the timer.

ADwin Driver Python, Manual version 1.2, April 2010

Online setting of control parameters

BAS_DMO?2

The example <BAS_DM02> sets the control parameters of a closed loop con-
trol process, a digital P-controller. The control parameters may be changed

online.

The example executes the following tasks:

The Python program loads the ADwin operating system for the T9 pro-
cessor: <ADwin9.btl>.

The Python program loads the ADbasic binary file for T9 as process 1:
<BAS DM0O2.T91>.

With the button Start you start the loaded ADbasic process 1.

Ll Bas dmie?
Setpoint
Gl el [«]+] |10729
Gain
W] Ay 7
Start Stop Quit

Using the slide controls you adjust the Setpoint and the Gain of the
digital P-controller.

With each new setting the Python program writes the values of the slide
controls into the global variables PAR_1 and PAR_2.

The ADbasic program continuously reads the global variables and uses
them as control parameters.

With the button Stop you stop the ADbasic process 1.

You find a more detailed description of the ADbasic process in the tutorial.

ADwin Driver Python, Manual version 1.2, April 2010

A-3

BAS DMO3 The example <BAS_DMO03> acquires a sequence of measurement values and
displays them as curve.

The example executes the following tasks:

— The Python program loads the ADwin operating system for the T9 pro-
cessor: <ADwin9.btl>.

— The Python program loads the ADbasic binary file for T9 as process 1:
<BAS_DMO03.T91>.

— With the button Start you start
e the loaded ADbasic process and
¢ the Python function Timer1.

The ADbasic process BAS_DMO3 acquires 1000 measurement values
at analog input 1 and saves them in the global array DATA_1. Then the
process sets the global variable PAR_10 to the value 1 and stops.

The Python function Timer1 checks ten times per second if the global
variable PAR_10 is set to the value 1. If so, the function reads 1000 val-
ues from the global array DATA 1 and displays them as curve.

L bas dmo3 @

min: 29491 max: 36042

Quit

The displayed curve depends on the signal sequence at analog input 1.

— You can repeat the acquisition of a measurement sequence whenever
you want to.

A-4 ADwin Driver Python, Manual version 1.2, April 2010

Signal generation

The example <BAS_DMO7> contains an ADbasic process running as function
generator. Via user interface the signal form, the frequency and the amplitude
of the output signal are set online.

The example executes the following tasks:

— The Python program loads the ADwin operating system for the T9 pro-
cessor: <ADwin9.btl>.

— The Python program loads the ADbasic binary file for T9 as process 1:
<BAS DMO7.T91>.

— With the button Start you start the loa- [Daeraer =
ded ADbasic process 1.
— Set the parameters for the output signal; | ="] 100
+ Frequency: 0...1000 Hz FO i (1] L0
. Amplitude: 0...10V Waveform
» Signal form: Sine, ramp, N Ramp
trapecoid, rectangle, triangle. Trapezoidal () Rectangle
As soon as you change one of the para- Triange

meters, the Python program writes the
parameter values into the global variab-
les PAR_1, PAR_2 and PAR_3.

Stop Quit

The ADbasic program reads the global variables and generates the ap-
propriate output signal.

— With the button Stop you stop the ADbasic process 1.

ADwin Driver Python, Manual version 1.2, April 2010

BAS_DMO?7

A-5

ADwin

Annex

A.2 Error messages

No. Error message

No Error.

Timeout error on writing to the ADwin-system.

Timeout error on reading from the ADwin-system.

10 The device No. is not allowed.

11 The device No. is not known.

15 Function for this device not allowed.

20 Incompatible versions of ADwin operating system ,
driver (ADwin32.DLL) and/or ADbasic binary-file.

100 |The Data is too small.
101 | The Fifo is too small or not enough values.

102 |The Fifo has not enough values.

150 |Not enough memory or memaory access error.
200 |File not found.
201 | A temporary file could not be created.

202 | The file is not an ADBasic binary-file.
203 | The file is not valid.

204 | The file is not a BTL.

2000 |Network error (Tcplp).

2001 |Network timeout.

2002 |Wrong password.

3000 |USB-device is unknown.

3001 |Device is unknown.

1. Possibly the file <ADwin5.btl> has no memory table, or another file was re-
named to <ADwin5_btl> or the file is damaged.

A-6 ADwin Driver Python, Manual version 1.2, April 2010

A.3 Index of functions

BOOt(FIlename) 12
Clear_Process(ProcessNO)t 16
Data_Length(DataNO) e e 23
Fifo_Clear(FifONO)ot e e 27
Fifo_ Empty(FifONO)o 26
Fifo_ FUI(FITONO) . ..o e e e e 26
Free_Mem(MemM _SPEC) . .o vttt e e 14
Get _FPRar(INdeX) 21
Gl FPar Al .. 22
Get_FPar_Block(Startindex, COUNt) e 22
Gt LAt EITOI() ..ottt e e e 32
Get_Last_Error_Text(Last_Error) 32
Get_Par(INdeX)t 19
Gt Par Al .o e e e e e 20
Get_Par_Block(Startindex, CoUNt) e 20
Get_Processdelay(ProCcessNO)o e 18
GetData_Float(DataNo, Startindex, CoUNt) e e e 25
GetData_Long(DataNo, Startindex, COUNt) i et e e e 24
GetData_String(DataNo, MaxCoUNt) e e 31
GetFifo_Float(FifoNO, CoUNL)ttt e e e e e e e e e 29
GetFifo_Long(FIfONO, COUNY) e e e e 28
Load_Process(Filename) 15
Process_Status(ProCessNO) o e 17
PrOCESSOr TYPE() .« o vttt e 13
Set FPRar(Index, Value) e 21
Set Par(IndeX, Valug) e e e 19
Set_Processdelay(ProcessNo, Processdelay) 17
SetData_Float(PC_Array, DataNo, Startindex, Count) it 25
SetData_Long(PC_Array, DataNo, Startindex, Count)t 24
SetData_String(DataNo, StriNg)t 30
SetFifo_Float(FifoNo, PC_Array, COUNL) e e e 28
SetFifo_Long(FifoNO, PC_Array, CoUND)t e e e e e e e 27
Start_ Process(ProCessNO) 15
Stop_Process(ProCessNO)t 16
String_Length(DataNoO) e 30
TSt VIS 0N . . 13
WOTKIOAA() .« .o vttt e 13

A-7 ADwin Driver Python, Manual version 1.2, April 2010

	ADwin Driver
	Typographical Conventions
	1 Information about this Manual
	2 ADwin-Python driver
	2.1 Interface for the development environment
	2.2 Communication with the ADwin system

	3 Installing the ADwin Driver for Python
	3.1 Installing ADwin
	3.1.1 Installation under Linux or Mac OS
	3.1.2 Installation unter Windows

	3.2 Installing the ADwin module
	3.3 Accessing the ADwin system
	3.4 Accessing an ADwin system via other PCs

	4 General information about ADwin functions
	4.1 Locating errors
	4.1.1 Raising an exception
	4.1.2 Explicitly querying error codes
	4.1.3 Using the return value of functions

	4.2 The "DeviceNo."
	4.3 Data types
	4.4 2-dimensional arrays

	5 Description of the ADwin functions
	5.1 System control and system information
	5.2 Process control
	5.3 Transfer of global variables
	5.3.1 Global LONG variables (Par_1 … Par_80)
	5.3.2 Global FLOAT variables (FPar_1 … FPar_80)

	5.4 Transfer of data arrays
	5.4.1 Data arrays
	5.4.2 FIFO arrays
	5.4.3 Data arrays with string data

	5.5 Querying the error code

	Annex
	A.1 Example programs
	A.2 Error messages
	A.3 Index of functions

