
ADbasic
Real-Time Development Tool for

 ADwin Systems

Version 3.0

 License Key:

November 1999

Real-time processing, accurate to a microsecond
- quick and easy to program

Contents

2

Table of Contents

Conventions used in this manual 5

1 New Functions 7

2 Software Installation 8

2.1 System Requirements 8

2.2 Selecting the operating system 9

2.3 Installing the ADwin driver 9
2.3.1 Hardware installation when using Windows NT 11

2.4 Installing the ADbasic compiler 12

2.5 Loading the ADwin driver 13

3 Principles and operation methods of ADbasic 14

3.1 Introduction 14
3.1.1 ADbasic and ADwin 14
3.1.2 What can you do with ADbasic ? 15

4 Programming in ADbasic 17

4.1 Starting the development environment 17

4.2 Structure of an ADbasic program 18

4.3 Memory management 20

4.4 ADbasic data types 23
4.4.1 Notation of numbers 23
4.4.2 Predefined global variables 23
4.4.3 User-definable variables 27
4.4.4 The FIFO data structure 28
4.4.5 Status variables 30
4.4.6 Type conversion 31

4.5 Using a number of ADbasic processes 34
4.5.1 Data interchange 35
4.5.2 Workload 36
4.5.3 A number of high priority processes 36

 Contents

3

4.6 Subprograms and functions 37

4.7 Evaluation and visualizing of measurement data 38

5 Optimizing the timing characteristics 39

5.1 Priority and timing characteristics 39

5.2 Checking execution times with timer functions 42

5.3 A faster measurement function 43

6 Menus and dialog windows 45

6.1 The menu File 47

6.2 The menu Edit 48

6.3 The menu Window 49

6.4 The menu Project 50

6.5 The menu Options 52
6.5.1 The compiler options 52
6.5.2 The process options 55
6.5.3 The dialog window Parameter 60
6.5.4 The language window 64
6.5.5 The specification of the directory 64
6.5.6 The dialog box Connect 65
6.5.7 The Help menue 66

7 Command reference 67

8 How to solve problems 163

9 Index 164

3.1

Contents

4

Dear reader!

This ADbasic 3.0 manual is intended for ADwin board users who
would like to create programs using ADbasic for fast real-time
processing on the ADwin boards. You should be familiar with
fundamental programming, e. g. in BASIC, before you use this
manual.

Users of ADwin-Pro Systems:

The commands for getting access to the ADwin-Pro system with
ADbasic can be found in specific INCLUDE files. It is recommended
to read our documentation called: "ADwin-Pro System
Specifications. Programming in ADbasic ".

Users of ADbasic 2.0 :

If you know already ADbasic 2.0 , please read chapter 1 (New
Functions) first and then the chapters 4.3 (Memory management))
and 5.2 (Getting Execution Times with Timer Functions)

...Users who have already a wide experience in programming,
but none with ADbasic 2.0 are recommended to read
additionally:

Chapter 2 (Software Installation), chapter 4.4 (ADbasic Data Types)
and chapter 4.2 (Structure of an ADbasic program).

 Conventions

5

Conventions used in this Manual

We use the following typographical conventions:

Example Application

! Important: Placed before a paragraph containing

important information or explanations.
important This font is used to highlight important

points and for labeling technical terms
and proper names.

♦ Please enter At these sections you must enter
something into your PC so that you can
try out one of our examples.

Typewriter We use this font for program commands
and all other entries which you can
make in the editor window. In the
reference section the command being
discussed is highlighted in bold print.

italic This is used for variable names used in
a program example.

COMMAND ADbasic commands are placed in
uppercase letters to differentiate them.
The form used in your program is left up
to you since ADbasic also understands
commands written in lowercase.

Conventions

6

{COMMAND} This part of a command is optional.

File ÖÖÖÖ Save The names of menus and submenus
are printed in bold type. The arrow
points to the nex lower menu level.

‘Delay’ The titles of entry or selection fields in
dialog windows are placed in single
quotation marks.

CAPS AND SMALL CAPS Key names such as RETURN or CTRL.
Note: Is placed in front of a paragraph with

supplementary explanations.

 Chapter 1: New Functions

7

1 New Functions

Contrary to the ADbasic version 2.0 the ADbasic version 3.0 has
some more functions, shown as follows:

• ADbasic processes used for the processor module ADSP21062
from ANALOG DEVICES1 in the ADwin systems2 ADwin ,
ADwin-light and ADwin-Pro can be compiled.

• The ADbasic dialog box "Parameters" meets all requirements for
the ADSP-processor.

• ADbasic 3.0 is now ready for operation under Windows 95,
Windows 98 and Windows NT, but no longer under Windows 3.1x

Note: For users who want to continue working with
Windows 3.1x and ADbasic , there is a subdirectory
called win31 in the directory ADbasic on the CD-ROM.

In this subdirectory there is the ADbasic compiler,
version 2.0, and a PDF-file (manual for ADbasic 2.0).

1 This processor module is called ADSP in the following text .

2 The hardware systems ADwin , ADwin-light (PC plug-in boards) and
ADwin-Pro (19“-systems) are called ADwin systems in the following text,
as far as the statements made apply to all hardware systems.

Chapter 2: Software Installation

8

2 Software Installation

2.1 System Requirements

For the real-time development tool ADbasic 3.0 you need a
computer where Windows 95, Windows 98 or Windows NT have
been installed.
Moreover a CD-ROM drive is needed for installation of ADbasic 3.0 .

Note: It is possible for you to make yourself a set of
ADbasic 3.0 and ADwin driver disks in order to carry
out the installation by disk. For this purpose, copy the
directories Disk 1 to Disk 2 from the ADbasic directory
or the directories Disk 1 to Disk 2 of the driver directory,
being located on the CD-ROM.

Compiled ADbasic programs also run on a computer with
Windows 3.1x when the ADwin driver and the Win32s extensions
have been installed.
It is recommended to install one of the frequently used measurement
data evaluation programs (such as TestPoint) which runs excellently
in combination with ADwin and ADbasic . But nevertheless, you can
also write your own evaluation program, for instance with Visual
Basic, Visual C or Borland Delphi.
The ADbasic development environment is a 32-bit Windows
program which runs completely on the PC. An ADwin system is only
needed for testing the ADbasic programs.
Although ADbasic does not require much memory, it will be better to
have a fast CPU with a large memory capacity for the operation of
measurement data evaluation programs. For further details please
read the documentation of your application program.

 Chapter 2: Software Installation

9

2.2 Selecting the operating system

Version 3.0 of ADbasic is a 32-bit program and therefore requires
Windows 95, Windows 98 or Windows NT.

The setup-program identifies the operating system installed on your
computer.

2.3 Installing the ADwin driver

Please insert the provided CD-ROM in the CD-ROM drive of your
computer. The setup program starts automatically.3 After choosing
the language and the destination directory (it is recommended to
confirm the default directory C:\ADBASIC3), the following files are
copied to the specified directory.

ADWIN2.BTL driver for the ADwin systems with T225 processor

ADWIN4.BTL driver for the ADwin systems with T400 processor

ADWIN5.BTL driver for the ADwin systems with T450 processor

ADWIN8.BTL driver for the ADwin systems with T805 processor

ADWIN9.BTL driver for the ADwin systems with ADSP-processor

TESTVE16.EXE program to search and display all 16-bit ADwin DLLs
installed on your system.

3 If the setup-program does not start automatically, please carry out the

program setup.exe which is located in the subdirectory: ...\Driver\Disk1.

Chapter 2: Software Installation

10

TESTVE32.EXE program to search and display all 32-bit ADwin DLLs
installed on your PC

ADTEST.EXE program to test the ADwin systems

ADWINSET.EXE program to register the link address (only for
Windows NT)

ADSERVER.EXE program for initializing the ADwin network function

Depending on your operating system the following DLLs (Dynamic
Link Libraries) are automatically copied to the Windows directory of
your computer.

Windows 95 Windows 98 Windows NT

ADWIN.DLL ADWIN.DLL ADWIN.DLL

ADWIN32.DLL ADWIN32.DLL ADWIN32.DLL

ADPOINT.DLL ADPOINT.DLL ADPOINT.DLL

ADWIN95.DLL ADWIN95.DLL ADWINNT.DLL

! Important: If you have already installed ADwin drivers of a
previous ADbasic version on your PC then the
setup-programm will ask you to delete all existing
(DLL-) files. Confirm with "YES".

After the setup-program has finished correctly the message: "The
setup was successful" appears.

! Important: If using Windows NT you have to restart your
computer after driver installation!

 Chapter 2: Software Installation

11

2.3.1 Hardware installation when using Windows NT

All ADwin systems operate via link addresses, which are set by a
DIP switch (we refer to our hardware manual). The default setting for
the link address is 150H.
If you have installed Windows NT on your computer and want to use
a link address different from the default setting, then you have to
carry out the program AdwinSet which is installed in the program
group ADwin .

Note: When AdwinSet is carried out it has access to the registry data
base. If you want to make changes here, you must have the
administrator authority to do so.

In the dialogbox AdwinSet you can:
• enter up to eight link addresses to the registry database,

• enter link addresses,

• mark and change link addresses,

• delete link addresses.

After having confirmed the new entries in AdwinSet, you have to
restart your system.

Note: Moreover, you have to indicate your link address in ADbasic
(Options ÖÖÖÖ Compiler) or respectively, in your own
measurement data evaluation program.

Chapter 2: Software Installation

12

2.4 Installing the ADbasic compiler

Please insert the CD-ROM into the CD-ROM drive of your computer.
The setup program starts automatically.4 Press the button 'ADbasic
3.0 Setup' After choosing the language and the destination directory
(it is recommended to confirm the default directory C:\ADBASIC3),
the following files are copied to the specified directory:

ADBASIC.EXE ADbasic compiler

ADBASICE.HLP ADbasic helpfile (English)

ADBASIC.HLP ADbasic helpfile (German)

ADSHOW.EXE program for displaying the process
parameters and variables

...\SAMPLES\ collection of ADbasic sample programs

4 If the setup-program does not start automatically, please carry out the

program setup.exe which is located in the subdirectory: ...\Driver\Disk1.

 Chapter 2: Software Installation

13

2.5 Loading the ADwin driver

The PC can only communicate with an ADwin system after the
ADwin driver has been loaded. But in any case the ADwin driver
must be loaded again after every power supply disconnection of the
ADwin system.

! Important: When loading the ADwin driver all processes on
the ADwin system will be deleted and all global
variables are set to the value 0. When using an
ADSP the value for the global delay is set o 25000
ns after loading the ADwin driver and to 1000 µs
when using all other processors.

♦ Start ADbasic by selecting in the Windows menu Start ÖÖÖÖ
Programs ÖÖÖÖ ADwin ÖÖÖÖ ADbasic 3.0 .

♦ Check if the settings in the ADbasic menu Options ÖÖÖÖ Compiler
correspond to those of your ADwin system.

♦ Click this symbol in your icon spacing:
(optionally: Project ÖÖÖÖ Boot ADwin)

The successful loading of the driver is confirmed in the status line
with the message: „ADwin is booted“.

Chapter 3: Principles and operation methods of ADbasic

14

3 Principles and operation methods of
ADbasic

3.1 Introduction

ADbasic is a compiler whose programming language is very similar
to BASIC, so that you can start using it very easily and quickly.
With ADbasic you produce programs for your ADwin system. The
programs produced with ADbasic are processed only on these
systems. So your system receives a real-time capability with
extremely short response times. Together with evaluation programs,
such as for instance TestPoint from Keithley, it forms a high
performance system for simultaneous measurement and control
under MS Windows.
The communication functions between the PC and the ADwin
system are handled by ADbasic . Therefore, you only need to
concentrate on programming the cyclic sequence. Since the
communication is bidirectional, measurement results can either be
transferred from the ADwin system to the PC or control parameters
and default values can be transferred from the PC to the ADwin
system or process. In order to be able to operate as fast as possible,
your ADwin program is not, as with many BASIC dialects, interpreted
and then carried out, but first compiled and then transferred to the
ADwin system where it is executed by the processor. Of course, you
can also develop, test and compile programs so that they can be
loaded to the ADwin system later on, for instance from your
application program.

3.1.1 ADbasic and ADwin

With each ADwin system you have a transputer which can
concentrate completely on measurement and control. This transputer
has been developed and optimized for fast task changes. It is
therefore able to react within a few microseconds. Using this system
you can bypass the slow reactions and the lack of real-time

 Chapter 3: Principles and operation methods of ADbasic

15

processing of MS Windows, but still make use of all its advantages,
for instance the graphical interface or the easy handling.
With ADbasic you have a development tool with which you can
develop measurement, control or monitoring programs. These
processes are then integrated into the standard program which runs
continuously on the ADwin system, handling all the communication
and management tasks.. That means that the ADbasic programs
rund independent of your PC which can concentrate on other tasks.
With ADbasic you can generate executable programs which you can
load and start together with an evaluation program. Therefore, you
only need ADbasic for the development of the programs and not for
their execution. However, the programs compiled with ADbasic can
only be executed on an ADwin system.

Note: The commands for calling an ADwin-Pro system with
ADbasic are available in special INCLUDE-files. It is
recommanded to read the documentation called:
„ADwin-Pro : System Specifications - Programming in
ADbasic “.

3.1.2 What can you do with ADbasic ?

With ADbasic you have an easy-to-use tool to write programs that
are then executed at high speed from the processor of an ADwin
system. You can then carry out real-time applications such as digital
controllers, monitoring of setpoint variables, etc. A special advantage
is that the response times to new events are extremely short when
using a processor operating independent of the PC. Typical
applications are:

• fast acquisition of measurement data up to sampling frequencies
of 800 kHz

• development of fast digital controllers with sampling frequencies
of up to 400 kHz

• simultaneous generation and measurement of analog signals, for
instance for measurement of dynamic parameters.

• fast controlling and monitoring tasks with reliable response times
of less than 300 ns

Chapter 3: Principles and operation methods of ADbasic

16

You can even run a number of processes simultaneously! To give
you an impression of the execution speed and the ease of
programming, we would like to show you the example of the
proportional controller in Fig. 3-1.

Fig. 3-1: The event concept shown at the example of a proportional
 controller

Here you can see that it is possible to get a proportional controller
with only four program lines! If you set the internal timer so that an
event signal is generated every 20 µs, you obtain a frequency of
50 kHz for the execution of the program.

 Chapter 4: Programming ADbasic

17

4 Programming in ADbasic

In this chapter we would like to give you more detailed information
about programming and the structure of a typical ADbasic program.

4.1 Starting the development environment

♦ Start ADbasic by selecting in the Windows menu Start ÖÖÖÖ
Programs ÖÖÖÖ ADwin ÖÖÖÖ ADbasic 3.0 .

The ADbasic graphics interface appears with the typical Windows
menus, a toolbar and the editor window.

Fig. 4-1: The ADbasic graphics interface

♦ Please check in the menu Options ÖÖÖÖ Compiler , if the processor
type and the ‘Link address’ are set correctly. (If you have not
made any changes at your ADwin system, the setting for the ‘Link
address’ is 0x150.)

Chapter 4: Programming ADbasic

18

4.2 Structure of an ADbasic program

! Important: Contrary to other BASIC compilers you must first
declare the variables in each ADbasic program.
Exception: the global variables PAR_x and
FPAR_x.

The program text following the declaration of the variables can be
divided into three segments:

INIT:

EVENT:

FINISH:

ADwin systems with an ADSP can have a fourth segment in the
ADbasic program. This fourth segment is always executed with low
priority, regardless of the priority defined for this process.

Note: The segment EVENT: must be included in your program. The
other two segments can optionally be generated or left out.

The segment LOWINIT:

Note: The segment LOWINIT: can only be applied with ADwin
systems equipped with an ADSP.

After program start this segment is executed only once, the same as
with segment INIT: . The segment LOWINIT: is always executed
with low priority. In this it differs from segment INIT:. The segment
LOWINIT: has always to be placed before the segment INIT:

 Chapter 4: Programming ADbasic

19

The segment INIT:

All program lines located between the commands INIT: and
EVENT:, will be carried out exactly once after program start. This
segment is used to generate a defined initial status for your process,
for instance initializing your variables or setting the digital outputs.
In order you do not want any initializations, you can leave out this
segment. Your first program segment after declaring the variables
starts then with the segment EVENT:.

The segment EVENT:

The actual measurement data acquisition program is located in the
segment EVENT: The program lines placed between the words
EVENT: and FINISH:, are executed every time an event signal
occurs. If your program has no segment FINISH: , the segment
EVENT: encompasses the instruction EVENT: up to the end of your
program.
An event signal can be generated either from the timer of your
ADwin system or by a positive edge on the event input.
The segment EVENT: will be executed as long as the process is
stopped by the PC or a predefined number of loops has been
reached.

The segment FINISH:

All commands placed after the instruction FINISH: will be executed
exactly once, after the process has been stopped. The segment
FINISH: is used to bring the system to a defined final status. If you
do not need the segment FINISH: it can be left out.

! Important: The segment FINISH: is always carried out with
low priority, even if your process has been started
with high priority.

You have the possibility of data interchange with the PC in all three
blocks INIT: , EVENT: and FINISH: This can happen in both
directions.

Chapter 4: Programming ADbasic

20

In order to be able to display and evaluate the data, you need a
measurement data evaluation program such as TestPoint or
MATLAB. Of course you can develop your own measurement data
evaluation program using Visual Basic, Visual C, Delphi, etc. For
each of these possibilities driver software is available, which links
ADbasic and ADwin to the specified program - if you have particular
questions, please do not hesitate to contact us.

4.3 Memory management

Your ADbasic programs use the memory of the ADwin systems for
program code and data.
The file size in the editor is not limited. Also the size of the compiled
file is only limited by the memory capacity of the ADwin system.
Because the ADbasic programs are compiled, they are also compact
and only need a few kBytes of your RAM memory on the ADwin -
system.

♦ Click on this symbol in your toolbar ,
to know the free memory (optionally: Options ÖÖÖÖ Parameter)

Note: The free memory is displayed in the parameter window.
Please note, that because of the memory structure, the
parameter window for the ADSP looks different from
those of the processors T225, T400, T450 and T805.

A limitation of the program size may be possible when using systems
with T225 processors, because these systems only have a memory
of 64 kB; half of which is needed for the ADwin driver (adwin2.btl). In
this case, please watch the structure of the remaining memory very
carefully.

The ADwin drivers for the T400 and T805 processors (adwin4.btl
and adwin8.btl, respectively) need approx. 70 kB, so that generally
less than 100 kB of the RAM is occupied. The rest is then available
for your data, which is approx. 900 kB (when you have a memory
size of 1 MB).

 Chapter 4: Programming ADbasic

21

When using systems with a T450 processor, the driver (adwin5.btl)
needs approx. 120 kB. The remaining memory is for your data and
ADbasic programs.

Systems with an ADSP have a very fast internal memory of 256 kB.
This memory is divided into two sections of 128 kB each by the
processor, the memory for programs and the memory for data. The
first section is for the ADwin driver (adwin9.btl) as well as for the
programs developed with ADbasic .
The second 128 kB are available for data. In this area the global
parameters PAR_1 to PAR_80 or FPAR_1 to FPAR_80 are located,
as well as all locally declared, discrete variables for which another
area is not explicitly defined.

For storing measurement data or signal processes, the standard
ADSP is additionally equipped with 4 MB of dynamic memory
(DRAM), which can be extended to 64 MB max. Here ADbasic
stores all data from array structures, provided that no other memory
area has explicitly been indicated at declaration. When array
structures are declared, it is possible to specify the type of memory
where the structures are to be stored.

Because access to the processor memory is five times as fast as the
access to the dynamic memory, it is recommended to store short
array structures, which require a very fast access time, to the data
memory of the ADSP.

Chapter 4: Programming ADbasic

22

The examples given in Figure 4-1 illustrate all possible versions of
memory specification.:

Memory type dynamic memory (DRAM)

Declaration DIM DATA_1[1000] AS LONG

Memory type internal data memory of the ADSP

Declaration DIM signal[10] AS LONG AT DM_LOCAL

Memory type dynamic memory (DRAM)

Declaration DIM DATA_1[10000] AS LONG AT
DRAM_EXTERN

Memory type static memory (SRAM)

Declaration DIM DATA_1[1000] AS LONG AT SRAM_EXTERN

Table 4-1: Memory types of the ADSP 21062

Note: If you make no comments on the type of memory,
ADbasic will store the structure automatically to the
dynamic memory.

 Chapter 4: Programming ADbasic

23

4.4 ADbasic data types

4.4.1 Notation of numbers

ADbasic numeric values can be optionally indicated in one of four
possible notations. In the following examples the variable x is set to
the decimal value 90.

Examples:

1. Decimal notation: x = 90

2. Exponential notation: x = 9E1

 In exponential notation the number behind the E indicates the
power of ten. The number in front of the E is multiplied with the
power of ten.

3. Binary notation: x = 1011010B

4. Hexadecimal notation: x = 5aH

 If the HEX-value begins with a letter, for instance feH, a zero must
precede the f, that is: 0feH.

Note: The decimal separator for floating point numbers is the
point (.), therefore do not use the German, but the
English notation for numbers. The setting is made via
PC operating system: Start ÖÖÖÖ Settings ÖÖÖÖ System
Control ÖÖÖÖ Country.

4.4.2 Predefined global variables

For bidirectional data transfer between parallel ADbasic processes
or between PC and ADbasic processes, there are 80 global
variables available, as well as up to 200 data sets (arrays). When
using the T450, T805 and the ADSP, 80 global floating point
variables are additionally predefined.
You can use these scalar variables in your program where you want
to, without having to define them. The scalar variables are called:

• PAR_1, PAR_2,..., PAR_80 for integer 32-bit values (LONG)

Chapter 4: Programming ADbasic

24

• FPAR_1, FPAR_2, ...FPAR_80 for floating point values on the
T450, T805 and ADSP

Examples:

PAR_5 = 700 'parameter 5 includes the
'value 700.

PAR_72 = ADC(1) 'The voltage at the analog
'input 1 is measured and
'included into parameter
'72.

! Important: Contrary to the other variables, the global scalar
variables PAR_x and FPAR_x must not be
declared, because they are already known to the
ADbasic compiler.

In addition to the scalar variables you can use for data transfer with
other processes on the ADwin system or the PC, data sets called
DATA, which enable you to transfer huge quantities of data.

Note: Since size and data type are selectable, you have to
define data sets (DATA-arrays) at the beginning of your
program.

The DATA-arrays are called:

DATA_1, DATA_2, ..., DATA_200.

Other names are not allowed. But you need not use consecutive
numbers, the declaration of for instance DATA_5 (without DATA_1 to
DATA_4) is allowed, too. In your program the compiler differentiates
the data sets according to their numbers.

 Chapter 4: Programming ADbasic

25

Example:

DIM DATA_5[20000] AS SHORT 'declares data set 5
'with 20000 elements
'of type Short.

The maximum size of the data sets is only dependent on the
available memory space. A data set with 1.9 million short-elements
can be declared on an ADwin system with 4 MB memory.
Once the data set has been declared, you can access each separate
element. The first element in the data set has the index 1.

Examples:

PAR_1 = DATA_5[200] 'The value of the 200th
'element from data set 5
'is assigned to the global
'variable 1.

DATA_5[345] = 4000 'With this command the
'345th element in data set
'5 receives the value
'4,000.

You can also assign the number of the element via a variable.

number1 = 345

DATA_5[number1] = 4000 'As in the previous
'example, the 345th
'element of data set 5
'receives the value 4,000.

! Important: The data set number must not be assigned by a
variable. The following command leads to an error
message from the ADbasic compiler!

Example:

index = 2

Chapter 4: Programming ADbasic

26

DATA_index[300] = 20 INCORRECT !!

A constant number must be used instead of index .

 Chapter 4: Programming ADbasic

27

4.4.3 User-definable variables

All the variables which you need for your process must be declared at
the beginning of the ADbasic program. The two processors T225
and T400 only operate with integer values. The T805, the T450 and
the ADSP also allow floating-point variables.
The T450 processor is not equipped with a floating-point unit (FPU),
contrary to the T805 and the ADSP processors. Therefore all floating-
point operations for the T450 are emulated by ADbasic . As a
consequence, when using the T450 processor, the additional effort
for arithmetical operations should be minimized by economically
applying floating-point variables.

Variable type
Processor

T225 T400 T805 T450 ADSP

SHORT 16 Bit 16 Bit 16 Bit 16 Bit 16 Bit
INTEGER 16 Bit 32 Bit 32 Bit 32 Bit 32 Bit
LONG 32 Bit 32 Bit 32 Bit 32 Bit 32 Bit
FLOAT - - 32 Bit 32 Bit 32 Bit

Table 4-2: Processors and available types of variables

Examples:

DIM value AS INTEGER 'Defines the variable
'value with the data type
'INTEGER

DIM value1, value2 AS INTEGER 'Defines the
'variables value1 and
'value2 with the data
'type INTEGER.

When you combine two variables by operations, ADbasic takes the
data types into account and converts the variables in a way, that they
can be combined with one another. For more information, see
chapter " Type conversion".

Chapter 4: Programming ADbasic

28

You can also declare variables not just as scalar values, but also as
arrays that means you can generate fields of variables and process
them. The number of fields in the array is entered in square brackets
after the name.
Important: All variables, used in your ADbasic program, have to

be declared before starting the first program section.

Example:

DIM value[100] AS LONG 'Defines an array of the
'length 100 with the name
'value and the data type
'LONG.

! Important: All the variables which you use in your ADbasic
program must be declared before the beginning of
the first program segment.

4.4.4 The FIFO data structure

For applications in which large quantities of data need to be
continuously transferred, there is a data structure which is organized
as a FIFO (First In, First Out). All values written to the FIFO are put
into a queuing condition. They are read out again by the PC or
another ADbasic process in the same sequence in which they were
written. You must specify the FIFO size in the declaration. Besides
the clear-function there is also the possibility of querying the occupied
and the free memory.

! Important: Since ADbasic treats the FIFO internally as a data
set, the same data set number must not be used
simultaneously as the number of FIFO and of a
normal DATA variable.

 Chapter 4: Programming ADbasic

29

! Important: When using ADwin systems with ADSP21062 the
data structure FIFO must not be declared as a
SHORT data type.

The declaration is similar as for the DATA structure.

DIM DATA_1[1000] AS INTEGER AS FIFO

This command declares an array with the data set number 1 and a
length of 1000 integer values as FIFO ring buffer.

You can access the FIFO by indicating its number, the FIFO
automatically writes the transferred value to the correct position or
reads it out in the correct sequence.

Example:

DATA_1 = 95 'Writes the value 95 to
'the FIFO number 1

PAR_7 = DATA_1 'Reads a value from the
'FIFO and saves it in the
'global variable 'PAR_7

To ensure that there is still space in the FIFO, you should use the
function FIFO_EMPTY. In the same manner, the function
FIFO_FULL checks if unread values are present before reading out.

Example:

free = FIFO_EMPTY(1)

IF (free > 0) THEN

DATA_1 = value1

ENDIF

occupied = FIFO_FULL(1)

IF (occupied > 0) THEN

PAR_7 = DATA_1

ENDIF

Chapter 4: Programming ADbasic

30

The FIFO DataSetNo can be cleared with FIFO CLEAR_
(DataSetNo).

Note: Since the FIFOs are not automatically cleared on start-
up, they should be cleared with this command in the
INIT: program segment.

! Important: If you write data faster to the FIFO than you read
them out, the FIFO will be full sometime and data
will get lost.

4.4.5 Status variables

The following status variables are available to obtain information
about the status of the ADwin system:

PROZESS_RUNNING

Indicates the process status. The value is 1 when the process is
running.

GLOBALSCHLEIFE5

Number of loops which the process should execute. This status
variable can be defined under Options ÖÖÖÖ Process in the field
‘Number of Loops’. This variable is decremented by an internal as
well as external event.

ANZAHLSCHLEIFE3

Contains the number of loops to be carried out. This variable only
exists when during compilation the number of loops is higher than
zero.

5 GLOBALSCHLEIFE and ANZAHLSCHLEIFE are not available when using

an ADSP.

 Chapter 4: Programming ADbasic

31

GLOBALDELAY

Time interval in microseconds between two events. This status
variable can be defined under Options ÖÖÖÖ Parameter in the field
‘Delay in µs’.

NWTIME

Status of the internal timer at the moment of starting the last timer
event.

! Important: You should only read these variables within an
ADbasic program, and never overwrite them with
new values, because the ADwin board may enter
an instable mode.

4.4.6 Type conversion

If you link two variables to operations, ADbasic pays attention to the
data types and converses the variables so that they can be linked
with each other.
If in a line a value or variable is a floating point value/variable, all
values/variables will be converted into floating point numbers before
evaluation. If necessary, the result will be converted again to an
integer variable at the end of the evaluation, that means the decimal
places can be cut off.

! Note: Since LONG and FLOAT data types have different
value ranges, a loss of precision occurs during
FLOAT conversion of large LONG numbers. The
deviation may be up to 64. (The LONG number
2000000064 is converted to the FLOAT data tpye
2000000000).

Example:

Chapter 4: Programming ADbasic

32

PAR_1 = 2000000001

PAR_2 = 2000000002

FPAR_3 = (PAR_2 - PAR_1) + 0.5

' FPAR_3 is 0.5 , because PAR_1 and PAR_2

' are converted to FLOAT before

' subtraction

PAR_9 = PAR_2 - PAR_1

FPAR_4 = PAR_9 + 0.5

' FPAR_4 is 1.5, because subtraction is

' done with LONG numbers

! Note: Even parentheses do not prevent an automatical
type conversion into FLOAT. If calculations are to
be done in LONG, a line has to be programmed for
that (see PAR_9 in the example above).

An exception to the rule mentioned above, are the instructions IF
... THEN and DO ... UNTIL . Here only parts of the line are
converted, not the whole line. The logical operators AND and OR as
well as the word THEN separate the individual segments from each
other.

 Chapter 4: Programming ADbasic

33

Example:

PAR_1 = 2000000001

PAR_2 = 2000000002

FPAR_2 = 5.5

IF ((PAR_1 > 2000000000) AND (FPAR_2 * 1.1 > 5.5)) THEN

 PAR_14 = 1

ENDIF

' The IF statement is true,

' because PAR_1 is not converted

' into FLOAT

IF (FPAR_2 * 1.1 > 5.5) THEN PAR_3 = PAR_2 - PAR_1

' Result: PAR_3 = 1
' that means subtraction is made

' with LONG numbers, not with

' FLOAT numbers

Chapter 4: Programming ADbasic

34

4.5 Using a number of ADbasic processes

Up to ten ADbasic processes can run simultaneously on each
processor of an ADwin system. An exception is the processor T225,
only two ADbasic processes can run simulatenously on this
processor. Moreover, a range of standard I/O and control processes
are available on each processor which also run simultaneously. In
addition, the communication process runs with low priority in the
background. This process controls the data transfer between the PC
and the ADwin system. The various processes are shown in Fig. 4-2.
Note: There are no PID-controller processes available for the ADSP.

Communication process

Cyclic AD

process

1-4

Cyclic DA

process

1-2

PID-

controller

process

1-4

ADbasic
process

1

ADbasic
process

2

ADbasic
process

...

ADbasic
process

10

Global variables

PAR_1, PAR_2, ..., PAR_80

FPAR_1, FPAR_2, ..., FPAR_80

DATA_1, DATA_2, ..., DATA_200

Fig. 4-2: ADwin processes

You have to allocate a process number between 1 and 10 using the
menu Options ÖÖÖÖ Process Options to each program which is to run
on the system.

! Important: If you load two processes with the same process
number onto the system, the one loaded first is
overwritten!

 Chapter 4: Programming ADbasic

35

4.5.1 Data interchange

Similar to the data interchange between different ADwin systems
and the PC, the data interchange between different processes on the
ADwin system is made possible by use of global variables(PAR_1
... PAR_80) or the global data structures (DATA). All processes
have access to these variables. Their declaration is identical for all
processes.
The global variables can also be used in order to control a
simultaneously running process out of another process.

Example:

The ADbasic process 1 records measurement data continously and
stores them to the data set 1 (DATA_1), which is defined as a FIFO.
A second simultaneously running ADbasic process queries the
number of elements in the FIFO at regular time intervals with the
function FIFO_FULL(1) . When a specified number of elements
are found in the FIFO, the second ADbasic process starts evaluating
the measurement data (e.g.. FFT, calculation of mean values,
acceleration, etc.). In the meantime the ADbasic process 1 can carry
on with the continous recording of measurement data. Due to the
FIFO structure, the second ADbasic process is able to read out the
measurement data in the same order as they have been stored by
process 1. Process 2 only needs to access the same global data set
(here DATA_1) which was also used by process 1 for storing the
measurement data.

! Important: If a data set should be accessed in two processes,
the data set has to be declared in both ADbasic
processes in the same way.

Chapter 4: Programming ADbasic

36

4.5.2 Workload

When a number of processes run simultaneously on the ADwin
system, they have to share the processing time. The whole workload
of the ADwin system then consists of the sum of the workload,
caused by each single process. You can observe the processor
workload on the 'busy' display in the parameter window (menu
Options ÖÖÖÖ Parameter).

4.5.3 A number of high priority processes

A number of high priority processes can run simultaneously on the
ADwin system. Since high priority processes cannot be interrupted,
the internal time characteristic of the individual processes does not
change.
However, differences occur for the time spans between the event
calling the process and the actual start of processing. If a high priority
process is called while a second high priority process is being
executed, then the process just called must wait until the execution of
the process already called is completed. That results in delays for the
starting process.

Note: Please note that the maximum delay for carrying out a
process is the sum of all execution times of all other
processes running simultaneously with high priority on
the ADwin system. If several high priority processes run
simultaneously on an ADwin system, make sure that
the execution time of the individual processes is as short
as possible.

 Chapter 4: Programming ADbasic

37

4.6 Subprograms and functions

In order to be able to structure your programs better, you have the
possibility of using subprograms and functions in ADbasic. The
syntax is very simple. Just use the terms SUB ... ENDSUB or
FUNCTION ... ENDFUNCTION to enclose the particular
procedures like brackets. On calling, variable values can also be
passed, but not the variables themselves. In case you want to
change the variable definition globally in a function or subprogram,
we recommend to use the global variables PAR_1 to PAR_80 .

You can also create a „library“ of subprograms or functions and save
them in a separate file. This file can then be very easily included into
your current program with an INCLUDE command. The INCLUDE
command must however be located right at the beginning of your
program. Functions and subprograms can also be located before the
INIT block or after the FINISH segment at the end of your
program.

Note: A documentation and an example of the commands for
calling subprograms or functions are in the chapter
Command reference.

Chapter 4: Programming ADbasic

38

4.7 Evaluation and visualizing of measurement data

You need a measurement data evaluation program such as
TestPoint or MATLAB in order to be able to display and evaluate the
data. Of course, you can also design an evaluation program of your
own using Visual Basic, Visual C, Delphi, Excel etc. Driver software
linking ADbasic and ADwin with the desired program, is available for
each of these programs. The interaction and the communication
between the ADwin system and other programs is explained in detail
in the documentation for the drivers which can be obtained for these
programs. Here you will also find out how you can load programs,
which you have generated and compiled with ADbasic , onto the
ADwin system and start them. Since the measurement program on
the ADwin system is always the same, you can also access the
ADwin system from a number of different evaluation programs
simultaneously.

Please contact us if you have special requirements.

 Chapter 5: Optimizing the timing characteristics

39

5 Optimizing the timing characteristics

5.1 Priority and timing characteristics

The processors of the ADwin systems have their own process
management. It differentiates between two priority levels when
executing the separate processes. High or low priority levels can be
assigned to each process.
This feature of the processor can also be used under ADbasic . You
can set the priority of each process in the menu Options ÖÖÖÖ Process
Options .

High priority

When using the processors T225, T400, T450, and T805 you can be
sure that from the moment of calling a process with high priority, up
to starting its processing, only 2.5 µs max. will pass. When using an
ADSP21062 max. 300 ns will pass. The commands of the high
priority process are executed completely before the processor of the
ADwin system is available again for other processes. This ensures
constant and exactly predictable timing characteristics.. The high
priority process therefore enables reliable reaction and response
times in the microsecond range.
The interval (delay) between two events produced by the internal
timer on the ADwin system can be specified for ADwin systems with
T225, T400, T450 or T805 processors with a resolution of 1
microsecond for a high priority process. ADwin systems with an
ADSP21062 processor have a resolution of 25 ns.

Example:

If 'delay' is set to the value 100 when using an ADwin system with a
T805 processor, then a time span of 100 µs occurs between two
consecutive, timer controlled calls of the same process.
Since a high priority process cannot be interrupted, it must be
ensured that the processing time of the process itself is clearly
shorter than the delay time (in the example above 100 µs). Otherwise
the processor of the ADwin system does not have any more time

Chapter 5: Optimizing the timing characteristics

40

available to serve other processes running concurrently, for instance
the communications process.

! Important: The execution time of high priority processes
should be kept as short as possible. Time-
consuming loops or computations, the result of
which is not immediately required for further
processing, should always run with low priority.

The segment FINISH of each ADbasic process is always executed
with low priority. If a process with high priority has been started, the
priority on getting to the FINISH segment is automatically reduced.

Low priority

A process running with low priority can be interrupted at any time by a
high priority process. Therefore, a number of processes with low
priority can run simultaneously on the ADwin system without the
timing characteristics of a high priority process being affected.
However, the ADwin system can only execute low priority processes
if its computing power is not completely required by a high priority
process.

! Important: Time-critical measurement processes cannot be
disturbed by other processes running on the ADwin
system at the same time, if the time-critical
measurement process is running with high priority
and all other processes are running with low priority.

The delay between two events produced by the internal timer on the
ADwin system can be specified for ADwin systems with T225, T400,
T450 or T805 processors with a resolution of 64 µs for a low priority
process. When using ADwin systems with an ADSP21062 processor
the resolution is 100 µs.

Example:

 Chapter 5: Optimizing the timing characteristics

41

If the delay value is set to the value 5 in an ADwin system with
ADSP21062 processor, then a time span of 500 µs occurs between
two consecutive, timer-controlled calls of the same process.

! Important: When existing ADbasic processes are compiled for
the ADSP21062, the different timer resolution has
to be considered. In order to get the same delay for
a high priority, timer-controlled process as for
instance for the T805, the delay setting of the T805
has to be multiplied by the factor 40.

Delay T225, T400, T450, T805 [1µs] Delay ADSP21062 [25ns]

1000 40000

500 20000

125 5000

Table 5-1: Examples for setting the delays when compiling
existing ADbasic processes for the ADSP21062.

Chapter 5: Optimizing the timing characteristics

42

5.2 Checking execution times with timer functions

The processor of the ADwin system has two internal timers which
are defined as counters.
In ADwin systems with T225, T400, T450 or T805 processors the
first timer is incremented by the value 1 every microsecond and is
read out in a high priority process. The second timer is incremented
by the value 1 only every 64 µs and is read out in a low priority
process.
In ADwin systems with ADSP21062 the first timer is incremented by
1 every 25 ns and read out in high priority processes. The second
timer is incremented by 1 only every 100 µs and read out in low
priority processes.
After powering up the ADwin system both counters are set to 0.
Afterwards they are continously incremented according to the clock
rate mentioned above.
With the ADbasic function READ_TIMER() the present count rate
can be determined.

Note: Please note that with the T225 the timer registers are
only 16 bits wide. You will finder further information in
the chapter Command reference under the command
READ_TIMER.

Note: All ADbasic functions, which have access to the
processor timer (READ_TIMER() , NWTIME, ...), present
the count rate in 25 ns when using an ADSP.

With READ_TIMER() , for instance, the time difference between two
externally triggered events can be easily determined. In relation with
the parameter NWTIME the latency can also be determined, i. e. the
time between calling and start of the process. The parameter
NWTIME contains the count rate at which the current process is to be
called. If the timer is read with the first command of the process and
compared with the value of the parameter NWTIME, then the latency
is obtained. The following example illustrates the procedure.

 Chapter 5: Optimizing the timing characteristics

43

Example:

DIM time, latency, max_latency AS INTEGER

EVENT:

time = READ_TIMER()

latency = NWTIME - time

IF (latency > max_latency) THEN

max_latency = latency

ENDIF

5.3 A faster measurement function

With the ADC command one A/D conversion for one channel is
executed with a certain gain. The command is kept very simple so
that it is easy to use. But the fact that there are two ADCs on the
ADwin board with which two different channels can be converted
simultaneously, is not considered.

Note: On the ADwin-light board there is only one ADC.

In order to use both ADCs on the ADwin board simultaneously,
replace the ADC command by the commands, illustrated below. With
these commands you can optimize the process speed.

Chapter 5: Optimizing the timing characteristics

44

Example:

SET_MUX(0) 'Set the multiplexers to
'the channel 1 of the ADCs

Wait for the settling of the multiplexers

START_CONV(3) 'Start conversion of both
'ADCs

WAIT_EOC(1) 'Wait for end of
'conversion

ad1 = READADC(1) 'Read out ADC1

ad2 = READADC(2) 'Read out ADC2

Note: The areas highlighted in gray are waiting periods which
are necessary for waiting that the multiplexer will be
settled and the ADCs will be converted. For instance
there is the possiblity of setting the multiplexer for the
next measurement directly after the command
START_CONV(3). The settling time of the ADwin-
GOLD system is 6.5 µs (16bit), the conversion time is
7 µs, i.e. 13.5 µs altogether which you can use
elsewhere. For more information about settling times,
see the corresponding hardware manuals of the ADwin
systems or see chapter 7 "Command Reference", the
commands ADC and ADC12.

! Important: It is essential to keep the waiting periods and the
conversion of the ADCs, because the AD
conversion does not function otherwise and
supplies incorrect results.

 Chapter 6: Menus and dialog windows

45

6 Menus and dialog windows

When you start ADbasic from your MS-Windows graphics interface,
the development interface of ADbasic which is illustrated in Fig. 6-1
is displayed. The ADbasic interface is built just like all other MS-
Windows graphic interfaces, so that it will be easy for you to use it.

Fig. 6-1: The ADbasic development interface

The ADbasic graphics interface consists of the menu bar, the tool
bar, and the editor window.
From the menu bar select the desired menu by either moving to the
relevant field with the mouse cursor and pressing the left mouse key
or by entering the key combination [ALT] + [FIRST LETTER] of the
relevant menu.
With the tool bar you have the possibility of quickly accessing
frequently used commands. Each button corresponds to a command
in the menu bar.

Chapter 6: Menus and dialog windows

46

Fig. 6-2: The tool bar

New File

Open existing
File

Save File

Compile

Start Process

Stop
Process

Print File

Load
ADwin
Driver

Context-
sensitive

Help

Get ADbasic
Version

Open
Parameter
Window

 Chapter 6: Menus and dialog windows

47

6.1 The menu File

As is usual with Windows you can load and save files and create new
files (i.e. editor windows) with the menu File . You can create any
number of editor windows, but you can only load a maximum of ten
programs/processes onto your ADwin system simultaneously.
This menu also contains the print functions (print, print preview,
printer setup).
This menu also displays a list of the files which have been used
earlier. The size of the list is limited to four files.

Fig. 6-3: The menu File

Chapter 6: Menus and dialog windows

48

6.2 The menu Edit

The menu Edit also conforms to the Windows conventions. It
includes Find and Replace functions.

Note: The Undo function is only reasonable for the Copy, Cut
and Paste functions.

Fig. 6-4: The menu Edit

 Chapter 6: Menus and dialog windows

49

6.3 The menu Window

You can switch between different editor windows and arrange them
on the screen with the menu Window.
Moreover you have the possibility to switch the tool bar and the status
bar on and off.
In addition you will also find information here about the active
programs: Name, type of event, and delay value.

Example:

In Fig. 6-5 two programs are active. The name of the program is
ADBASIC.BAS; the process number of the program is 1, the event is
generated by an internal timer, the time interval between two events
is 1000 µs.

Fig. 6-5: The menu Window

Chapter 6: Menus and dialog windows

50

6.4 The menu Project

You can compile, start or stop programs with the menu Project.

Fig. 6-6: The menu Project

Compile translates your current program and transfers it to the
ADwin system for execution. If you have selected 'Yes' in the menu
Options ÖÖÖÖ Compiler ‘Autostart’, your process will be started
immediately after the transfer. Otherwise you can start the execution
of your program with the menu ‘Start’ .
Use the menu ‘Stop’, in order to stop the current process (active
window). .
Make Bin File saves the current process in compiled form (as binary
files). The file name extension is here automatically specified by the
program. The letter "T" is always part of the file name extension.
When using ADwin systems with the processor ADSP21062 a "9"
follows after the "T". When using ADwin systems with the processor
T805, an "8" follows, a "5" for the T450, a "4" for the T400 and a "2"
for the T225. The second number illustrates the process number,
which you have set in the menu Options ÖÖÖÖ Process Options.

 Chapter 6: Menus and dialog windows

51

Example:

The file name extension *.T81 means that the processor T805 is
being used and the process number 1 is involved.

If the corresponding ADwin driver has been loaded to your ADwin
system, you will be able to load and start binary files generated by
ADbasic to your ADwin system, even without using the ADbasic
development environment. For more information please read our
driver documentation which will be supplied to your program for
visualizing measurement data.
Boot ADwin loads the driver program again onto the ADwin system.
This deletes all running processes and all global variables are set to
the value 0. After loading the ADwin driver the value for the global
delay has the default setting of 25000 ns when using the ADSP and
1000 µs when using all other processor types.

! Important: If you load two processes with the same process
number (menu Options ÖÖÖÖ Process Options) onto
your ADwin system, the process you loaded first
will be overwritten without any security check.

Chapter 6: Menus and dialog windows

52

6.5 The menu Options

In the menu Options you have the possibility of setting parameters to
influence the type and execution of your program.

Fig. 6-7: The menu Options

The settings in the Compiler, Clear Data, Language, Directory, and
Connect windows have an influence on all program windows.
The settings in the process-window refer only to the program in the
editor-window; which has been active before calling the individual
menu item. If you have opened several editor-windows, please check
before calling, whether the window of the program for which you want
to make the settings, is active in the foreground.

6.5.1 The compiler options

Options ÖÖÖÖ Compiler
The dialog window opened with this menu item is used to give the
compiler information about the specified processor and other
parameters of your ADwin system. The values set here apply to all
ADbasic processes.

 Chapter 6: Menus and dialog windows

53

Fig. 6-8: The dialog window Compiler Options

‘Processor':
Set the processor which you have on your ADwin system. If you are
not sure which processor you should use, please refer to the manual
of your ADwin board, your ADwin-Box or your ADwin-Pro system.

Note: Frequently, only abbreviations of the processors used in
ADwin systems are mentioned. Table 6-1 compares the
abbreviations and the full names.

Processor name ADSP T8 T5 T4 T2

Processor ADSP 21062 T805 T450 T400 T225

Table 6-1: names of the processors

Since you can also compile programs for a processor other than the
one that is installed, the value that was last set is kept. Only on
compiling will the current configuration be checked. If it does not
match with the settings, you can compile, but you cannot load the
program onto the ADwin system.

‘Autostart’:

Chapter 6: Menus and dialog windows

54

Here you can set if your program is to start immediately after
compiling or only after the START key is pressed.

‘Debug mode’:
Here you can specify that additional security checks are integrated in
your program, in order to detect the following run time errors and to
display them in the "status" field of the parameter window.

• division by 0
• square root of values less than 0 (negative values)
• access to non-defined data elements
• indicating repetition rates that are too short
• access to array elements which are not defined

Note: Activating the debug mode requires computing time and
extends the programs execution time by about 20 %.
You should therefore only use this option during
program development.

‘Linkaddress’:
Select here the link address (base address for the linkadapter),
which is set on the ADwin system with the DIP switches. The default
setting is 336 (150H). If you want to do the development without a
processor, then select ‘NONE’

‘Memory’6:
Enter the memory size of your ADwin system.

6 Memory size will be determined automatically when using an ADSP.

 Chapter 6: Menus and dialog windows

55

6.5.2 The process options

Options ÖÖÖÖ Process
The dialog window is used for defining the parameters specific to the
process. The values set here apply to the active program window and
have to be set before compiling and loading the process.
Depending on the processor, either the dialog window shown in Fig.
6-9 or that one shown in Fig. 6-10 will be opened.

6.5.2.1 Dialog window Process Options for the processors T225,
T400, T450 and T805

Fig. 6-9: The dialog window Process Options

Chapter 6: Menus and dialog windows

56

‘Event’:
Here you can define how the events which start your program are
generated. You can either use the internal 'timer' of the processor of
your ADwin system for this or you use a signal (positive edge) at the
event input at the rear of the ADwin board and select 'Extern' in the
dialog window Process Options.

Note: How you can use an external event in an ADwin-Pro
system, is explained more detailed in the documentation
with the title "ADwin-Pro System Specifications –
Programming in ADbasic " (EVENTENABLE command).

With the setting ‘None’ your program is immediately started
independent of any event and is executed again after the last
command has been executed. Particularly where a process has high
priority, you have to make sure with the setting 'None', that the
process also has computing time available for other tasks
(communication with the PC/with other processors connected to each
other by a linkadapter).

Note: For more information, see the command LINKIN .

 ‘Process’:
This is the number of your process. If you would like to run a number
of processes simultaneously on the ADwin system, you must assign
a number to each process.

Note: With T805 processors Process1 runs in the internal
memory and therefore faster.

‘Number of Loops’:
If required, you can set here the number of event-generated program
calls for your program. Once the set number is reached, the program
stops. This maximum number of runs can be defined again for each
program start, without having to recompile the program.
If you enter the value 0, the program is repeated as long as you
• stop the process with the END-command in the ADbasic

program,
• stop the process with a STOP_PROCESS command from the PC

or from another ADbasic process.

 Chapter 6: Menus and dialog windows

57

• stop the process explicitly with the STOP key from ADbasic .

 ‘Version’:
Here you can enter an integer value as version number. This version
number will be displayed in a text editor window (only), when using a
compiled program.

‘Priority’:
If you want to run a number of processes simultaneously on an
ADwin system, you can set the priorities here for the execution of the
active process.
You will find further information about this topic in Chapter 5
(Optimizing the timing characteristics).

‘Control long Delays for Stop’:
When using timer-controlled processes which are rarely called, i.e.
processes with a delay value of more than 5 milliseconds, you should
use this option in order to be faster able to stop the processes.

 ‘Optimize’:
If the optimizer is used it can shorten the program execution time for
max. 20 %.

Chapter 6: Menus and dialog windows

58

6.5.2.2 Dialog window Process Options for the processor
ADSP21062

Fig. 6-10: The dialog window Process Options for the
ADSP21062

‘Event’:
Here you can define how the events which start your program are
generated. You can either use the internal 'timer' of the processor of
your ADwin system for this or you use a signal (positive edge) at the
event input at the rear of the ADwin board and select 'Extern' in the
dialog window Process Options.

Note: timer-controlled processes generated for the ADSP
must always run with high priority.

 Chapter 6: Menus and dialog windows

59

Note: How you can use an external event in an ADwin-Pro
system, is explained more detailed in the documentation
with the title "ADwin-Pro System Specifications –
Programming in ADbasic " (EVENTENABLE command).

‘Process’:
This is the number of your process. If you would like to run a number
of processes simultaneously on the ADwin system, you must assign
a number to each process.

 ‘Version’:
Here you can enter an integer value as version number. This version
number will be displayed in a text editor window (only), when using a
compiled program.

‘Priority’:
If you want to run a number of processes simultaneously on an
ADwin system, you can set the priorities here for the execution of the
active process.
You will find further information about this topic in Chapter 5
(Optimizing the timing characteristics).

‘Process in SRam’:
Use this option, if your ADwin system is equipped with an
ADSP21062 processor with SRAM, and if you want that the active
process will be loaded to the SRAM so that its execution time
decreases.

‘Optimize’:
If the optimizer is used it can shorten the program execution time for
max. 2 %.

Chapter 6: Menus and dialog windows

60

6.5.3 The dialog window Parameter

Options ÖÖÖÖ Parameter
You can only open the dialog window Parameter, if you have loaded
the ADwin drivers to your PC and if your ADwin system has been
booted. It gives you a brief overview of the values of a few of the
global variables as well as of the free memory on your ADwin
system. Its main use is for debugging, verifying and controlling your
program.
Depending on the processor in use, the dialog window shown in Fig.
6-11 or in Fig. 6-12 will be opened.

 Chapter 6: Menus and dialog windows

61

6.5.3.1 Dialog window Parameter for the processors T225, T400,
T450 and T805

The first line displays the workload of the ADwin system processor in
percent (busy) and the free memory (free memory) of the ADwin
system in bytes.
If you have compiled the program in the debug mode, it is possible
that run time errors are displayed in the field 'Status'.

Fig. 6-11: The dialog window Parameter for the processors
T225, T400, T450 and T805

The window shows 14 global integer variables (PAR_1 to PAR_14)
and – if you have the T805 processor on your ADwin system - 9
global variables (FPAR_1 to FPAR_9)

Chapter 6: Menus and dialog windows

62

All variables can be changed, even if the program is already running.
All changed variables are transferred to the ADwin system by
clicking the 'SEND' button.
The time interval (delay) between two events produced by the internal
timers is also shown for the process which is active when opening
the window.
For the high priority process the unit for the delay value is 1 µs and
64 µs for a low priority process (as is displayed in the window). When
calculating the time interval for low priority processes, you must
therefore multiply the indicated number with 64 µs: A display of 7
corresponds to a total time of 7 * 64 µs = 448 µs. For a high priority
process there will be a display in microseconds.

Note: The display of the correct delay value, dependent on the
specified priority, is shown for the active window in the
title bar.

The delay value can be changed via this window or from most
application programs (TestPoint, MATLAB, etc.).

 Chapter 6: Menus and dialog windows

63

6.5.3.2 Dialog window Parameter for the ADSP21062 processor

The first line indicates the free memory of the ADSP in bytes.

array name memory type

PM internal program memory

DM internal data memory

DX external data memory (DRAM)

The second line indicates the workload of the ADSP in percent
(Busy). If you have compiled the program in the debug mode, it is
possible that run time errors will be displayed in the field 'Status'.

Fig. 6-12: The dialog window Parameter for the processor
ADSP21062

Chapter 6: Menus and dialog windows

64

The dialog windows displays 14 global integer variables (PAR_1 to
PAR_14) and 9 global float variables (FPAR_1 to FPAR_9).

All variables can be changed, even if the program is already running.
All changed variables are transferred to the ADwin system by
clicking the 'SEND' button.
The time interval (delay) between two events produced by the internal
timers is also shown for the process which is active when opening
the window.
For the high priority process the unit for the delay value is 25 ns and
100 µs for a low priority process (as is displayed in the window).
When calculating the time interval for low priority processes, you
must therefore multiply the indicated number with 25 ns. A display of
7 corresponds to a total time of 7 *25 ns = 175 µs.

Note: The display of the correct delay value, dependent on the
specified priority, is shown for the active window in the
title bar.

The delay value can be changed via this window or from most
application programs (TestPoint, MATLAB, etc.).

6.5.4 The language window

Options ÖÖÖÖ Language
Here you can choose the language for the error messages of the
compiler. You can choose between English and German.

6.5.5 The specification of the directory

Options ÖÖÖÖ Directory
This dialog box specifies the directory which provides the driver file
(*.BTL) for the compiler so that the ADwin system can be booted, as
well as the directory with the ADbasic -#INCLUDE-files. The compiler
needs these #INCLUDE-files in case a directory is not explicitly
indicated with the ADbasic #INCLUDE instruction.

 Chapter 6: Menus and dialog windows

65

6.5.6 The dialog box Connect

Options ÖÖÖÖ Connect
With ADbasic you can get access to an ADwin system via a network
(e.g. LAN, ISDN, Internet, ...) which is connected with any
network server. First the program ADserver has to be started on the
computer where the ADwin system is located. Afterwards you
establish the communication between ADbasic and the network
server, which is connected to the ADwin system, by pressing the
button 'Connect'. As soon as the communication is established all
ADbasic actions are carried out via network to the computer which is
connected with the ADwin system.

Fig. 6-13: The dialog box Connect

‘Protocol’:
Here you can set the network protocol. The protocol has to be
installed properly on your server. The setting has to be identical to the
setting in the program ADserver.

Chapter 6: Menus and dialog windows

66

‘Endpoint’:
Endpoint for the network communication. This setting has to be
identical to the setting in the program ADserver .

‘Server’:
Name or address of the server to whom the communication should
be made.

‘Password’:
In case a password is entered for the program ADserver , the same
password is required here, too. The password is case sensitive.

6.5.7 The Help menue

 With this menue you call the Windows help function for ADbasic .

Fig. 6-14: The menu Help

 Chapter 7: Command Reference

67

7 Command reference

The following section contains an alphabetical listing of all ADbasic
commands. The current command being described is indicated by
bold printing. For clarification, a short application example is given for
each command.

Note: Not all commands are always available. Please note
what will be indicated correspondingly.

In addition, for commands requiring a large amount of time, the
execution time is shown in dependence of the type of processor.

You will find a fold-out summary of all commands with page
references on the last page.

Chapter 7: Command Reference

68

Addition +

Syntax:

Value3 = Value1 + Value2

Application example:

value3 = 9 + 4 'Result: value3 = 13

Subtraction -

Syntax:

Value3 = Value1 - Value2

Application example:

value3 = 9 - 4 'Result: value3 = 5

 Chapter 7: Command Reference

69

Multiplication *

Syntax:

Value3 = Value1 * Value2

Application example:

value3 = 9 * 4 'Result: value3 = 36

Division /

Syntax:

Value3 = Value1 / Value2

Application example:

value3 = 36 / 9 'Result: value3 = 4

Chapter 7: Command Reference

70

Power ^

Syntax:

Value3 = Value1 ^ Value2

Time relationship:

FLOAT: 3,65µs INT.: 450µs

LONG: 450µs

INT.: 110µs

LONG: 110µs

FLOAT: 110µs

INT.: 430µs

LONG: 430µs

FLOAT: 430µs

The time required increases for increasing powers.

Application example:

Value3 = 4 ^ 3 'Result: Value3 = 64

 Chapter 7: Command Reference

71

Compare <=>

Syntax:

Value1 > Value2

Description:

The compare operators are used to compare two values or
expressions. The result is either true (1) or false (0) and can be
evaluated, for example, by the IF or UNTIL command.

operator meaning

< less than

<= less than or equal

> greater than

>= greater than or equal

= equal

<> not equal

Application example:

DIM value1, value2 AS INTEGER

EVENT:

value1 = -5

if (value1 < 0) then value1 = 0

REM Result: value1 = 0

Chapter 7: Command Reference

72

ABS

Syntax:

Value2 = ABS(value1)

Description:

The function ABS supplies the absolute value of an integer/long
variable.

Time relationship:

LONG: 0,1µs INT.: 3,4µs
LONG: 3,4

LONG: 2,9µs LONG: 25µs

Application example:

DIM value1, value2 AS INTEGER

EVENT:

value1 = -5

value2 = ABS(value1) 'Result: value2 = 5

 Chapter 7: Command Reference

73

ABSF

Syntax:

Value2 = ABSF(Value1)

Description:

The function ABSF supplies the absolute value of a float variable.

Time relationship:

FLOAT: 0,1µs FLOAT: 2,0µs FLOAT: 6,5µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = -5.3

value2 = ABSF(value1) 'Result: value2 = 5.3

Chapter 7: Command Reference

74

ACTIVATE_PC

Syntax:

ACTIVATE_PC

Description:

The command ACTIVATE_PC starts the action list of the real-time
object under TestPoint.
To achieve this, a global variable is set to 1. The PC will be able to
know – when getting the variables – that the current PC function
should be carried out.

Note: This command has been specially developed for
TestPoint so that TestPoint actions can be initiated from
ADbasic.

Application example:

DIM value AS INTEGER 'Declaration

EVENT:

value = ADC(1) 'Acquire measurement

IF (value > 1000) THEN 'Comparison

PAR_1 = value 'Save measurement

'in Parameter 1

ACTIVATE_PC 'Activate PC

ENDIF

 Chapter 7: Command Reference

75

ADC

Syntax:

Measurement = ADC(InputNo , Gain)

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.
When using an ADwin-Pro system, you wil also find a command with
the same name, but it has a DIFFERENT MEANING. Please, see the
document "ADwin-Pro - System documentation - Programming in
ADbasic "

Description:

The command ADC measures an analog input and returns the
measurement result as ADC digits. If amplification is required, this
can be passed optionally as a second parameter. Gains of 1, 2, 4,
and 8 can be selected. The command ADC first sets the multiplexer
to the desired input channel and waits 4µs (ADwin-GOLD 6,5 µs)
for the multiplexer to be settled. Then the measurement is started
and the value at the end of the ADC conversion is read out.

Note: The gain can only be set when using an ADwin board
but not when using ADwin-light boards.

Time relationship when using an ADwin-GOLD system:

14,4µs (7,7 µs)

This function needs about 7,7 µs of time when the
process runs with a delay shorter than 20 µs.
Otherwise the function needs about 14 µs.

Chapter 7: Command Reference

76

With an ADwin-GOLD system, this command
accesses a 16-bit AD converter. For the (faster) 12-
bit AD converter there is the command ADC12
available.

 Chapter 7: Command Reference

77

Time relationship when using an ADwin board and ADwin-light -
board:

11,18µs (7,2 µs) 14µs (10µs) 14µs (10µs) 15µs (10µs)

This function needs about 10 µs of time when the
process runs with a delay shorter than 31 µs.
Otherwise the function needs about 14 µs.

This function needs about 7 µs of time when the
process runs with a delay shorter than 20 µs.
Otherwise the function needs about 12 µs.
With ADwin- boards, this command accesses a 12-
bit AD converter.

Note: The shorter execution times at shorter delays are
justified as follows: Because of the very short delay
time, the compiler recognizes automatically, that
there will not be enough time to set the multiplexer.
The compiler concludes that the user intends to
measure without setting the multiplexer anew and
therefore it refuses automatically to accept the
settling time of the multiplexer. (If you have such
short delays, it is better to call the command SET
MUX at least 4 µs (ADwin-GOLD 6,5 µs) before you
use the command ADC for the first time – otherwise
the first measurement value may not be correct). If
you have very short delays (GLOBALDELAY) it is
generally recommended to use a combination of the
commands SET_MUX, START_CONV,
WAIT_EOC and READADC instead of the only
command ADC.

Chapter 7: Command Reference

78

! Important: If an input number >16 has been passed, the result
is undefined.

Application example:

DIM iw AS INTEGER 'Declaration

EVENT:

iw = ADC(1,4) 'Measure Analog Input 1
'with a gain of 4

PAR_1 = iw 'Write measurement in
'Parameter 1 where it can
'be fetched by the PC

Conversion of the ADC values (16 bit ADCs):

The ADCs used on the ADwin-GOLD system have a 16-bit
resolution and therefore divide the selected measurement range (of
20 V) into 65.536 equally large steps.

The formula applies to the conversion of the input voltage:

Gain
Range

DigitsVoltage bipolar *65536*)32768(−=

The values given in the table apply for a gain equal to one.

Input voltage
range

ADC value

0 32768 65535 1Digit

-10...+10 V -10 V 0 V +9,999695 V 305,175 µV

Conversion of the 12-bit ADC values:

 Chapter 7: Command Reference

79

The ADCs used on the ADwin boards have a 12-bit resolution and
therefore divide the selected measurement range into 4096 equally
large steps.

The formula applies to the conversion of the input voltage:

Voltage Digits Range
Gainbipolar= -() * *2048 4096

Note: With a unipolar setting the offset of 2048 is left out.

The values given in the table apply for a gain equal to one.

Input voltage
range

ADC value

0 2048 4095 1Digit

0...+10 V 0 V +5 V +9,99756 V 2,44 mV

-5...+5 V -5 V 0 V +4,99756 V 2,44 mV

-10...+10 V -10 V 0 V +9,99512 V 4,88 mV

Chapter 7: Command Reference

80

ADC12

Syntax:

Measurement value = ADC12(InputNo , Gain)

ADwin Systems:

For ADwin-GOLD only:

Description:

The command ADC12 measures an analog input and returns the
measurement result as ADC digits. If amplification is required, this
can be passed optionally as a second parameter. Gains of 1, 2, 4,
and 8 can be selected. The command ADC first sets the multiplexer
to the desired input channel and waits 1.5 µs for the multiplexer to be
settled. Then the measurement is started and the value at the end of
the ADC conversion is read out.

Time relationship when using an ADwin-GOLD system:

3,1 µs

With an ADwin-GOLD system, this command
accesses a 12-bit AD converter. For the (more
exact) 16-bit AD converter, the command ADC is
available.

Note: If you have very short delays (GLOBALDELAY) it is
generally recommended to use a combination of the
commands SET_MUX, START_CONV, WAIT_EOC
and READADC12 instead of the only command ADC12.

 Chapter 7: Command Reference

81

...to be continued: command ADC12:

Application example:

DIM iw AS INTEGER 'Declaration

EVENT:

iw = ADC12(1,4) 'Measures analog input 1
'with a gain of 4

PAR_1 = iw 'Write measurement in
'parameter 1 where it can
'be fetched by the PC

Conversion of the ADC values when using ADwin-GOLD 12-bit
ADCs:

The ADCs used on the ADwin -GOLD system have a 12-bit
resolution and therefore divide the selected measurement range (of
20 V) into 4096 equally large steps. In order to make a comparison
with the measurement values of the 16-bit ADCs easier, the
command ADC12 returns the result in high-priority bits (bits 31 to 4).
Thus, the command ADC12 (1) presents the same result in the most
significant bits, as the (16-bit) command ADC (1). The four least
significant bits have always the value 0.

The formula applies to the conversion of the input voltage:

Gain
Range

DigitsVoltage bipolar *65536*)32768(−=

The values given in the table apply for a gain = 1.

Input voltage
range

ADC12-value

0 32768 65520 16Digits

-10...+10 V -10 V 0 V +9,99512 V 4,88 mV

Chapter 7: Command Reference

82

AND

Syntax:

Value3 = Value1 AND Value2

or with IF ... THEN and DO ... UNTIL

Expression1 AND Expression2

Description:

The operator AND is interpreted by the compiler either as a bitwise
operator or as a Boolean operator.

As a bitwise operator it compares the individual bits of two values .
In the result of this operation you can only find a 1 in those bits, which
have a 1 at their corresponding bit positions in both values.

As Boolean operator in statements such as IF ... THEN or
DO ... UNTIL , it determines for the AND operation of two
statements, if a statement is true (1) or false (0).

Application example (as bitwise operator):

DIM value1, value2, value3 AS LONG

value1 = 0100B

value2 = 0110B

value3 = value1 AND value2

'result: value3 = 0100B

Note: As bitwise operator only for integer and long variables or
constants.

 Chapter 7: Command Reference

83

Application example (as Boolean operator):

DIM f AS FLOAT

DIM value4 AS LONG

f = 3.14

IF ((f < 9.1) AND (f > 3.1)) THEN

value4 = 1

ELSE

value4 = 0

ENDIF

'result: value4 = 1

Note: If several AND (or OR) operators are used in one line,
the correponding number of parentheses have to be set.

Chapter 7: Command Reference

84

ARCCOS

Syntax:

value2 = ARCCOS(value1)

Description:

The function ARCCOS supplies the arccos of an argument.

Value1 must lie between -1 and +1 and the result is given in radians.

Time relationship:

FLOAT: 2,85µs FLOAT: 25µs FLOAT: 100µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = 0.5

value2 = ARCCOS(value1) 'Result: value2 = 1.0472

 Chapter 7: Command Reference

85

ARCSIN

Syntax:

value2 = ARCSIN(value1)

Description:

The function ARCSIN supplies the arcsin of an argument.

Value1 must lie between -1 and +1 and the result is given in radians.
Time relationship:

FLOAT: 2,8µs FLOAT: 25µs FLOAT: 100µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = 0.5

value2 = ARCSIN(value1) 'Result: value2 = 0.5236

Chapter 7: Command Reference

86

ARCTAN

Syntax:

value2 = ARCTAN(value1)

Description:

The function ARCTAN supplies the arctan of an argument.

The result is given in radians.

Time relationship:

FLOAT: 1,9µs FLOAT: 29 µs FLOAT: 120 µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = 0.5

value2 = ARCTAN(value1) 'Result: value2 = 0.4636

 Chapter 7: Command Reference

87

CLEAR_DIGOUT

Syntax:

CLEAR_DIGOUT(outputNo)

ADwin systems:

For ADwin-GOLD , ADwin-(light) systems.
When working with an ADwin-Pro system, this command must not
be used. In this case there is the command DIGOUT. Please see the
document: „ADwin-Pro System Specifications - Programming in
ADbasic “.

Description:

The command CLEAR_DIGOUT sets the Bit OutputNo of the
digital output to zero.

Note: The digital outputs on the ADwin-GOLD system (default
configuration) are numbered through from 16 to 31, on
the ADwin boards from 0 to 15. You must use a
constant between 0 and 15 for the OutputNo. Please
pay attention to the fact that an ADwin -light board has
only six digital outputs and that the six digital outputs on
the ADwin board can only be used with the I/O add-on
connector.

Variables must not be used in this command. If you
want to define the output to be deleted by a variable, use
the command DIGOUT_WORD.

When using an ADwin-GOLD system, the outputs
have to be configured by the command
CONF_DIO(12) before.

Chapter 7: Command Reference

88

Application example:

DIM value AS INTEGER 'declaration

INIT:

CONF_DIO(12) 'configure dig. outputs
'(ADwin-GOLD only)

SET_DIGOUT(0) 'set dig. output DIO 16 or
'0

EVENT:

value = ADC(1) 'data acquisition

IF (value > 3000) THEN

CLEAR_DIGOUT(0) 'reset dig. output DIO 16
'(ADwin-GOLD) or 0 (ADwin
'boards

ENDIF

 Chapter 7: Command Reference

89

CO4_CLEAR

Syntax:

CO4_CLEAR

ADwin systems:

Only for ADwin-(light)- boards, which are equipped with the counter
options ADwin-CO1 or ADwin-CO1L , ADwin-CO2 , ADwin-CO3 and
ADwin-CO4 .

Description:

The command CO4_CLEAR clears all 16 bit counters on the ADwin
or ADwin-light boards with counter option (in case the board is
equipped with a counter option).

Application example:

DIM iw, flag AS INTEGER ' Declaration

EVENT:

iw = ADC(1,8) 'measurem. data acquisit.

IF (iw > 3000) THEN 'Compare with threshold

IF (flag = 0) THEN 'Check whether flag

'is set

CO4_CLEAR 'Reset counter

CO4_START 'Start counter

flag = 1 'Set flag

ENDIF

ELSE

IF (flag = 1) THEN 'Check whether flag is set

CO4_STOP 'Stop counter

PAR_1 = CO4_READ(1) 'Save counter reading

flag = 0 'Reset flag

ENDIF

ENDIF

Chapter 7: Command Reference

90

CO4_READ

Syntax:

value = CO4_READ(number)

ADwin systems:

Only for ADwin-(light)- boards, which are equipped with the counter
options ADwin-CO1 or ADwin-CO1L , ADwin-CO2 , ADwin-CO3 and
ADwin-CO4 .

Description:

The command CO4_READ reads out the 16 bit counter number
when ADwin or ADwin-light boards with counter options are used.

Application example:

DIM iw, flag AS INTEGER 'Declaration

EVENT:

iw = ADC(1,8) 'measurement data
'acquisition

IF (iw > 3000) THEN 'Compare with threshold

IF (flag = 0) THEN 'Check whether flag is set

CO4_CLEAR 'Reset counter

CO4_START 'Start counter

flag = 1 'Set flag

ENDIF

ELSE

IF (flag = 1) THEN 'Check whether flag is set

CO4_STOP 'Stop counter

PAR_1 = CO4_READ(1) 'Save counter reading

flag = 0 'Reset flag

ENDIF

ENDIF

 Chapter 7: Command Reference

91

CO4_START

Syntax:

CO4_START

ADwin systems:

Only for ADwin-(light)- boards, which are equipped with the counter
options ADwin-CO1 or ADwin-CO1L , ADwin-CO2 , ADwin-CO3 and
ADwin-CO4 .

Description:

The command CO4_START starts the 16 bit counter on the ADwin
or ADwin-light boards with counter options.

Application example:

DIM iw, flag AS INTEGER 'Declaration

EVENT:

iw = ADC(1,8) 'measurement data
'acquisition

IF (iw > 3000) THEN 'Compare with threshold

IF (flag = 0) THEN 'Check whether flag is set

CO4_CLEAR 'Reset counter

CO4_START 'Start counter

flag = 1 'Set flag

ENDIF

ELSE

IF (flag = 1) THEN 'Check whether flag is set

CO4_STOP 'Stop counter

PAR_1 = CO4_READ(1) 'Save counter reading

flag = 0 'Reset flag

ENDIF

ENDIF

Chapter 7: Command Reference

92

CO4_STOP

Syntax:

CO4_STOP

ADwin systems:

Only for ADwin-(light)- boards, which are equipped with the counter
options ADwin-CO1 or ADwin-CO1L , ADwin-CO2 , ADwin-CO3 and
ADwin-CO4 .

Description:

The command CO4_STOP stopts the 16 bit counter on the ADwin or
ADwin-light boards with counter options.

Application example:

DIM iw, flag AS INTEGER 'Declaration

EVENT:

iw = ADC(1,8) 'measurement data
'acquisition

IF (iw > 3000) THEN 'Compare with threshold

IF (flag = 0) THEN 'Check whether flag is set

CO4_CLEAR 'Reset counter

CO4_START 'Start counter

flag = 1 'Set flag

ENDIF

ELSE

IF (flag = 1) THEN 'Check whether flag is set

CO4_STOP 'Stop counter

PAR_1 = CO4_READ(1) 'Save counter reading

flag = 0 'Reset flag

ENDIF

ENDIF

 Chapter 7: Command Reference

93

CONF_DIO

Syntax:

CONF_DIO(value)

ADwin systems :

The command is necessary and available only with the ADwin-
GOLD system. All other systems do not need this command.

Description:

In an ADwin-GOLD system there are 32 inputs/outputs available,
which can freely be configured. After power-up, all I/O connections
are inputs. They can be configured via software in groups of eight as
input or output.
If the digital inputs/outputs are configured with the ADbasic
command CONF_DIO(12) , (that means, DIO 0-15 are inputs and
DIO 16-31 are outputs), it is also possible to access them with the
ADbasic commands DIGIN_WORD, DIGOUT_WORD, DIGIN,
SET_DIGOUT and CLEAR_DIGOUT. With regards to these
commands, the programs on the ADwin-GOLD system are
absolutely (source-code) compatible to the programs on the ADwin
boards.
Therefore we recommend to use the configuration CONF_DIO(12)
for all normal applications.
If other I/O configurations are needed, the corresponding hardware
register must directly be read out, or it must be written into, by the
commands PEEK- and POKE-. (for more information see the ADwin-
GOLD hardware manual).

Note: If the ADwin-GOLD system is not configured with this
command, no digital outputs can be set, because after
power-up all I/O connections are inputs first.

Chapter 7: Command Reference

94

...to be continued: comannd CONF_DIO:

Application example:

CONF_DIO(12) 'configures DIO 0 – 15 as
'inputs and DIO 16 - 31 as
'outputs

 Chapter 7: Command Reference

95

COS

Syntax:

value2 = COS(value1)

Description:

The function COS supplies the cosine of an argument which is
indicated in radians.

Time relationship:

FLOAT: 1,3µs FLOAT: 28 µs FLOAT: 150 µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = -5.3

value2 = COS(value1) 'Result: value2 = 0.55...

Chapter 7: Command Reference

96

DAC

Syntax:

DAC(number , value)

ADwin systems:

For ADwin-GOLD , ADwin-(light)- boards.
When working with an ADwin-Pro system, there will be the same
command. The description given here does not apply to this
command. Please see the document: „ADwin-Pro System
Specifications - Programming in ADbasic “.

Description:

The command DAC outputs the specified value at the output
number .

Note: The analog outputs are numbered through from 1 to 8.
But please, note that on an ADwin-light board as well
as on the ADwin board there are only two DACs. An
ADwin board can optionally be equipped with four
additional DACs. An ADwin-GOLD system can
optionally be equipped with six additional DACs.

Application example:

REM Digital proportional controller

DIM sw, aw AS INTEGER 'Declaration

DIM v, act AS INTEGER 'Declaration

EVENT:

sw = PAR_1 'Setpoint value

v = PAR_2 'Gain

aw = sw - ADC(1) 'Compute control deviation

act = aw * v 'Compute actuating
'variable

DAC(1, act) 'Output actuating variable

 Chapter 7: Command Reference

97

...to be continued command DAC:

Conversion of the DAC values at 16-bit DACs:

The DACs used on the ADwin-GOLD system have a 16-bit
resolution and therefore divide the selected measurement range (of
20 V) into 65536 equally large steps.

The following formula applies for the conversion of the output
voltage:

Gain
Range

DigitsVoltage bipolar *65536*)32768(−=

The following table shows the DAC output values for the
corresponding output voltage range:

Output
voltage range

DAC value

0 32768 65535 1Digit

-10...+10 V -10 V 0 V +9,999695 V 305,175 µV

Conversion of the DAC values at 12-bit DACs:

The DACs used on the ADwin boards have a resolution of 12 bits
and therefore divide the selected output voltage range into 4096
equally large steps.

The formula applies to the conversion of the output voltage:

Voltage Digits Range
Gainbipolar= -() * *2048 4096

Note: With a unipolar setting the offset of 2048 is left out.

Chapter 7: Command Reference

98

The following table shows the DAC output values for the different
settings of the output voltage range.

Output range DAC value

0 2048 4095 1Digit

0...+10 V 0 V +5 V +9,99756 V 2,44 mV

-5...+5 V -5 V 0 V +4,99756 V 2,44 mV

-10...+10 V -10 V 0 V +9,99512 V 4,88 mV

 Chapter 7: Command Reference

99

DEC

Syntax:

DEC(value)

Description:

The command DEC decrements the supplied value by 1.

Note: This command may not be used with data types other
than INTEGER.

The instruction DEC(value) delivers the same result
as value=value-1 , but needs less processing time.

Application example:

DIM index AS INTEGER

DIM DATA_1[1000] AS INTEGER

INIT:

index=1000

EVENT:

DAC(1,DATA_1[index]) 'Output value to DAC1

DEC(index) 'Decrement index

IF (index<1) THEN

 index=1000 'If first value of data is

ENDIF 'reached,continue with the
'last

Chapter 7: Command Reference

100

#DEFINE

Syntax:

#DEFINE NewName OldName

Description:

Using the function #DEFINE, parameters, data structures or any
program lines can be replaced with a redefined name.

Application example:

#DEFINE Setpoint PAR_1

This command assigns the name Setpoint to PAR_1.

#DEFINE Measurements data_1

This command assigns the name Measurements to data_1 .

! Important: Comments should never be placed in the DEFINE
statement, because they would also be inserted.

 Chapter 7: Command Reference

101

DIGIN

Syntax:

result = DIGIN(InputNo)

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.
Please do not use this command when working with an ADwin-Pro
system.

Description:

The command DIGIN determines the value of the digital input
InputNo . A TTL high level sets the variable Result to 1, a TTL
low level to 0.

Note: The digital inputs are numbered through from 0 to 15.
But please note that on an ADwin-light board there are
only six digital inputs and that the 16 digital inputs on the
ADwin board can only be used by the supplied I/O add-
on connector.

Application example:

DIM DATA_1[10000] AS INTEGER AS FIFO

EVENT:

IF (DIGIN(0) = 1) THEN 'Check whether digital
'input 0 is set.

DATA_1 = ADC(1) 'measurement data
' acquisition

ENDIF

Chapter 7: Command Reference

102

DIGIN_WORD

Syntax:

result = DIGIN_WORD()

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.
Please do not use this command when working with an ADwin-Pro
system. In this case the commands DIGIN_WORD1 and
DIGIN_WORD2 are available. Please see the document: „ADwin-
Pro System Specifications - Programming in ADbasic “.

Description:

The function DIGIN_WORD() reads all 16 digital inputs in one
operation.
The function returns a 16-bit value. One bit of the returned value is
assigned to each digital input (see table). If a TTL high level is
present on the input, then the corresponding bit is set to 1

Dig. Input 15 ... 3 2 1 0

Bit 15 ... 3 2 1 0

DEC-Value 32768 ... 8 4 2 1

Computation example:
The function DIGIN_WORD() supplies the decimal value 11. From
the bit pattern of decimal 11, you can deduce which digital inputs are
set. In this example inputs 0, 1 and 3 are set, because the sum of the
assigned bit values gives the decimal value 11.

Note: The digital inputs are numbered through from 0 to 15.
But please note that on an ADwin-light board there are
only six digital inputs and that the 16 digital inputs on the
ADwin board can only be used by the supplied I/O add-
on connector.

 Chapter 7: Command Reference

103

...to be continued command DIGIN_WORD:

Application example:

DIM DATA_1[10000] AS INTEGER AS FIFO

EVENT:

If (Digin_Word() AND 3 = 3) THEN

'Check whether inputs 0
'and 1 are set

DATA_1 = ADC(1) 'measurement data
' acquisition

ENDIF

Chapter 7: Command Reference

104

DIGOUT_WORD

Syntax:

DIGOUT_WORD(Selection)

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.
Please do not use this command when working with an ADwin-Pro
system. In this case the commands DIGOUT_WORD1 and
DIGOUT_WORD2 are available. Please see the document: „ADwin-
Pro System Specifications - Programming in ADbasic “.

Description:

The command DIGOUT_WORD sets all the digital outputs on the
ADwin/ADwin-light boards simultaneously to the value specified by
Selection . Selection is a 16-bit value with each digital output
being assigned a bit of this value (see table).

ADwin -GOLD system:
digital output (DIO)

31 30 ... 18 17 16

ADwin -/ADwin-light
boards: digital output

15 14 ... 2 1 0

Bit 15 14 ... 2 1 0

DEC value 32768 16384 ... 4 2 1

Computation example:
The outputs 0, 2 and 14 are to be set. You derive the bit pattern
0100000000000101, which corresponds to the decimal value 16389
and write: DIGOUT_WORD(16389).

 Chapter 7: Command Reference

105

! Important: All outputs for which the corresponding bit in the
value Selection is not set, are deleted! In the
above example these are the outputs 1, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13 and 15.

Note: The digital outputs of an ADwin-GOLD system (default
configuration) are numbered through from 16 to 31,
those of the ADwin board from 0 to 15. In both cases
you have to write the specified value into the least
significant 16 bits of selection . But please note that
on an ADwin-light board there are only six digital inputs
and that the 16 digital inputs on the ADwin board can
only be used by the supplied I/O add-on connector.

When using an ADwin-GOLD system the outputs have
to be configured once by the command CONF_DIO
(12) .

Application example:

INIT:

CONF_DIO(12) 'configure digital outputs
'(ADwin-GOLD only)

EVENT:

DIGOUT_WORD(7) 'set digital outputs 16,
'17 a. 18 (ADwin-GOLD)
'or 0, 1 a. 2 (ADwin -
'boards), all other
'outputs are deleted!

Chapter 7: Command Reference

106

DIM

Syntax:

DIM V1{[L1]} {, V2{[L2]}} AS Var_ type {AS FIFO}

Description:

Declares one or more variables V1, V2 etc. of the type type . If you
state a field length L1 , L2 etc. after the variable name, the compiler
creates a single-dimension array. The arrays of the global DATA
variables can in addition also be defined as FIFO ring buffers. Further
information on this special type of variable can be found in the
chapter about the command FIFO.

Note: The types available are SHORT, INTEGER, LONG
and also FLOAT for the T805. Depending on the type
of processor, the declarations may need varying
amounts of memory space. Further information about
this can be found in Chapter 4.4.3 (User-definable
variables).

Application examples:

DIM var1 AS INTEGER 'Declares var1 as integer
'variable

DIM array1[1000] AS SHORT
'Declares array1 with a
'field length of 1000
'elements

DIM DATA_20[1000] AS INTEGER AS FIFO
'Declares the global
'variable DATA_20 with a
'length of 1000 elements
'as FIFO memory

Note: The type of memory can be additionally indicated for the
ADSP (page 22/Table 4-1).

 Chapter 7: Command Reference

107

DO ... UNTIL

Syntax:

DO

instruction block

UNTIL (condition)

Description:

The instruction block is executed repeatedly until condition is true.

! Important: In a high priority process the DO ... UNTIL
loop cannot be interrupted by any other process.
Therefore, the processor of the ADwin system
cannot respond to other events during the period of
loop execution. The DO ... UNTIL loop must
therefore only be used in high priority processes
when the number of loop executions is kept small.

Application example:

DIM value AS INTEGER

EVENT:

DO

value = ADC(1, 4) 'Read out measurement

UNTIL (value < 2048) 'Repeat loop until the
'value is greater than or
'equal to 2048

ACTIVATE_PC 'Activate PC

Chapter 7: Command Reference

108

END

Syntax:

END

Description:

The command END terminates the process.

Note: The commands in the segment FINISH: are still
executed, if present, after the END command.

Application example:

EVENT:

IF (ADC(1) > 3000) THEN 'Measure and compare

SET_DIGOUT(0) 'Set digital output

END 'Terminate process

ENDIF

 Chapter 7: Command Reference

109

EXP

Syntax:

value2 = EXP(value1)

Description:

The function EXP supplies the exponential value of an argument to
the base e.

Time relationship:

FLOAT: 1,3µs FLOAT: 32 µs FLOAT: 130 µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = 5

value2 = EXP(value1) 'Result:
'value2 = 148.41...

Chapter 7: Command Reference

110

FIFO

Syntax:

DIM DATA_X[length] AS Var_type AS FIFO

Description:

Dimensions the variable DATA_X as FIFO memory with Length
elements of type Var_type . A number between 1 and 200 must be
indicated instead of X.

Note: Since ADbasic manages the FIFO internally as a data
set, the same data set number must not be used
simultaneously as the number of a FIFO and a normal
DATA variable.

! Important: The FIFOs are not automatically cleared on starting,
so they should therefore be cleared with the
command FIFO_CLEAR(DataSetNo), e. g. in
the segment INIT: in the program.

! Important: If you write data faster to the FIFO than you read it
out, the FIFO then at some point becomes full and
data is lost.

Application example:

DIM DATA_20[1000] AS INTEGER AS FIFO
'Dimensions the global
'variable DATA_20 with a
'length of 1000 elements
'as FIFO memory

Note: The type of memory can be additionally indicated for the
ADSP (page 22/Table 4-1).

 Chapter 7: Command Reference

111

FIFO_CLEAR

Syntax:

FIFO_CLEAR(DatasetNo)

Description:

The command FIFO_CLEAR clears the contents of the FIFO with
the number DatasetNo .

! Important: The FIFOs are not automatically cleared on starting.
Therefore, they should be cleared with this
command in the INIT: segment of the program.

Application example:

DIM DATA_1[20000] AS SHORT AS FIFO

'Declaration

INIT:

FIFO_CLEAR(1) 'Clear FIFO

EVENT:

IF (FIFO_EMPTY(1) > 1) THEN

'querying the number of
'free places in the FIFO

DATA_1 = ADC(1) 'measure analog input 1
'and save in the FIFO

ENDIF

Chapter 7: Command Reference

112

FIFO_EMPTY

Syntax:

value = FIFO_EMPTY(DatasetNo)

Description:

The command FIFO_EMPTY determines the memory space in the
FIFO with the number DatasetNo .

Note: Before writing data to the FIFO you should check with
this command if there is enough free space in the FIFO.

Application example:

DIM DATA_1[20000] AS SHORT AS FIFO

'Declaration

EVENT:

IF (FIFO_EMPTY(1) > 1) THEN

'Check free space in the
'FIFO

DATA_1 = ADC(1) 'Measure Analog Input 1
'and save in the FIFO

ENDIF

 Chapter 7: Command Reference

113

FIFO_FULL

Syntax:

value = FIFO_FULL(DatasetNo)

Description:

The command FIFO_FULL determines the amount of occupied
memory in the FIFO with the number DatasetNo .

Note: Before reading out data from the FIFO, you should
check with this command if there is still data in the FIFO.

Application example:

DIM DATA_1[20000] AS SHORT AS FIFO

'Declaration

EVENT:

IF (FIFO_FULL(1) > 0) THEN

'Check if the FIFO still
'contains data

DAC(1, DATA_1) 'Output a value from the
'FIFO on Analog Output 1

ENDIF

Chapter 7: Command Reference

114

FOR ... NEXT

Syntax:

FOR i = X TO Y {STEP Z}

instruction block

NEXT i

Description:

The Instruction block within the FOR ... NEXT loop is
repeated until the value of X is greater than the value of Y . The value
of X is increased by Z after each loop.

Note: The statement STEP Z can be left out. The value 1 is
taken for Z in this case.

X, Y and Z can be substituted by constant numerical
values. These must be of the type Integer and Z must
only take on positive values.

Contrary to other programming languages, the
instruction block will at least once be executed
in Basic, even if X is greater than Y.

Also the counter variable (here i) must be declared in
the program header as an integer variable.

! Important: In a high priority process the FOR ... NEXT loop
cannot be interrupted by another process. This
means that during the period of loop processing it is
not possible for the processor of the ADwin system
to respond to other events. The FOR ... NEXT
loop must therefore only be used in high priority
processes when the number of loops is kept small.

 Chapter 7: Command Reference

115

FUNCTION ... ENDFUNCTION

Syntax:

FUNCTION name(value1, value2, ...) AS Type

... (commands)

ENDFUNCTION

Description:

The function Name is defined. On calling, a numerical value is
transferred to the variables valueX and the commands between
FUNCTION and ENDFUNCTION are executed. The data type to
which the values of the function are transferred is defined as AS
Type .

Notes: Local variables can be defined at the start of each
function.

A function can be placed at the start of the ADbasic
program (before the INIT: block), at the end of the
ADbasic program (after the FINISH: block) or in its
own file which you link with an INCLUDE command.

Application example:

FUNCTION means(w1, w2, w3) AS FLOAT

DIM sum AS FLOAT ' computes the means of the
' 3 values w1, w2 and w3

sum = w1 + w2 + w3

means = sum/3

ENDFUNCTION

Calling the function means is made by the program line:
x = means (x1, x2, x3)

Chapter 7: Command Reference

116

IF ... THEN ... {ELSE}

Syntax:

IF (condition) THEN

instruction block

{ELSE}

{ instruction block}

ENDIF

or

IF (condition) THEN instruction

Description:

The control structure IF enables the instruction block to be
executed in dependence of condition .

Application example:

DIM value AS INTEGER 'Declaration

EVENT:

value = ADC(1) 'Acquire measurement

IF (value > 3000) THEN 'Start control structure

CLEAR_DIGOUT(1) 'Reset DIGOUT 1

SET_DIGOUT(0) 'Set DIGOUT 0

ELSE

CLEAR_DIGOUT(0) 'Reset DIGOUT 0

SET_DIGOUT(1) 'Set DIGOUT 1

ENDIF 'End of control structure

 Chapter 7: Command Reference

117

INC

Syntax:

INC(value)

Description:

The command INC increments the passed value by 1.

Notes: This command may not be used with data types other
than INTEGER .

INC(value) delivers the same result as
value=value+1, but needs less processing time.

Application example:

DIM index AS INTEGER

DIM DATA_1[1000] AS INTEGER

INIT:

index=1

EVENT:

DATA_1[index] = ADC(1) 'Store in DATA

INC(index) 'Increment index

IF (index>1000) THEN END 'Finish program after 1000
'samples

Chapter 7: Command Reference

118

#INCLUDE

Syntax:

#INCLUDE FileName

The file FileName is linked with all the definitions and programs it
contains. FileName should also denote the complete path
specification. Otherwise ADbasic is only searching in the standard-
include-directory. (see menu Options ÖÖÖÖ Directory).

Notes: The INCLUDE command must be placed at the start of
the ADbasic program.

You should always specify the complete path name,
because otherwise only the current directory is
searched.

Application example:

#INCLUDE C:\ADBASIC3\demofunc.inc

 Chapter 7: Command Reference

119

LINKIN

Syntax:

LINKIN(channel , value , number)

Description:

The command LINKIN reads as many bytes as specified by
Number from the link interface Channel . The read bytes are saved
in the variable or in the data set Value .

! Important: Since the only available Link 0 of the ADSP21062 is
used for the communication between the
PC/ADlink or ADpcmcia , this command is not
implemented in the processor.

Time relationship:

The command LINKIN interrupts the current process until all
Number bytes have been transferred. Therefore, this command
should not be used while a measurement is being taken.

Notes: The processor was developed for building
multiprocessor systems. To simplify the data
interchange between the processors, each processor
module has four serial interfaces. The LINK commands
are used for the data transfer via these interfaces and
are numbered through from 0 to 3.

Further information about the configuration and
application can be taken from the hardware manual for
your ADwin board or from the hardware manual of the
ADwin Pro system.

Chapter 7: Command Reference

120

...to be continued command LINKIN:

Application example:

DIM value as LONG

EVENT:

LINKIN (0, value, 4) 'Reads a long integer
'value from LINK 0

 Chapter 7: Command Reference

121

LINKOUT

Syntax:

LINKOUT(channel , value , number)

Description:

The command LINKOUT outputs as many bytes via the link interface
Channel as specified by Number. The bytes to be output are
located in the variable or in the data set Value .

! Important: Since the only available Link 0 of the ADSP21062 is
used for the communication between the
PC/ADlink or ADpcmcia , this command is not
implemented in the processor.

Time relationship:

The command LINKOUT interrupts the current process until all
Number bytes have been transferred. Therefore, this command
should not be used while a measurement is being taken.

Notes: The processor was developed for building
multiprocessor systems. To simplify the data
interchange between the processors, each processor
module has four serial interfaces. The LINK commands
are used for the data transfer via these interfaces and
are numbered through from 0 to 3.

Further information about the configuration and
application can be taken from the hardware manual for
your ADwin board or from the hardware manual of the
ADwin Pro system.

Chapter 7: Command Reference

122

...to be continued command LINKOUT:

Application example:

DIM value as LONG

EVENT:

LINKOUT(2, value, 4) 'Outputs a long integer
'value on LINK 2

 Chapter 7: Command Reference

123

LOG

Syntax:

value2 = LOG(value1)

Description:

The function LOG supplies the logarithm of an argument.

Time relationship:

FLOAT: 1,45µs FLOAT: 35 µs FLOAT: 145 µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = 5.3

value2 = LOG(value1) 'Result:
'value2 = 0.724...

Chapter 7: Command Reference

124

NOT

Syntax:

value2 = NOT(value1)

Description:

Inverts the individual bits of value1 .

Note: Value1 is expected to be from the type INTEGER or
LONG. If value1 is from the type FLOAT, value1 will
be converted to LONG beforehand. Please consider that
the decimal places are cut off, and that FLOAT and
LONG have different value ranges.

Application example:

DIM value1 AS LONG

DIM value2 AS LONG

value1 = 11111111111111111111111111111101B ' = -3

value2 = NOT(value1)

 ' Result: value2 = 010B = 2

Note: NOT cannot be used for a logical negation.

Example:

IF (NOT(PAR_2 > 2)) THEN WRONG !!
 ...

 Chapter 7: Command Reference

125

OR

Syntax:

value3 = value1 OR value2

or with IF ... THEN and DO ... UNTIL

expression1 OR expression2

Description:

The operator OR is interpreted by the compiler either as a bitwise
operator or as a Boolean operator.

As a bitwise operator it compares the individual bits of two values .
In the result of this operation you can only find a 1 in those bits, which
have a 1 at their corresponding bit positions in both values.

As Boolean operator in statements such as IF ... THEN or
DO ... UNTIL , it determines for the OR operation of two
statements, if a statement is true (1) or false (0).

Application example (as bitwise operator):

DIM value1, value2, value3 AS LONG

value1 = 0100B

value2 = 0110B

value3 = wert1 OR wert2

'Result: value3 = 0110B

Note: as bitwise operator only for integer and long variables or
constants.

Chapter 7: Command Reference

126

Application example (as Boolean operator):

DIM x AS LONG

DIM value4 AS LONG

x = 15

IF ((x < 9) OR (x > 3)) THEN

value4 = 1

ELSE

value4 = 0

ENDIF

' Result: value4 = 1

Note: If several AND (or OR) operators are used in one line,
the correponding number of parentheses have to be set.

 Chapter 7: Command Reference

127

PEEK

Syntax:

value = PEEK(address)

Description:

The command PEEK reads the value stored in address.

Application example:

value = PEEK(20400030H) ' reads the value of memory
' address 20400030H.

Note: On ADwin boards with ADSP processor and in ADwin-
GOLD systems the data register of ADC1 can be found
at the address 20400030H used in the example above.
Further information about configuration and application
can be taken from the hardware manual for your ADwin
board or ADwin-GOLD system.

Chapter 7: Command Reference

128

POKE

Syntax:

POKE(address , value)

Description:

The command POKE saves value to the memory location
address .

Application example:

POKE(20400050H, 10000) ' saves 10000 to the
' address 20400050H

POKE(20400060H, 20000) 'saves 20000 to the

' address 20400060H

START_CONV (4) 'starts all DACs at the

'same time

Note: On ADwin boards with ADSP processor and in ADwin-
GOLD systems the data registers of the DAC1 and
DAC2 can be found at the address 20400050H and
20400060H used in the example above. Consequently
this example corresponds to the command sequence
DAC(1,10000) DAC(2,20000), but with the
difference, that conversion is started after short time
intervals when using the DAC commands. Otherwise
conversion is started exactly at the same time. (The DAC
command needs a little bit more execution time,
because it checks the output value if there are limit
values).

Further information about configuration and application
as well as further important addresses can be taken
from the hardware manuals for your ADwin boards or
ADwin-GOLD systems.

 Chapter 7: Command Reference

129

! Important: With the command POKE the data are directly
written to the indicated memory address. All data
being at this address will be deleted. If there are
program data, the program will be destroyed.

Chapter 7: Command Reference

130

READADC

Syntax:

value = READADC(AdcNo)

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.

When using an ADwin-Pro system, you wil also find a command with
the same name, but it has a DIFFERENT MEANING. Please, see the
document "ADwin-Pro - System Specifications - Programming in
ADbasic ".

Description:

The command READADC reads a value from the A/D converter with
the number AdcNo.

Notes: This function directly addresses one of the two A/D
converters ADC1 or ADC2.

Only the values 1 or 2 are valid for AdcNo.

Please note that an ADwin-light board has only one
ADC!

Application example:

DIM value1, value2 AS INTEGER

'Declaration

EVENT:

SET_MUX(9) 'Set multiplexers for both
'ADCs

 Wait 4 µs (ADwin-GOLD 6,5 µs) for the settling of
the multiplexer

START_CONV(3) 'Start A/D conversion for
'both ADCs

WAIT_EOC(3) 'Wait for both ADCs to
'end conversions

 Chapter 7: Command Reference

131

value 1 = READADC(1) 'Read value from ADC1

value 2 = READADC(2) 'Read value from ADC2

Conversion of the ADC values at 16 bit ADCs:

The ADCs used on the ADwin-GOLD system have a 16-bit
resolution and therefore divide the selected measurement range (of
20 V) into 65.536 equally large steps.

The formula applies to the conversion of the input voltage:

Gain
Range

DigitsVoltage bipolar *65536*)32768(−=

The values given in the table apply for a gain equal to one.

Input voltage
range

READADC value

0 32768 65535 1Digit

-10...+10 V -10 V 0 V +9,999695 V 305,175 µV

Conversion of the 12-bit ADC values:

The ADCs used on the ADwin boards have a 12-bit resolution and
therefore divide the selected measurement range into 4096 equally
large steps.

The formula applies to the conversion of the input voltage:

Voltage Digits Range
Gainbipolar= -() * *2048 4096

Note: With a unipolar setting the offset of 2048 is left out.

Chapter 7: Command Reference

132

The values given in the table apply for a gain equal to one.

Input voltage
range

READADC value

0 2048 4095 1Digit

0...+10 V 0 V +5 V +9,99756 V 2,44 mV

-5...+5 V -5 V 0 V +4,99756 V 2,44 mV

-10...+10 V -10 V 0 V +9,99512 V 4,88 mV

 Chapter 7: Command Reference

133

READADC12

Syntax:

value = READADC12(AdcNo)

ADwin systems:

Only for ADwin-GOLD .

Description:

The command READADC12 reads a value from the 12 bit A/D-
converter with the number AdcNo.

Note: This function accesses directly one of the two A/D-
converters ADC12-1 or ADC12-2.

For AdcNo only the values 1 or 2 apply.

Application example:

DIM value1, value2 AS INTEGER

EVENT:

SET_MUX(9) ' set multiplexer for both
' ADCs

 wait 1,5 µs for the settling of the multiplexer

START_CONV(24) ' start AD-conversion for
' both 12-bit ADCs

WAIT_EOC(24) ' wait for end of conver-
' sion of both 12-bit ADCs

value1 = READADC12(1) 'read value of ADC12-1

value2 = READADC12(2) 'read value of ADC12-2

Chapter 7: Command Reference

134

...to be continued: command READADC12:

Conversion of the ADC values when using ADwin-GOLD 12-bit
ADCs:

The ADCs used on the ADwin -GOLD system have a 12-bit
resolution and therefore divide the selected measurement range (of
20 V) into 4096 equally large steps. In order to make a comparison
with the measurement values of the 16-bit ADCs easier, the
command ADC12 returns the result in high-priority bits (bits 31 to 4).
Thus, the command ADC12 (1) presents the same result in the most
significant bits, as the (16-bit) command ADC (1). The four least
significant bits have always the value 0.

The formula applies to the conversion of the input voltage:

Gain
Range

DigitsVoltage bipolar *65536*)32768(−=

The values given in the table apply for a gain = 1.

input voltage
range

READADC12-Wert

0 32768 65520 16Digits

-10...+10 V -10 V 0 V +9,99512 V 4,88 mV

 Chapter 7: Command Reference

135

READ_TIMER

Syntax:

value = READ_TIMER()

Description:

The command READ_TIMER reads the count rate for the current
process.

Notes: All processors in ADwin systems have two integrated
timers.

When using the processors T400, T450 and T805 the
timer is incremented by one every microsecond for a
high priority process. With a low priority process this
occurs every 64 µs.

When using an ADSP processor the timer is
incremented by one every 25 ns for a high priority
process. With a low priority process this occurs every
100 µs.

More information and examples can be found in chapter
5.2 "Checking execution times with timer functions".

Application example:

DIM timer_reading AS INTEGER

EVENT:

timer_reading = READ_TIMER()

Chapter 7: Command Reference

136

REM

Syntax:

REM comment

Description:

The complete text located after REM in the same line is ignored by
ADbasic during compilation. This enables you to insert comments
into the ADbasic program.

Notes: The command REM only applies to the line in which it is
used. If a comment requires more than one text line,
then you must begin each line with the REM command.

A comment line can also be introduced by the single
quotation mark '.

If the comment is to be accommodated in the same line
in which an ADbasic command is located, then the REM
must be preceded by a colon. If you use the quotation
mark, the colon is not needed.

Application example:

REM This is a comment, which needs more than

REM one text line

' This is also a comment line

DIM min AS INTEGER :REM variable for

:REM min. value

DIM max AS INTEGER ' Variable for max. value

 Chapter 7: Command Reference

137

SET_DIGOUT

Syntax:

SET_DIGOUT(OutputNo)

ADwin systems:

For ADwin-GOLD , ADwin-(light) systems.
When working with an ADwin-Pro system, this command must not
be used. In this case there is the command DIGOUT. Please see the
document: „ADwin-Pro System Specifications - Programming in
ADbasic “.

Description:

The command SET_DIGOUT sets the digital output OutputNo .

Note: The digital outputs on the ADwin-GOLD system (default
configuration) are numbered through from 16 to 31, on
the ADwin boards from 0 to 15. You must use a
constant between 0 and 15 for the OutputNo. Please
pay attention to the fact that an ADwin -light board has
only six digital outputs and that the six digital outputs on
the ADwin board can only be used with the I/O add-on
connector.

Variables must not be used in this command. If you
want to define the output to be deleted by a variable, use
the command DIGOUT_WORD.

When using an ADwin-GOLD system, the outputs
have to be configured by the command
CONF_DIO(12) before.

Chapter 7: Command Reference

138

Application example:

DIM value AS INTEGER 'declaration

INIT:

CONF_DIO(12) 'configure dig. outputs
'(ADwin-GOLD only)

EVENT:

value = ADC(1) 'data acquisition

IF (value > 3000) THEN

SET_DIGOUT(0) 'set dig. output DIO 16
'(ADwin-GOLD) or 0 (ADwin
'boards

ENDIF

 Chapter 7: Command Reference

139

SET_MUX

Syntax:

SET_MUX(selection)

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.

When using an ADwin-Pro system, you wil also find a command with
the same name, but it has a DIFFERENT MEANING. Please, see the
document "ADwin-Pro - System Specifications - Programming in
ADbasic ".

Description:

The command SET_MUX sets the multiplexers and amplifiers at the
specified input. Since the multiplexers have 8 inputs, 3 bits are used.
The amplifiers have four possible settings (1, 2, 4, or 8fold) which
need a further two bits. The bits are set by either directly stating the
binary number or by previously converting them into HEX or DEC
code. For HEX and BIN codes, label the numbers with the
appropriate letters (H for HEX, B for BIN).

Note: Please note that the multiplexer needs about 4 µs
(ADwin-GOLD 16 bit: 6.5 µs or 12 bit: 1.5 µs) until it has
settled. You must therefore provide a waiting period or
insert a command which has an execution time that
does not fall below the settling time of the multiplexer.

Please note, that on the ADwin-light board there is only
one ADC and that no gain can be set for its inputs.

Please note, too, that on an ADwin board you can only
use the 8 analog inputs per multiplexer with the supplied
I/O add-on connector.

The bit combinations relevant to the settings can be seen in the
following table:

Chapter 7: Command Reference

140

F
un

ct
io

n
G

ai
n

A
D

C
 2

G
ai

n
A

D
C

 1
M

ul
tip

le
xe

r
A

D
C

 2
M

ul
tip

le
xe

r
A

D
C

 1

9
8

1 2 4 8

B
it

7
6

5
4

3
2

1
0

Channel
Input

0

0

0

1

1

0

1

1

1 2 4 8

0

0

0

1

1

0

1

1

1 2 3 4 5 6 7 8

2 4 6 8 1
0

1
2

1
4

1
6

 0

 0

0

 0

 0

1

 0

 1

0

 0

 1

1

 1

 0

0

 1

 0

1

 1

 1

0

 1

 1

1

 0

 0

0

 0

 0

1

 0

 1

0

 0

 1

1

 1

 0

0

 1

 0

1

 1

 1

0

 1

 1

1

Channel
Input

1 2 3 4 5 6 7 8

1 3 5 7 9 1
1

1
3

1
5

Gain

Gain

 Chapter 7: Command Reference

141

...to be continued command SET_MUX:

Computation examples:

You would like to set the multiplexer for ADC1 to channel 3 and need
gain 8 and simultaneously set the multiplexer for ADC2 to channel 4
at a gain of 2:
Bit pattern: 01 11 011 010 Command: SET_MUX(474)

As an alternative to this notation in DEC code, in BIN code it would
be written: SET_MUX(0111011010 B)

Application example:

DIM value1 AS INTEGER 'Declaration

EVENT:

SET_MUX(0) 'Set multiplexer for ADC1
'to channel 1

 Wait 4 µs (ADwin-GOLD 6.5 µs) for the settling of
the multiplexer

START_CONV(1) 'Start A/D conversion ADC1

WAIT_EOC(1) 'Wait for end of
'conversion for ADC1

value1 = READADC(1) 'Read value from ADC1

Chapter 7: Command Reference

142

SHIFT_LEFT

Syntax:

value2 = SHIFT_LEFT(value1 , number)

Description:

The command SHIFT_LEFT shifts all bits of Value 1 by Number
places to the left. The empty places to the right are filled with zeroes.

Note: value1 is expected to be of the LONG or INTEGER
type. If value1 is from the type FLOAT, value1 will be
converted to LONG beforehand. Please consider that
the decimal places are cut off, and that FLOAT and
LONG have different value ranges.

This command can be used, in order to multiply the variable value1
with its integer multiple of the number 2. Here the execution time is
shorter than the time needed for a comparable multiplication
command, that means value2 = SHIFT_LEFT(value1,3) is
faster than value2 = value1 * 8 .

number multiplicator

1 2

2 4

3 8

.

.

.

.

.

.

Application example:

DIM value1,value2 AS LONG

value1 = 1024

value2 = SHIFT_LEFT (value1, 2)

' Result: value2 = 4096

 Chapter 7: Command Reference

143

SHIFT_RIGHT

Syntax:

Value1 = SHIFT_RIGHT(Value2 , Number)

Description:

The command SHIFT_RIGHT shifts all bits of Value 2 by Number
places to the left. The empty places to the right are filled with zeroes.

Note: value1 is expected to be of the LONG or INTEGER
type. If value1 is from the type FLOAT, value1 will be
converted to LONG beforehand. Please consider that
the decimal places are cut off, and that FLOAT and
LONG have different value ranges.

If the variable value1 is a positive number, this command can be
used, in order to divide the variable value1 by integer multiples of
the number 2. Here the execution time is shorter than the time
needed for a comparable division command, that means value2 =
SHIFT_LEFT(value1,3) is faster than value2 = value1 / 8
is shorter than value2 = SHIFT_RIGHT (value1,3) .

number divisor

1 2

2 4

3 8

.

.

.

.

.

.

Application example:

DIM value1,value2 AS LONG

value1 = 1024

Chapter 7: Command Reference

144

value2 = SHIFT_RIGHT(value1, 3)

' Result: value2 = 128

 Chapter 7: Command Reference

145

SIN

Syntax:

value2 = SIN(value1)

Description:

The function SIN supplies the sine of an argument specified in
radians.

Time relationship:

FLOAT: 1,2µs FLOAT: 24 µs FLOAT: 72 µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = -5.3

value2 = SIN (value1) 'Result: value2 = 0.83...

Chapter 7: Command Reference

146

SQRT

Syntax:

value2 = SQRT(value1)

Description:

The function SQRT supplies the square root of value1 .

Time relationship:

FLOAT: 0,775µs SHORT:
25µs

FLOAT: 14µs FLOAT: 40 µs

Application example:

DIM value1, value2 AS SHORT

EVENT:

value1 = 16

value2 = SQRT(value1) 'Result: value2 = 4

 Chapter 7: Command Reference

147

START_CONV

Syntax:

START_CONV(selection)

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.

When using an ADwin-Pro system, you wil also find a command with
the same name, but it has a DIFFERENT MEANING. Please, see the
document "ADwin-Pro - System Specifications - Programming in
ADbasic ".

Description:

The command START_CONV starts the ADCs or DACs specified
with Selection . Only 4 of the 5 least significant bits of
Selection are used for selecting the ADCs: bit 0 starts ADC1, bit
1 starts ADC2.

Bit(s) DEC
value

ADwin-Gold ADwin board ADwin-
light -board

0 1 ADC16-1 ADC1 ADC1

1 2 ADC16-2 ADC2 -

0,1 3 ADC16-1 and ADC16-2 ADC1 and ADC2 -

2 4 all DACs all DACs all DACs

0,2 5 ADC16-1 and all DACs ADC1 and all
DACs

ADC1 and
all DACs

3 8 ADC12-1 - -

4 16 ADC12-2 - -

3,4 24 ADC12-1 and ADC12-2 - -

0,3 9 ADC16-1 and ADC12-1 - -

1,4 18 ADC16-2 and ADC12-2 - -

0,1,3,4 27 all ADCs - -

Chapter 7: Command Reference

148

Note: If you set bit 2, you can start all DACs at the same time.
See the example for the command Poke .

Please consider that ADC1 and ADC2 can either be a
12 or 16 bit analog-digital converter. For further
information see the hardware manual for your ADwin-
(light) boards.

! Important: When using an ADSP selection must be a

constant, the reason is code optimization. When
using other processors, selection may also be a
variable.

Computation example :
You only want to start ADC2 or ADC16-2 respectively:
Bit pattern: 10 Command: START_CONV (2)

Application example:

DIM value1 AS INTEGER

EVENT:

SET_MUX(0) 'Set multiplexer for ADC1
'or ADC16-1 to channel 1

 Wait 4 µs (ADwin-Gold 6.5 µs) for the settling of
the multiplexer

START_CONV(1) 'Start ADC1 A/D conversion

WAIT_EOC(1) 'Wait for end of
'conversion for ADC1 or

'ADC16-1

value1 = READADC(1) 'Read value

 Chapter 7: Command Reference

149

START_PROCESS

Syntax:

START_PROCESS(ProcessNo)

Description:

The command START_PROCESS starts the ADbasic process with
the number ProcessNo .

Notes: The process to be started must be first loaded onto the
ADwin board.

If the process is already running, this command has no
effect.

Application example:

EVENT:

IF (ADC(1) > 3072) THEN

START_PROCESS(2) 'Start process 2, if above
'threshold value

END

ENDIF

Chapter 7: Command Reference

150

STOP_PROCESS

Syntax:

STOP_PROCESS(ProcessNo)

Description:

The command STOP_PROCESS stops the ADbasic process with
the number ProcessNo .

Note: If the process is not running, this command has no
effect.

Application example:

EVENT:

IF (ADC(1) > 3072) THEN

STOP_PROCESS(2) 'Stop process 2, if above
'limit value

END

ENDIF

 Chapter 7: Command Reference

151

SUB ... ENDSUB

Syntax:

SUB name(value1, value2, ...)

... (commands)

ENDSUB

Description:

The subroutine Name is defined. On calling, a numerical value is
transferred to the variables valueX and the commands between
SUB and ENDSUB are executed.

Notes: Local variables can be defined at the start of each
subroutine.

A subprogram can be placed at the start of the ADbasic
program (before the INIT: block), at the end of the
ADbasic program (after the FINISH: block) or in its
own file which you link with an #INCLUDE command.

Application example:

SUB Fast_Dac1(value1)

REM Outputs value1 on Analog Output 1

POKE(50H, value1)

POKE(10H, 3)

ENDSUB

Calling the subroutine name occurs with the program line:
Fast_Dac1(NewValue)

Chapter 7: Command Reference

152

TAN

Syntax:

Value2 = TAN(Value1)

Description:

The function TAN supplies the tangent of an argument which is
specified in radians.

Time relationship:

FLOAT: 1,275µs FLOAT: 30 µs FLOAT: 150 µs

Application example:

DIM value1, value2 AS FLOAT

EVENT:

value1 = 5.3

value2 = TAN(value1) 'Result:
'value2 = -1.50...

 Chapter 7: Command Reference

153

VR6_CLEAR

Syntax:

VR6_CLEAR(Selection)

ADwin systems:

Only for ADwin-(light)- boards, which are equipped with the counter
option ADwin-VR6 , and for ADwin-X-VR6- Karten.

Description:

The command VR6_CLEAR clears the up/down counters defined by
Selection . The corresponding bit must be set in Selection for
each counter which is to be cleared. You can clear a number of
counters simultaneously. The following table shows the relationship
between the bit to be set and the counter number:

counter number 6 5 4 3 2 1

bit 5 4 3 2 1 0

DEC value 32 16 8 4 2 1

Computation examples:

You would like to clear counter 5, i.e. you must set bit 4.
Bit pattern: 010000 Command: VR6_CLEAR(16)

Alternatively to this notation in DEC code, in BIN code it would be
written: VR6_CLEAR(010000B)

Application example:

EVENT:

VR6_CLEAR(63) 'Clears all VR6 counters

Chapter 7: Command Reference

154

VR6_LATCH

Syntax:

VR6_LATCH(selection)

ADwin systems:

Only for ADwin-(light)- boards, which are equipped with the counter
option ADwin-VR6 , and for ADwin-X-VR6- Karten.

Description:

The command VR6_LATCH transfers the current counter reading of
the up/down counter specified by selection into the latch. A bit
must be set in selection for each counter. You can transfer a
number of counter readings simultaneously because each counter
has its own latch. The following table shows the relationship between
the bit to be set and the counter number.

counter number 6 5 4 3 2 1

bit 5 4 3 2 1 0

DEC value 32 16 8 4 2 1

Computation examples:
You would like to transfer the value of the 5th counter to the LATCH,
i.e. you must set bit 4.
Bit pattern: 010000 Command: VR6_LATCH(16)

You would like to simultaneously transfer the values of the 3rd and
5th counter, i.e. you must set bits 2 and 4.
Bit pattern: 010100 Command: VR6_LATCH(20)

Application example:

EVENT:

VR6_LATCH(63) 'transfers simultaneously
'all counter values

 Chapter 7: Command Reference

155

VR6_READ

Syntax:

value = VR6_READ(number)

ADwin systems:

Only for ADwin-(light)-boards, which are equipped with the counter
option ADwin-VR6 , and for ADwin-X-VR6 -Karten.

Description:

The command VR6_READ supplies the count rate defined by
number . This command sets the latch before reading out the
current value.

Note: The counters are numbered through from 1 to 6.

Application example:

EVENT:

value = VR6_READ(3) 'Supplies the value of
'Counter 3

Chapter 7: Command Reference

156

VR6_READLATCH

Syntax:

value = VR6_READLATCH(number)

ADwin systems:

Only for ADwin-(light)-boards, which are equipped with the counter
option ADwin-VR6 , and for ADwin-X-VR6 -Karten.

Description:

The command VR6_READLATCH reads the latch of the counter
defined by number . The current value of the specified counter is not
transferred to the latch before.

Notes: The counters are numbered through from 1 to 6.

Application example:

EVENT:

VR6_LATCH(63) 'Transfers all counter
'readings simultaneously
'to the latches

value = VR6_READLATCH(1) 'Supplies the value of the
'latch of counter 1

 Chapter 7: Command Reference

157

VR6_SETMODE

Syntax:

VR6_SETMODE(selection)

Only for ADwin-(light)-boards, which are equipped with the counter
option ADwin-VR6 , and for ADwin-X-VR6 -Karten.

Description:

The command VR6_SETMODE sets the counters to one of two
modes. An unset bit (=0) corresponds to fourfold edge evaluation, i.e.
two encoders supply signals phase-shifted by 90° which are
evaluated to detect the direction. A set bit (=1) corresponds to one
clock and one direction input per counter. For more details please
refer to the documentation for your up/down counter.
The following table shows the relationship between the bit to be set
and the counter number.

counter number 6 5 4 3 2 1

bit 5 4 3 2 1 0

DEC value 32 16 8 4 2 1

Computation example:
You would like to set the mode of the 5th counter to 1 and the modes
of all other counters to 0: Set bit 4.
Bit pattern: 010000 Command: VR6_SETMODE(16)

Application example:

EVENT:

VR6_SETMODE(63) 'Sets all counters
'simultaneously to clock
'and direction signal

Chapter 7: Command Reference

158

VR6_START

Syntax:

VR6_START(selection)

Only for ADwin-(light)-boards, which are equipped with the counter
option ADwin-VR6 , and for ADwin-X-VR6 -Karten.

Description:

The command VR6_START starts the up/down counter on the VR6
supplementary board defined by selection . A bit must be set in
selection for each counter which is to be started. You can start
a number of counters simultaneously. The following table shows the
relationship between the bit to be set and the counter number:

counter numberr 6 5 4 3 2 1

bit 5 4 3 2 1 0

DEC value 32 16 8 4 2 1

Computation examples:
You would like to start counter 3: Set bit 2.
Bit pattern: 000100 Command: VR6_START(4)

You would like to simultaneously start counters 3 and 5: Set bits 2
and 4.
Bit pattern: 010100 Command: VR6_START(20)

Application example:

EVENT:

VR6_START(63) 'Starts all VR-counters

 Chapter 7: Command Reference

159

VR6_STOP

Syntax:

VR6_STOP(selection)

Only for ADwin-(light)- boards, which are equipped with the counter
option ADwin-VR6 , and for ADwin-X-VR6 -Karten.

Description:

The command VR6_STOP stops the up/down counter specified by
selection on the VR6 supplementary board. A bit must be set in
selection for each counter that is to be stopped. You can
simultaneously stop a number of counters. The following table shows
the relationship between the bit to be set and the counter number.

counter number 6 5 4 3 2 1

bit 5 4 3 2 1 0

DEC value 32 16 8 4 2 1

Computation example:

You would like to simultaneously stop counters 3 and 5: Set bits 2
and 4.
Bit pattern: 010100 Command: VR6_STOP(20)

Application example:

EVENT:

VR6_STOP(63) 'Stops all VR6 counters

Chapter 7: Command Reference

160

WAIT_EOC

Syntax:

WAIT_EOC(selection)

ADwin Systems:

For ADwin-GOLD , ADwin-(light)- boards.

When using an ADwin-Pro system, you wil also find a command with
the same name, but it has a DIFFERENT MEANING. Please, see the
document "ADwin-Pro - System Specifications - Programming in
ADbasic ".

Description:

The command WAIT_EOC waits until the ADC defined in
selection has finished converting. The two least significant bits
(LSBs) of selection are used for selecting the converter. Bit 0
signifies ADC1, bit 1 ADC2.

Bit(s) DEC
value

ADwin-Gold ADwin board ADwin-
light -board

0 1 ADC16-1 ADC1 ADC1

1 2 ADC16-2 ADC2 -

0,1 3 ADC16-1 and ADC16-2 ADC1 and ADC2 -

3 8 ADC12-1 - -

4 16 ADC12-2 - -

3,4 24 ADC12-1 and ADC12-2 - -

0,3 9 ADC16-1 and ADC12-1 - -

1,4 18 ADC16-2 and ADC12-2 - -

0,1,3,4 27 all ADCs - -

 Chapter 7: Command Reference

161

Note: Please consider that ADC1 and ADC2 can either be a 12 or
16 bit analog-digital converter. For further information see the
hardware manual for your ADwin-(light) boards.

Application example:

DIM value AS INTEGER

EVENT:

SET_MUX(8) 'Set multiplexer for ADC2
'to channel 2 (input 4)

 Wait 4 µs (ADwin-GOLD 6.5 µs) for the settling of
the multiplexer

START_CONV(2) 'Start A/D conversion ADC2

WAIT_EOC(2) 'Wait for end of
'conversion of ADC2

value = READADC(2) 'Read value

Chapter 7: Command Reference

162

XOR

Syntax:

value3 = value1 XOR value2

Description:

Links the bits of value1 und value2 using EXCLUSIVE-OR

The result of this operation can be seen in the following table:

If there is a bit in
value1 =

and a bit in value2 = result :

0 0 0

0 1 1

1 0 1

1 1 0

Note: Since it is a bitwise operator , it applys only for integer
and long variables.

Application example:

DIM value3 AS LONG

value3 = 0100B XOR 0110B

'result: value3 = 0010B

 Chapter 8: How to solve problems

163

8 How to solve problems

If problems already occur during installation, please refer to the
documentation for your ADwin system. Make sure all settings have
been carried out properly and completely. Please check then,
referring to Chapter 2 (Software), if the software has been correctly
installed. Also check if the base address, the processor type, etc. are
set correctly in the menu Options . If your problems still persist,
please give us a call.

If you need help of a more substantial nature, then please contact us
directly.

Jäger Computergesteuerte Meßtechnik GmbH
Rheinstraße 4
D-64653 Lorsch

Tel.: (0 62 51) 9 63 20
Fax: (0 62 51) 5 68 19
E-Mail: info@adwin.de

Chapter 9: Index

164

9 Index

- · 68

#

#DEFINE · 100
#INCLUDE · 118

*

* · 69

/

/ · 69

^

^ · 70

+

+ · 68

<

<=> · 71

A

ABS · 72

ABSF · 73
absolute value · 72, 73
ACTIVATE_PC · 74
ADbasic graphics interface · 45
ADbasic helpfile · 12
ADBASIC.EXE · 12
ADBASIC.HLP · 12
ADC · 43, 75
ADC12 · 80
addition · 68
ADwin -driver

ADWIN2.BTL · 9
ADWIN4.BTL · 9
ADWIN5.BTL · 9
ADWIN8.BTL · 9
ADWIN9.BTL · 9

AND · 82
ANZAHLSCHLEIFE · 30
ARCCOS · 84
ARCSIN · 85
ARCTAN · 86
arrays · 28
Autostart · 53

B

base adress · 54
Boot ADwin · 51
button · 45
Buttons · 45

C

calling functions · 37

 Chapter 9: Index

165

calling of
subprograms · 37

calling of functions · 37
calling subprograms · 37
CLEAR_DIGOUT · 87
close file · 47
CO4_CLEAR · 89
CO4_READ · 90
CO4_START · 91
CO4_STOP · 92
command reference · 67
Compile · 50
compiler options · 52
CONF_DIO · 93
connect · 65
COS · 95

D

DAC · 96
DATA · 24
data exchange · 35
data types · 27
Debug mode · 54
DEC · 99
DEFINE · 100
delay

more than 5 ms · 57
delay, control · 57
detecting a run time error · 54
dialog window · 45
DIGIN · 101
DIGIN_WORD · 102
digital controller · 15
DIGOUT_WORD · 104
DIM · 106
directory · 64
display

data · 20
displaying global variables · 60
division · 69
DO ... UNTIL · 107
driver

ADwin -driver · see

E

edit-menu · 48
END · 108
endpoint · 66
error message

select language · 64
evaluate

data · 20
event · 58

event · see
event · 15
Event · 56
EVENT · 18
existing memory · 54
EXP · 109
externally triggered event · 42

F

faster measurement function · 43
FIFO · 28, 110
FIFO_CLEAR · 111
FIFO_EMPTY · 112
FIFO_FULL · 113
file menu · 47
FINISH · 18
FOR ... NEXT · 114
free memory · 60, 61, 63

Chapter 9: Index

166

FUNCTION ... ENDFUNCTION ·
115

G

generate event · 56, 58
generate file · 47
global

variables · 23
global variables

predetermined · 23
GLOBALDELAY · 31
GLOBALSCHLEIFE · 30

H

help · 163
help menue · 66
high priority · 39

I

IF ... THEN ... ELSE · 116
INC · 117
INCLUDE · 118
indicating a run time error · 54
INIT · 18
internal timer · 42

L

Linkaddress · 54
LINKIN · 119
LINKOUT · 121
load file · 47

LOG · 123
low priority · 40

M

Make Bin File · 50
measurement evaluation

programs · 38
measurement of dynamic

parameters · 15
memory

need · 20
Memory · 54
menu

Project · 50
Window · 49

Menu
Options · 52

menu bar · 45
menu edit · 48
menu file · 47
menue

help · 66
menus · 45
multiplication · 69

N

network operation · 65
NOT · 124
number notation · 23
NWTIME · 31

O

open file · 47

 Chapter 9: Index

167

optimize · 57
Optimize · 59
Options-Menu · 52
OR · 125
other programs · 38

P

parameter · see global variables
password · 66
PEEK · 127
POKE · 128
power · 70
print file · 47
priority · 57, 59
process

number · 59
number of calls · 56
options · 55
parallel processes · 34
priority · 57, 59

Process in SRam · 59
process management · 39
process number · 34, 56
PROCESS_RUNNING · 30
processes

high priority · 36
processor

workload · 36, 61, 63
process-specific parameters · 55
program structure · 17, 18
Project

Compile · 50
Make Bin File · 50
Start · 50
Stop · 50

project menu · 50
protocol · 65

R

READ_TIMER · 135
READADC · 130
READADC12 · 133
relational operators · 71
REM · 136

S

save file · 47
save file as · 47
select directory

ADwin driver file · 64
INCLUDE-file · 64

server · 66
set processor type · 53
SET_DIGOUT · 137
SET_MUX · 139
setting priority · 39
SHIFT_LEFT · 142
SHIFT_RIGHT · 143
SIN · 145
SQRT · 146
start process · 50, 56, 58
start program · 56, 58
START_CONV · 147
START_PROCESS · 149
status variables · 30
stop process · 50
STOP_PROCESS · 150
SUB ... ENDSUB · 151
subtraction · 68
support · 163
System Requirements · 8

Chapter 9: Index

168

T

TAN · 152
task changes · 14
timer function · 42
timing characteristics · 39
tool bar · 45
type conversion · 31

V

variables
global · 35
status variables · 30
type conversion · 28, 31
type DATA · 24
user-definable · 27

VR6_CLEAR · 153
VR6_LATCH · 154
VR6_READ · 155
VR6_READLATCH · 156
VR6_SETMODE · 157
VR6_START · 158
VR6_STOP · 159

W

WAIT_EOC · 160
Window menu · 49

X

XOR · 162

