
ADbasic
Tutorial and Programming Examples

ADbasic Tutorial version 1.4, July 2003

ADwin

II ADbasic Tutorial version 1.4, July 2003

ADbasic Tutorial version 1.4, July 2003 III

Table of contentsADwin
Table of contents

1 Important Notes . 1

2 First Steps with ADbasic . 2
2.1 Checking the Communication . 2
2.2 The First Program . 3

3 A/D and D/A Conversion . 4
3.1 ADwin-Gold and ADwin-light-16 Systems. 4
3.2 ADwin-Pro Systems . 5

4 Saving of Measurement Values . 8

5 Online Evaluation of Measurement Values . 10

6 Digital Proportional Controller . 11

7 Data Exchange with a Global Array . 12

8 Continuous Data Transfer with FIFO . 13

9 Digital PID Controller . 14

A Help for Error Handling . A-1
A-1 Errors Occurring during the Boot Process. A-1
A-2 The Communication is Interrupted . A-2

Table of contents ADwin

IV ADbasic Tutorial version 1.4, July 2003

ADbasic Tutorial version 1.4, July 2003 1

Important NotesADwin
1 Important Notes
Important! Before you start programming with ADbasic, you must have com-
pletely installed your hardware and software. For this please have a look into
the installation manual - "ADwin Driver Installation".
(See also the file <Driver-Installation_eng.pdf> in the directory
<C:\ADwin\Documents\Setup>).

The sample programs described on the following pages are an easy introduc-
tion into programming with ADbasic, so that you will be able to find practicable
solutions for your programming tasks in a relatively short time.

Please take into consideration that the complete performance of ADbasic can
only be experienced when working with the program everyday and when using
the ADbasic manual or the online help for further instructions.

Using sample programsFor nearly each example you find the program source code in the directory
<C:\ADwin\ADbasic\Samples_ADwin> (standard installation).

For testing a sample program you need a properly working and connected
ADwin system, ADbasic for editing the programs and the ADwin drivers which
should be installed on your computer.

First Steps with ADbasic ADwin

2 ADbasic Tutorial version 1.4, July 2003

2 First Steps with ADbasic
We assume that you have already successfully installed your ADwin system
with the help of the installation manual. And that you have assigned the right
device number with the program ADconfig to the ADwin system (default set-
ting: 150h).

2.1 Checking the Communication
The first step should be to check once more the communication between the
computer and your ADwin system. If you do not have made any changes after
the installation, the right settings are automatically selected.

Start the development environment ADbasic from the Windows start
menu: Programs ADwin ADbasic.

You are seeing now the standard user interface of the development en-
vironment:

Some of ADbasic’s
control elements

Do a left mouse click on the icon (Boot) in the tool bar (at the top of
the window).
Thus you start the boot process that transfers the operating system to
your ADwin system and starts it there.

With the transfer of the operating system (booting) you initialize the
ADwin system at the same time. You set the system into a defined initial
status, in which the memory is empty for receiving new programs. The
boot processes must be repeated after each power-on of the ADwin
system.

Each of the following changes in the ADbasic development environ-
ment shows that the operating system has been successfully trans-
ferred:
• In the status line the message ADwin is booted appears.
• The arrays in the parameter window change to light-grey, that is they

are active.
• In the tool bar the icon changes into the active status

("Enable cyclic update", at right, next to the boot icon).
• When you have an ADwin-Gold system or a processor module of an

ADwin-Pro system the LED starts blinking.

If the communication with your ADwin system is successful you will find the
first programming example in the next chapter. Otherwise you will find infor-
mation about error handling in the annex.

Tool bar

Parameter
window

Status bar

Source code win-
dow (Editor)

ADbasic Tutorial version 1.4, July 2003 3

First Steps with ADbasicADwin
2.2 The First Program
The first program consists only of 2 lines; it periodically increments the global
variable PAR_1.

Type in the following program into the editor window:

Do not forget neither the colon behind EVENT nor the underscore in
PAR_1.

Do a left mouse click on the icon (Compile) in the tool bar.

With this instruction you compile your program, transfer it to the ADwin
system and start it there.

Watch the changes in the parameter window.

You see, that in the input field at the upper left no zero but a continuously
incrementing number is indicated. This number is the actually current
value of the global variable PAR_1.

NotesThe continuous incrementing of the variable PAR_1 is the consequence of the
fact that the program is started in fixed time intervals, that means cyclically.

In this program, the line with the keyword EVENT: defines the start of a section,
which is cyclically called, in this case a single program line

PAR_1 = PAR_1 + 1

which increments upon each call the value of the variable PAR_1 by 1.

The cycle time, in which the program line is called, can be directly entered in
the input field Process 1 delay, in units of 25ns (= 1 clock cycle of the pro-
cessor). If you enter a small value, processing – here: the incrementing – is exe-
cuted faster, if you enter a higher value, it is executed more slowly. The value
40,000,000 for instance, causes the line to be executed every second.

Pay attention to the display Busy in the status bar (at the bottom of the window).
It displays how much workload your process needs on the ADwin system. The
workload should definitely remain under 100 %, if not, the system can become
unstable.

The variable in this example has the name PAR_1. This characterizes a pre-
defined, global variable for integer numbers, which is used for the bidirectional
data exchange between simultaneously running ADbasic processes or
between the computer and ADbasic processes. It is also called parameter. As
a whole 80 of these variables (PAR_1 up to PAR_80) are available. You can use
them anywhere in the program.

Local variables, arrays, and other data types are described later in the text.

A/D and D/A Conversion ADwin

4 ADbasic Tutorial version 1.4, July 2003

3 A/D and D/A Conversion
If you have an ADwin-Pro system continue with chapter 3.2.

3.1 ADwin-Gold and ADwin-light-16 Systems
In order to convert an analog voltage with the A/D converter of the ADwin sys-
tem into a digital bit sequence, we use the instruction ADC in this example; at
the same time the converted value is written into the global variable PAR_1.

Read the analog voltage Enter and compile the following program:

You should now see a value in the parameter window in the line PAR_1, which
varies around 32,768. This value corresponds to a measured voltage of 0V,
which is correct in this case, because the analog input 1 is open. The variations
result from noise at the input (the voltage is measured in each process cycle
again).

With the instruction ADC you measure voltages at the analog inputs between
-10V and +10V. This corresponds to the digital values of 0 to 65,535 (see also
Excursus).

Contrary to the first program you can see in the display Busy that this program
needs essentially more processing time, although with each process cycle
again only one program line is executed. The relatively long execution time of
the instruction ADC results from the fact that you have to wait for the necessary
conversion time for each individual measurement.

Output an analog signal Now extend your program by additionally outputting an analog signal via D/A
converter, and measure it (as described above) with the A/D converter:

For this purpose connect the analog output 1 with the analog input 1 (+)
as well as the analog ground (AGND) with the input 1 (−).
The pin assignment is described in the hardware manual of your ADwin
system.

You call the digital-to-analog converter with the instruction DAC, to whom you
must transfer the number of the analog output and the value you want to con-
vert:

EVENT:
DAC(1, PAR_2)
PAR_1 = ADC(1)

After having transferred the program to the ADwin system, you can read the
measured value again in the global variable PAR_1. It varies around the
value 0, because the D/A converter outputs a value of -10 V, which is equiva-
lent to the value 0 of the global variable PAR_2. You may prove with an external
multimeter that exactly -10V are output at the analog output 1.

You can easily change the value, which the D/A converter outputs at the analog
output.

Click PAR_2 in the parameter window and overwrite the displayed
value.
After having confirmed with [RETURN] you see that the value in PAR_1
has changed, too. The display of a connected multimeter should also
change.

ADbasic Tutorial version 1.4, July 2003 5

A/D and D/A ConversionADwin
Functions generatorThis two-line program can easily be made to a functions generator, which for

instance outputs a ramp function. For this we combine the first example (the
incrementation) with the last example (AD-DA conversion):

EVENT:
DAC(1, PAR_2)
PAR_1 = ADC (1)
PAR_2 = PAR_2 + 1
IF (PAR_2 > 65535) THEN ' 16-bit converter
PAR_2 = 0

ENDIF

If you compile this program you will see that the values of the global variables
PAR_2 (and PAR_1, too) change.

Connect an oscilloscope (a multimeter is too slow) to the analog output 1
and watch the ramp function, equivalent to the increasing value of
PAR_2.

The query with IF at the end of the program is used to reset the counter values
of the global variables PAR_2 to 0 after reaching the maximum value of 65,535.
This is necessary, because the function DAC corrects the values exceeding the
maximum value of 65,535 (at 16-bit converters).

Excursus

3.2 ADwin-Pro Systems
Special characteristics
of the Pro system

The flexible equipment of the ADwin Pro systems requires that you include at
the beginning of each program certain files with the instruction #INCLUDE. If
you forget to do so, the compiler sends an error message. Moreover, you must
indicate at all hardware related instructions the address of the Pro module.

Include-fileEach of these include-files contains instructions so that you can access the
hardware of a specified class of Pro modules. Which of the files you must
include depends therefore on the instructions (and modules) you are using.

Analog conversion with different converter resolutions
The input converters (ADCs) of the ADwin system are available as 12-
bit, 14-bit or 16-bit converters, the output converters (DACs) only as
16-bit converters.

A 16-bit ADC converts the voltage into a value between 0 and
65,535 digits.
If the converter has a resolution of 12-bit or 14-bit, the voltage is con-
verted using accordingly greater digit steps. In order to be able to com-
pare the values with those of a 16-bit ADC, 2 zero-bits are added from
the right to the 14-bit value and 4 zero-bits are added to the 12-bit
value.

The result is that the measurement values of different converter reso-
lutions are returned in different step sizes. The maximum measure-
ment value (measurement range -10V…+10V) is just one step size
smaller than 216 digits:

Step size Max. measure-
ment value

16-bit converter 1 digit 65,535 digits
14-bit converter 4 digits 65,532 digits
12-bit converter 16 digits 65,520 digits

A/D and D/A Conversion ADwin

6 ADbasic Tutorial version 1.4, July 2003

These include-files must always be included at the beginning of your source
code.

You will find an assignment of the instructions to individual include-files in the
documentation "ADwin Pro System Specification; Programming in ADbasic".
In the following example for the instruction ADC it its necessary to include the
file ADWPAD.INC,and for the instruction DAC the file ADWPDA.INC.

Always indicate the complete path to the include-files or make sure that they
can be found in the standard directory. In this example the files are supposed
to be in C:\ADwin\ADbasic\Inc\.
You can adapt the standard directory with the help of the menu item
Options/Settings; then set in the dialog window Settings, under
Directory the option Include-Directory (with a "\" as last char).

Module address In order to access a certain Pro module always indicate the module address
as first argument of an instruction. Therefore all instructions for Pro systems
have always one argument more than the same instructions for the Gold or
light-16 systems. In the Pro hardware manual you will find information about
how to set the module address.
In this example we use an A/D module Pro-AIn-x (with multiplexer) with the
address 1 and D/A module Pro-AOut-x with the address 1.

Beginning of the example In order to convert an analog voltage with the A/D converter of the ADwin sys-
tem into a digital bit sequence, we use the instruction ADC in this example,
which writes the converted value into the global variable PAR_1.

Read analog voltage Enter and compile the following program:

You should now see a value in the parameter window in the line PAR_1, which
varies around 32,768. This value corresponds to a measured voltage of 0V,
which is correct in this case, because the analog input 1 is open. The variations
result from noise at the input (the voltage is measured in each process cycle
again).

With the instruction ADC you measure voltages at the analog inputs between -
10V and +10V. This corresponds to the digital values of 0 to 65,535 (see also
"Excursus").

Contrary to the first program you can see in the display Busy that this program
needs essentially more processing time, although with each process cycle
again only one program line is executed. The relatively long execution time of
the instruction ADC results from the fact that you have to wait for the necessary
conversion time for each individual measurement.

Output an analog signal Now extend your program by additionally outputting an analog signal via D/A
converter, and measure it (as described earlier) with the A/D converter:

For this purpose connect the analog output 1 with the analog input 1 (+)
as well as the analog ground (AGND) with with the input 1 (−).
The pin assignment is described in the hardware manual of your ADwin
Pro system.

You call the digital-to-analog converter with the instruction DAC, to whom you
must transfer the module’s number, the number of the analog output and the
value you want to convert:

#INCLUDE ADwpad.inc
#INCLUDE ADwpda.inc

ADbasic Tutorial version 1.4, July 2003 7

A/D and D/A ConversionADwin
EVENT:
DAC(1, 1, PAR_2)
PAR_1 = ADC(1, 1)

After having transferred the program to the ADwin system, you can read the
measured value again in the global variable PAR_1. It varies around the
value 0, because the D/A converter outputs a value of -10 V, which is equivalent
to the value 0 of the global variable PAR_2. You may prove with an external mul-
timeter that exactly -10V are output at the analog output 1.

You easily change the value, which the D/A converter outputs at the analog out-
put.

Click PAR_2 in the parameter window and overwrite the displayed value.
After having confirmed with [RETURN] you see that the value in PAR_1
has changed, too. The display of a connected multimeter should also
change.

Functions generatorThis two-line program can easily be made to a functions generator, which for
instance outputs a ramp function. For this we combine the first example (the
incrementation) with the last example (AD-DA conversion):

#INCLUDE ADwpad.inc
#INCLUDE ADwpda.inc

EVENT:
DAC(1, 1, PAR_2)
PAR_1 = ADC(1, 1)
PAR_2 = PAR_2 + 1
IF (PAR_2 > 65535) THEN ' 16-bit converter
PAR_2 = 0

ENDIF

If you compile this program you will see that the values of the global variables
PAR_2 (and PAR_1, too) change.

Connect an oscilloscope (a multimeter is too slow) the analog output 1
and watch the ramp function, equivalent to the increasing value of
PAR_2.

The query with IF at the end of the program is used to reset the counter values
of the global variables PAR_2 to 0 after reaching the maximum value of 65,535.
This is necessary, because the function DAC corrects the values exceeding the
maximum value of 65,535 (at 16-bit converters). See also the excursus on
page 5.

Saving of Measurement Values ADwin

8 ADbasic Tutorial version 1.4, July 2003

4 Saving of Measurement Values
Large quantity of data in
arrays

If you work with consecutive measurement values, for instance in a series of
measurements, you can write them into an array. For this you define an array.
There are global and local arrays (identical to variables); here the global array
DATA_1 is used.

DIM DATA_1[1000] AS LONG
DIM i AS LONG

INIT:
i = 1

EVENT:
DATA_1[i] = ADC (1)
i = i + 1
IF (i > 1000) THEN
i = 1

ENDIF

First of all, in this example the global array DATA_1 is dimensioned with 1,000
array elements. These array elements are defined to store values of the data
type LONG, that is integer values with 32-bit. Then you define the local variable
i, which is to be used as index variable for accessing the data element.

In the section INIT: the value 1 is assigned to the variable i. This value is the
index of the first data element in the global array. Consider that there is no array
element with the index 0! The section INIT: is only called once during pro-
cessing the program, directly after the start.

You find the essential program lines after the keyword EVENT:. Here the value
of the analog channel 1 is read in first, and at the same time assigned to the
element of the global array with the index i. Now the value of the index variable
is incremented by 1. Afterwards, in the IF query the index variable is reset to
its start value as soon as it has reached the value 1,000, in order to avoid an
overflow of the array. Thus, always the last 1,000 measurement values are
stored in the global array.

Display array values If you compile and start the program, you will not find any changes in the
parameter window. But this is not really astonishing, because none of the glo-
bal variables (PAR_1 ... PAR_80 or FPAR_1 ... FPAR_80) is used in the pro-
gram. Nevertheless, you can display the contents of the array with the add-in
program TGraph of ADtools.
ADtools is a collection of useful Windows programs, accessing directly the
global variables and arrays (PAR, FPAR and DATA) of the ADwin system, in
order to display and change them.

You open the program TGraph in the start menu under
Programs ADwin ADtools TGraph.

ADbasic Tutorial version 1.4, July 2003 9

Saving of Measurement ValuesADwin

In this help program the values of the array DATA_1 are graphically displayed.
In the picture you see the read-in values of the AD converter at open input.

If you start TGraph for the first time, you should in any case have a closer look
to the options, being called via the menu item Options. It is important to indi-
cate the corresponding Device No. and the number of the specified data array
(DATA_1 in your program has the number 1, DATA_10 the number 10).
The value range of the display can be adapted with the different buttons, but for
the first test the automatic scaling (option Autoscale = Yes) will do.

Online Evaluation of Measurement Values ADwin

10 ADbasic Tutorial version 1.4, July 2003

5 Online Evaluation of Measurement Values
In this chapter we will show you how you can read-in measurement values in
a program and process them fastly. You need an ADwin system with an analog
input and an external, analog signal in the range of -10V…+10V.

Connect the external analog signal with the analog input 1 (+) as well as
the analog ground (AGND) with the input 1 (-).

For the pin assignment see your hardware manual of the ADwin sys-
tem. Please consider the information about the measurement range and
earthing of your device.

The program reads in 1,000 measurement values at the analog input 1 and
determines the highest and lowest value. The minimum value is written in the
variable PAR_1, the maximum value in PAR_2.

From here you need no longer type in the whole program examples. They can
be found in the directory C:\ADwin\ADbasic\samples_ADwin. If you work
with an ADwin-Pro system, pay attention to the notes in chapter 3.2 on page 5.

The first example is saved under the name BAS_DMO1.BAS. After compiling
and starting of the program the minimum value in variable PAR_1 and the max-
imum value in the variable PAR_2 is shown.
Instead of calculating the minimum and maximum values you can also easily
execute other calculations.

BAS_DMO1.BAS '###
'# The process BAS_DMO1 is searching for the maximum
'# and minimum values out of 1000 samples from ADC-#1
'# and writes the result to PAR_1 (min.) and PAR_2 (max).
'# After 1000 samples a flag (= PAR_10) is set.
'# PAR_1 = minimum value
'# PAR_2 = maximum value
'# Platform: ADwin-Gold or ADwin-light-16
'###

#DEFINE limit 65535 'max. 16 bit ADC-value

DIM i1, iw, max, min AS LONG

INIT:
i1 = 1 'reset sample counter
max = 0 'initial maximum value
min = limit 'initial minimum value
PAR_10 = 0 'init End-Flag
GLOBALDELAY = 40000 'cycle-time of 1ms (ADSP)

EVENT:
iw = ADC(1) 'get sample
IF (iw > max) THEN max = iw 'new maximum sample?
IF (iw < min) THEN min = iw 'new minimum sample?
i1 = i1 + 1 'increment index
IF (i1 > 1000) THEN '1000 samples done?
i1 = 1 'reset index
PAR_1 = min 'write minimum value
PAR_2 = max 'write maximum value
min = limit 'reset minimum value
max = 0 'reset maximum value
ACTIVATE_PC 'only for use with TestPoint
PAR_10 = 1 'set End-Flag

ENDIF

ADbasic Tutorial version 1.4, July 2003 11

Digital Proportional ControllerADwin
6 Digital Proportional Controller
For the following example, a digital proportional controller, you need an ADwin
system with an analog input and an analog output as well as an external system
that is to be controlled.

With the global variable PAR_1 you set the controller’s setpoint and with PAR_2
the gain. The actual value of the system you want to control is measured at the
A/D converter input 1. The program calculates the actuating value and outputs
this value at the D/A converter output 1. The gain must be adapted to the sys-
tem that you want to control.

The external system to be controlled can for instance be a simple low-pass. In
order to get a functioning controller, the signal "actual value" of the system,
which is being controlled, must be connected with the analog input 1(+) as well
as the analog ground (AGND) with the input 1(-). And a connection of the ana-
log output to the actuating input of the controlled system must be established.

For the pin assignment see the hardware manual of your ADwin system.
Please pay attention to the information about the measurement range and
earthing of your device.

You will find the source code of the controller under the name BAS_DMO2.BAS
(in the directory C:\ADwin\ADbasic\samples_ADwin). After you have
compiled and started the program, you see in the parameter window the set-
point to the right of 1: and the gain to the right of 2:. By changing the value of
PAR_1 you modify the set-point and by changing the value of PAR_2 you modify
the gain factor of the controller.

BAS_DMO2.BAS'###
'# The process BAS_DMO2 is a digital P-controller.
'# PAR_1 = setpoint
'# PAR_2 = gain
'# Platform: ADwin-Gold or ADwin-light-16
'###

#DEFINE offset 32768 '0V for 16 bit ADC/DAC-systems

DIM cd, av AS LONG

INIT:
PAR_1 = offset 'initial setpoint
PAR_2 = 10 'initial gain
GLOBALDELAY = 40000 'cycle-time of 1ms (ADSP)

EVENT:
cd = PAR_1 - ADC(1) 'compute control deviation (cd)
av = cd * PAR_2 + offset 'compute actuating value (av)
DAC(1, av) 'output actuating value on DAC#1

Data Exchange with a Global Array ADwin

12 ADbasic Tutorial version 1.4, July 2003

7 Data Exchange with a Global Array
If you just want to exchange large quantities of data, the best solution is to use
global arrays. For this example you need an ADwin system with an analog
input and an external, analog signal in the range of -10V … +10V. Connect the
system with the analog input 1(+). In addition you have to setup a connection
between the analog ground (AGND) and the input 1(-). For the pin assignment
see the hardware manual of your ADwin system. Please consider the infor-
mation about the measurement range of the system.

The program measures the analog input 1 and informs the computer after
1,000 measurements. The computer is then ready to read these data. They are
transferred with the help of a global array. The ADbasic program finishes after
1,000 measurements independently.

The source code is saved under the name BAS_DMO3.BAS. The program
includes an instruction for the communication with TestPoint. If you have not
installed TestPoint on your computer, delete the line from the example pro-
gram.

In order to test the ADbasic program, you can read out the data of the global
array DATA_1 with ghe program TGraph and display them on the computer.

BAS_DMO3.BAS '##
'# The process BAS_DMO3 samples ADC-#1 1000 times,
'# then stops and informs the PC to fetch the samples.
'# Data is transferred using a standard DATA array.
'# DATA_1 = series of samples
'# PAR_10 = End-flag
'# Platform: ADwin-Gold or ADwin-light-16
'##

DIM DATA_1[1000] AS LONG
DIM index AS LONG

INIT:
index = 0 'reset array pointer
PAR_10 = 0 'init End-flag
GLOBALDELAY = 40000 'cycle-time of 1ms (ADSP)

EVENT:
index = index + 1 'increment array pointer
IF (index > 1000) THEN '1000 samples done?
ACTIVATE_PC 'only for use with TestPoint

 PAR_10 = 1 'set End-Flag
END 'terminate process

ENDIF
DATA_1[index] = ADC(1) 'acquire sample and save in array

ADbasic Tutorial version 1.4, July 2003 13

Continuous Data Transfer with FIFOADwin
8 Continuous Data Transfer with FIFO
If you want to continuously transfer large quantities of data, you may use the
data structure FIFO. You need an ADwin system with an analog input and an
external, analog signal in the range of -10V…+10V.

The data structure FIFO is a global array, where data are easily and automati-
cally managed. With a FIFO you make sure that the data being written into the
array first will also be read out first: First In, First Out = FIFO.

The program continuously measures the analog input 1. An application pro-
gram on the computer can continuously read the data from the FIFO array. But
here you have to make sure that you read the data faster than they are written
into the FIFO by the ADwin system. If this is not the case the FIFO will "over-
flow" and data will get lost.

You have to connect the external signal with the analog input 1(+) as well as the
analog ground (AGND) with the input 1(-).

For the pin assignment see the hardware manual of your ADwin system.
Please pay attention to the information about the measurement range and
earthing of your device.

You find the source code under the name BAS_DMO4.BAS. The program
includes an instruction for the communication with TestPoint. If you have not
installed TestPoint on your computer, delete the line from the example program.

Before compiling start the help program TFifo with ADtools; the program now
waits that data are written in the FIFO array. After compilation and transfer of
the ADbasic program TFifo reads out the data and stores them on the hard
disk for further processing. How to use TFifo is described in the integrated
online help.

BAS_DMO4.BAS'###
'# The process BAS_DMO4 continuously samples ADC-#1.
'# After 1000 samples the PC will be informed to
'# fetch the samples.
'# Data is transferred using a FIFO array.
'# DATA_1 = series of samples
'# Platform: ADwin-Gold or ADwin-light-16
'###

DIM DATA_1[4000] AS LONG AS FIFO
DIM index AS LONG

INIT:
index = 0 'reset sample counter
PAR_10 = 0 'init End-flag
GLOBALDELAY = 40000 'cycle-time of 1ms (ADSP)

EVENT:
index = index + 1 'increment sample counter
IF (index > 1000) THEN '1000 samples done?
ACTIVATE_PC 'only for use with TestPoint

 PAR_10 = 1 'set End-flag
index = 0 'reset sample counter

ENDIF
DATA_1 = ADC(1) 'acquire sample and save in FIFO

Digital PID Controller ADwin

14 ADbasic Tutorial version 1.4, July 2003

9 Digital PID Controller
For this program, a PID controller, you need an ADwin system with an analog
input and an analog output, as well as an external system that is to be con-
trolled.

You configure the PID controller with several variables. At the A/D converter
input 1 the actual value of the system you are controlling is measured. The pro-
gram calculates the actuating value and outputs it at the D/A converter
output 1. You have to adapt the gain to the system you are controlling.

In order to test the system you must connect the external signal with the analog
input 1(+) as well as the analog ground (AGND) with the input 1(-).

For the pin assignment see the hardware manual of your ADwin system.
Please pay attention to the information about the measurement range and
earthing of your device.

You find the source code under the name BAS_DMO6.BAS. The program
includes an instruction for the communication with TestPoint. If you have not
installed TestPoint on your computer, delete the line from the example pro-
gram.

After having transferred the program to your ADwin system you can change
the controller settings with the help of the global variables in the parameter win-
dow.

The calculated control deviation is continuously written into the array DATA_1.
By visualizing these data with the program Tgraph you can optimize the con-
trol parameters.

ADbasic Tutorial version 1.4, July 2003 15

Digital PID ControllerADwin
BAS_DMO6.BAS'###

'# The process BAS_DMO6 is a digital PID-controller.
'# The controller operates with float variables whose
'# coefficients have to be computed on the PC and then
'# transferred to the ADwin-system.
'# PAR_1 = setpoint in digits
'# FPAR_2 = P (gain, proportional factor)
'# FPAR_3 = I (integration time)
'# FPAR_4 = D (derivative time)
'# PAR_5 = buffer index for the control deviation
'# PAR_6 = cycle-time in 25ns steps
'# PAR_9 = flag for new setpoint definition by PC
'# Attention: Prior to start the program the controller
'# parameters have to be set to the correct value!
'# Make sure that FPAR_3 is not zero!!!
'# Platform: ADwin-Gold or ADwin-light-16
'###

#DEFINE offset 32768 '0V output

DIM DATA_1[4000] AS LONG
DIM av, cd, cdo, sum AS LONG
DIM diff AS FLOAT

INIT:
sum = 0 'initial value of integral part
cd = ADC(1) 'initial value of control

'deviation (cd) & MUX to Ch-#1
PAR_5 = 1 'reset array index
IF (FPAR_3 < 1E3) THEN FPAR_3 = 1E3 'check min. of

'integration time
IF (PAR_6 < 4E4) THEN PAR_6 = 4E4 'allow cycle-times >=1ms
GLOBALDELAY = PAR_6 'set cycle-time

EVENT:
'compute actuating value

av = FPAR_2*(cd + sum/FPAR_3 + diff*FPAR_4)
START_CONV(1) 'start conversion ADC-#1
DAC(1, av + offset) 'output actuating value at DAC#1
cdo = cd 'keep control deviation in mind
WAIT_EOC(1) 'wait for ADC‘s end of conversion
cd = PAR_1 - READADC(1) 'compute control deviation
FPAR_9 = FPAR_9*0.99+cd*0.01'mean value of control deviation
sum = sum + cd 'calculate integral
IF (sum > 2E6) THEN sum = 2E6 'positive limit of integral
IF (sum < -2E6) THEN sum = -2E6 'negative limit of integral
diff = (cd - cdo) 'calculate deviation difference
DATA_1[PAR_5] = cd 'write control deviation

'in a buffer
INC PAR_5 'increment buffer index
IF (PAR_5 >= 4000) THEN '4000 samples done?
ACTIVATE_PC 'only for use with TestPoint

 PAR_10 = 1 'set End-Flag
PAR_5 = 1 'reset buffer index

ENDIF

FINISH:
DAC(1,offset) 'analog output #1 to 0V

Help for Error Handling ADwin

A-1 ADbasic Tutorial version 1.4, July 2003

Help for Error Handling
In this chapter we will inform you about how to handle the errors described
below:

– Errors Occurring during the Boot Process

– The Communication is Interrupted

A-1 Errors Occurring during the Boot Process
Error message If the ADwin operating system has not been successfully loaded to your sys-

tem, you get (one or) two errors messages. Confirm both messages with OK,
in order to being able to continue working with ADbasic.

This error message displays that the ADwin system does not respond
to any communication setups.

This error message describes more precisely which kind of error occurs.
The message depends on the kind of communication, just being used
between the computer and the ADwin system; here you see the mes-
sage of an Ethernet network.

Remedy Solve this problem by checking the following items and setup the communica-
tion to the ADwin system again:

Mechanical Check-Up

Device No.

Check-up Remedy
Is the system connected to the power
supply and switched on?

Make the necessary connections from
the system to the power supply and
switch it on.

Is the data line between system and
computer connected correctly?

Either connect the system via USB
cable to the computer or connect it to
the Ethernet network.

Check-up Remedy
Has the correct Device No. been set
in ADconfig?
For this, call the program in the Win-
dows start menu.

Set in ADconfig the relevant Device
No. (Standard 150h).

ADbasic Tutorial version 1.4, July 2003 A-2

Help for Error HandlingADwin
Configuration in ADbasic

If this error handling is not successful, then probably an error has occured upon
installation. Try to verify once more the installation in the manual "ADwin Driver
Installation".

If nevertheless the error cannot be avoided, please call our support: Phone +49
(6251) 96320.

A-2 The Communication is Interrupted
Recognize the errorIt may happen that the communication between the ADwin system and the

computer is interrupted. This is the case when

– the color of input fields changes to dark-grey: in the parameter window,
in the process window as well as the input field Process n delay,

– the values in the parameter and process windows do not change any
more,

– no values are displayed in the status line,

– the button Enable cyclic update in the tool bar is deactivated .

An interrupted communication frequently means that the processor on the
ADwin system doesn’t have enough time to communicate with the computer.
This doesn’t mean that your program doesn’t run on the system, but that the
computer has interrupted the communication.

Setup the communication
again

You can only solve this problem only by rebooting your ADwin system. But this
process also deletes your program in the system memory; you have to recom-
pile and restart it (button).

Check-up Remedy
Is the system configured correctly in
ADbasic?

Call the menu item Options Com-
piler in ADbasic. Check here, if the
settings correspond to those in your
system (for more details, see below).

Set the relevant data in the dialog box.
Please consider that the option
Autostart is set to Yes.

Your ADwin system.
The processor type of your ADwin
system:
T9 or T10.
The memory size is of no importance
for the processors T9 and T10.
The device no. of your ADwin system,
you have set with ADconfig.

This option should be set to Yes.

Is the correct path indicated in
ADbasic for the operating system
file?

To check this, select the menu item
Options Setting and there
Directory.

Enter the path name in BTL-Direc-
tory (with a "\" at the end). Upon a
standard installation you must find
here the path C:\ADwin\.

Help for Error Handling ADwin

A-3 ADbasic Tutorial version 1.4, July 2003

But you have not definitely avoided the error by booting and compiling. First of
all try to remove the error cause and then go on with your program.

Remedy There are many reasons for an interruption of the communication; in most
cases the processor has reached its maximum workload due to a high-priority
process, so that it cannot respond in time to communication requests of the
computer. Below you will find some hints for debugging.

Check-up Remedy
Is there a problem with the data line?

If meanwhile the connection functions
again, the communication can be set
up again.

Click Enable cyclic update in
the tool bar.

If this does not have any effect, boot
your system.

Does the high-priority process start
with a too short processdelay?

Call the menu item Options Pro-
cess in ADbasic and check the set-
ting Initial Processdelay.

Set a higher value for the Initial
Processdelay and restart the pro-
gram.

Have you accessed array elements in
the program which are not in the
declared range?

Correct your program and restart it.

Is the execution time of the program
section EVENT: always (!) shorter
than the processdelay?

Increase the processdelay
or
Move program parts, which are not
time-critical to a low-priority process.

Are several high-priority processes
active, which influence each other?

Adjust the execution times and pro-
cessdelays of the process with each
other.

	ADbasic
	Table of contents
	1 Important Notes
	2 First Steps with ADbasic
	2.1 Checking the Communication
	2.2 The First Program

	3 A/D and D/A Conversion
	3.1 ADwin-Gold and ADwin-light-16 Systems
	3.2 ADwin-Pro Systems

	4 Saving of Measurement Values
	5 Online Evaluation of Measurement Values
	6 Digital Proportional Controller
	7 Data Exchange with a Global Array
	8 Continuous Data Transfer with FIFO
	9 Digital PID Controller
	Help for Error Handling
	A-1 Errors Occurring during the Boot Process
	A-2 The Communication is Interrupted

