
ADwin Driver
Driver for Scilab

ADwin driver Scilab, Manual Mar. 2018

ADwin driver Scilab, Manual Mar. 2018

For any questions, please don’t hesitate to contact us:

Hotline: +49 6251 96320

Fax: +49 6251 5 68 19

E-Mail: info@ADwin.de

Internet www.ADwin.de

Jäger Com-
putergesteuerte
Messtechnik GmbH
Rheinstraße 2-4
D-64653 Lorsch
Germany

ADwin driver Scilab, Manual Mar. 2018 III

ADwin
Table of contents

 Typographical Conventions . IV

1 Information about this Manual . 1

2 ADwin Driver for Scilab® . 2
2.1 Interface to the Development Environment . 2
2.2 Communication with the ADwin System . 2

3 Install the ADwin Driver for Scilab® . 4
3.1 Installing Hardware and Software . 4
3.2 Accessing the ADwin System . 5
3.3 Accessing an ADwin System via other PCs . 5

4 General Information about ADwin Functions . 6
4.1 Locating Errors. 6
4.2 The "DeviceNo." . 6
4.3 Data Types. 7
4.4 Exchange Data of Two-Dimensional Arrays . 7

5 Description of the ADwin Driver Functions . 8
5.1 System control . 8
5.2 Process control . 12
5.3 Transfer of Global Variables . 16
5.4 Transfer of Data Arrays . 20
5.5 Error handling. 30

 Annex . A-1

A.1 Program Examples . A-1

A.2 List of error messages . A-3

A.3 Index of functions. A-4

Typographical Conventions ADwin

IV ADwin driver Scilab, Manual Mar. 2018

Typographical Conventions

"Warning" stands for information, which indicate damages of hardware or soft-
ware, test setup or injury to persons caused by incorrect handling.

You find a "note" next to

– information, which absolutely have to be considered in order to guaran-
tee an error free operation.

– advice for efficient operation.

"Information" refers to further information in this documentation or to other
sources such as manuals, data sheets, literature, etc.

<C:\ADwin\ …> File names and paths are placed in <angle brackets> and characterized in the
font Courier New.

Program text Program commands and user inputs are characterized by the font Courier
New.

Var_1 Source code elements such as commands, variables, comments and other
text are characterized by the font Courier New and are printed in color.

Bits in data (here: 16 bit) are referred to as follows:

Bit No. 15 14 13 … 01 00

Bit value 215 214 213 … 21=2 20=1

Synonym MSB - - - - LSB

ADwin driver Scilab, Manual Mar. 2018 1

Information about this ManualADwin
1 Information about this Manual

This manual gives detailed information about the ADwin driver for Scilab®, ver-
sions 3 and 4.

The following documents are also important for the driver description:

– The "ADwin Installation Manual" describes the hardware and software
installation for all ADwin systems

– The manual "ADbasic" describes the development environment and the
commands of the ADbasic compiler. The ADwin system is programmed
with the easy-to-use real-time development tool ADbasic.

– The hardware manuals for your ADwin systems.

It is assumed that that the user has a good command of the Scilab® environ-
ment.

Please note:

For ADwin systems to function correctly, follow strictly the information provided
in this documentation and in other mentioned manuals.

Qualified personnelProgramming, start-up and operation, as well as the modification of program
parameters must be performed only by appropriately qualified personnel.

Qualified personnel are persons who, due to their education, experience
and training as well as their knowledge of applicable technical stan-
dards, guidelines, accident prevention regulations and operating condi-
tions, have been authorized by a quality assurance representative at the
site to perform the necessary acivities, while recognizing and avoiding
any possible dangers.
(Definition of qualified personnel as per VDE 105 and ICE 364).

Availability of the
documents

This product documentation and all documents referred to, have always to be
available and to be strictly observed. For damages caused by disregarding the
information in this documentation or in all other additional documentations, no
liability is assumed by the company Jäger Computergesteuerte Messtechnik
GmbH, Lorsch, Germany.

Legal informationThis documentation, including all pictures is protected by copyright. Reproduc-
tion, translation as well as electronical and photographical archiving and mod-
ification require a written permission by the company Jäger Computergesteu-
erte Messtechnik GmbH, Lorsch, Germany.

OEM products are mentioned without referring to possible patent rights, the
existence of which may not be excluded.

Subject to change.
Hotline address: see inner side of cover page.

ADwin Driver for Scilab® ADwin

2 ADwin driver Scilab, Manual Mar. 2018

2 ADwin Driver for Scilab®

This section introduces into the capabilities of the ADwin driver for Scilab and
describes how to communicate with an ADwin system from Scilab.

2.1 Interface to the Development Environment

The ADwin driver for Scilab is the interface to communicate with the ADwin
systems.

The combination of the environment Scilab with an ADwin system provides
totally new possibilities. On the one hand you use the intelligence and perfor-
mance of the ADwin system for measurements, open and closed-loop con-
trols. On the other hand you have many Scilab-functions for administration,
analysis, and documentation of the measurement data and a comfortable user
interface.

Applications:

– Open-loop control of fast test stands

– Signal generation

– Intelligent measurements, acquiring data under complex trigger conditions

– Open and closed-loop control

– Online processing, data reduction

– Hardware-in-the-Loop, simulation of sensor data

2.2 Communication with the ADwin System

With the development environment, you control processes in the ADwin sys-
tem, read data from there or send data to it. You are programming processes
with the real-time development tool ADbasic, create a binary file and transfer
it to the ADwin system. (see manual or online help ADbasic).

Data and commands between Scilab and the ADwin system are processed as
shown below.

adwin32.dll The adwin32.dll (with a 64-bit operating system: adwin64.dll) is the
central interface to the ADwin system for Windows applications and is there-
fore also used by the ADwin driver for Scilab. With this interface several, Win-
dow programs can communicate with the ADwin system at the same time:
Development environments, ADbasic and ADtools are working simultaneously
with the ADwin system.

Real-Time Processing The adwin32.dll / adwin64.dll interface communicates with the real-
time processor of the ADwin device - the operating system. Therefore, you
have to load the operating system first (e.g. the file <ADwin11.btl>)before
powering up the system. Only after it has been successfully loaded, the system
is able to accept commands coming from the PC or to exchange data with it.

Scilab 
adwin32/64
interface

.dll
+

adwin32/64
.dll

USB


Ether-
net

Real-time pro-
cessing

Data memory


open or
closed-loop
controlled

deviceProcesses
1…10ADbasic 

PC
ADwin sys-

tem
Controlled

device

Fig. 1 – ADwin-Scilab interface

ddddddDdddddd

        

ADwin driver Scilab, Manual Mar. 2018 3

ADwin Driver for Scilab®ADwin
The processes being programmed in ADbasic contain the program code for
measurement, open or closed-loop control of your application.

The operating system executes the following tasks:

10 processes– Managing up to 10 real-time processes with low or high priority (individually
selectable). Low-priority processes can be interrupted by high-priority pro-
cesses; high-priority cannot be interrupted by other processes.

Data memory– Availability of global variables:
• 80 integer variables (PAR_1 … PAR_80), predefined.
• 80 float variables (FPAR_1 … FPAR_80), predefined.
• 200 data arrays (DATA_1 … DATA_200), length and data type

can be set individually.

The values of these variables or data arrays can be read and changed
at any time.

Communication– Communication between ADwin system and PC (adwin32.dll /
adwin64.dll).

The communication process is running at medium priority on the ADwin
system and can interrupt low-priority processes for a short time. The
communication process interprets and processes all commands you are
sending to the ADwin system: Control commands and commands for
data exchange.

The following table shows examples of each group.

The communication process never sends data to the PC without being
told to do so. Thus, it is assured that only then data are transferred to the
PC, when they have been explicitly requested before.

control commands, e.g.

Load_Process loads an ADbasic process to the ADwin system

Start_Process starts a process.

commands for data exchange, e.g.

Get_Par returns the current value of a global variable

Set_Par changes the value of a parameter.

GetData_Long returns the values from a DATA array of type Long.

Install the ADwin Driver for Scilab® ADwin

4 ADwin driver Scilab, Manual Mar. 2018

3 Install the ADwin Driver for Scilab®

For installation you need an up-to-date ADwin CDROM.

The driver functions are described in chapter 5. An alphabetical list of functions
is shown on page A-7.

3.1 Installing Hardware and Software

3.1.1 Installation under Linux

First, please follow the installation guide in the "ADwin Linux" manual. The
ADwin driver for Scilab is contained in the Linux package.

After successful installation the driver ADwin-scilab-driver.sce is stored
in the installation folder </opt/adwin/share/scilab/>.

This is how to use the Scilab driver:

– Run Scilab

– Type in the command line
exec /opt/adwin/share/scilab/ADwin-scilab-driver.sce.

All driver functions will now be loaded being ready for use.

You can automatically run the ADwin driver upon startup using Scilab’s
autostart feature: Enter the above command line into the file .scilab
(in the directory .Scilab/scilab-[version]).

Please follow the installation steps described below in order to get easy access
to your ADwin device from Scilab.

3.1.2 Installation under Windows

If ADwin is installed If you have already installed an ADwin system and software skip this section
and continue with chapter 3.2.

Else: New installation Else, if an ADwin system is to be newly installed, please start the installation
with the manual "ADwin installation", which is delivered with the ADwin hard-
ware. It describes how to

– to install the software from the ADwin CDROM.

– to install the communications driver under Windows.

– to install the hardware in the PC (if necessary) and
set up the hardware connections between PC and ADwin system.

After successful installation you find the files in the following folders un-
der C:\ADwin\ (standard installation):

Now you include the Scilab driver:

– Run Scilab

– Select the menu entry File > Exec …, then select the file ADwin.sce.

All driver functions will now be loaded being ready for use.

Please follow the installation steps described below in order to get easy access
to your ADwin device from Scilab.

Drivers and examples for Scilab .\Developer\Scilab\…

Examples for ADbasic .\ADbasic\samples_ADwin

Test program for ADwin-Gold,
ADwin-light-16 and plug-in boards.

.\Tools\Test\ADtest

Test program for ADwin-Pro .\Tools\Test\ADpro

ADwin driver Scilab, Manual Mar. 2018 5

Install the ADwin Driver for Scilab®ADwin
3.2 Accessing the ADwin System

With the installation of hardware and software, you have successfully checked
the access to the ADwin system.

Type the following lines in the command line:
--> Boot('C:\ADwin\ADwin11.btl');
ans =

0

This is what the lines do:

– You load the operating system of the processor T11 to the ADwin system
(= booting).

Windows only: The driver uses device number 1 as default target. If
needed, set the device number in ADwin.sce to the one you have set
in ADconfig during installation.

Linux only: There is no default device number. If needed, set the device
number using Set_DeviceNo (page 8).

The filenames for other processors than T11 are given on page 9.

The error code created after booting is automatically returned. The
value 0 confirms the ADwin system to be ready.

– An error code > 0 denotes an error during booting. A list of all error mes-
sages is given in chapter A.2 in the annex.

You may now use all driver functions to get access to the ADwin system.

As an introcduction we recommend working with the program examples in the
annex, section A.1.

3.3 Accessing an ADwin System via other PCs

If an ADwin system is connected to a host PC, but is not accessible within an
Ethernet network directly, you can nevertheless get a connection using the pro-
gram ADwinTcpipServer.

Detailed information about the use of ADwinTcpipServer is given on the
program’s online help.

General Information about ADwin Functions ADwin

6 ADwin driver Scilab, Manual Mar. 2018

4 General Information about ADwin Functions

4.1 Locating Errors

There are 2 possibilities to locate errors upon execution of an ADwin function:

Return value of the
function

1. The return value ErrorCode of a function, which indicates if an error
has occurred.
We recommend useing this option.

The following functions do not return an ErrorCode value:
Show_Errors, Set_DeviceNo, Get_DeviceNo, Test_Version,
Set_Language, Get_Last_Error, Get_Last_Error_Text

Get_Last_Error 2. The function Get_Last_Error (see page 30) returns the number of
the error that occurred last.

To handle each error, call Get_Last_Error after each access to the
ADwin system.

To each error number you get the text with Get_Last_Error_Text (see
page 31). You find a list of error messages in chapter A.2 of the Appendix.

For instance the detection of an error in the function Get_Processdelay.

First the recommended version:
// Processdelay of process 2
[gd_2, errcode] = Get_Processdelay(2);
if (gd_2 == 0) then
begin
… // no error

end;

Second version using Get_Last_Error:
gd_2 = Get_Processdelay(2); // Processdelay of process 2
If (Get_Last_Error() == 0) then
begin
… // no error

end;

4.2 The "DeviceNo."

A "Device No." is the number of a specified ADwin system connected to a PC.
An ADwin system is always accessed via the "Device No.".

The "Device No." for the ADwin system is generated with the program ADcon-
fig. You will find more information about the program’s usage in the online help
of ADconfig.

Windows only: All functions of the ADwin driver for Scilab use an internal vari-
able DeviceNo to access an ADwin system. The variable is programmed in
the file <ADwin.sce>. The default number is 1.

ADwin driver Scilab, Manual Mar. 2018 7

General Information about ADwin FunctionsADwin
4.3 Data Types

The functions and parameters of the ADwin driver for Scilab use the following
data types:

Variables (1×1 matrix) and row vectors can be used as function parameters.
No other data types are allowed.

4.4 Exchange Data of Two-Dimensional Arrays

In ADbasic, global DATA arrays can be declared as 2-dimensional arrays (2D).
But the functions of the ADwin driver use only row vectors in Scilab.
A row vector may be easily changed into a 2-dimensional array using the
Scilab function matrix.

In general, the following table shows how an element in a 2D array in ADbasic
is related to an element in a row vector in Scilab:

Here s is the second dimension of DATA_n when you declare the array in
ADbasic.

Please see the notes on 2-dimensional arrays in the ADbasic manual, too.

Example: A 2D array in ADbasic is declared as
DIM DATA_8[7][3] AS FLOAT 'that is s=3

The 7×3 elements of the array are read in Scilab with GetData_Float:
--> vector = GetData_Float(8,1,21);
// read directly into a 3x7 matrix:
--> mat_3x7 = matrix(GetData_Float(8,1,21),3,7);
--> mat_7x3 = mat_3x7';

The data are transferred in the following order:

Thus, the function GetData_Float transfers the element DATA_8[7][2]
into vector[20].

The general formula s=3 results in:

Data Type Definition

char unsigned integer 8-bit

int signed integer 32- bit

float signed float 32- bit

ADbasic Scilab

DATA_n[i][j] Vector[s·(i-1)+j]

Index of DATA_8 [1][1] [1][2] [1][3] [2][1] … [7][1] [7][2] [7][3]

Index of vector [1] [2] [3] [4] … [19] [20] [21]

ADbasic Scilab

DATA_n[1][1] Array[3·(1-1)+1] = vector[1]

DATA_n[1][2] Array[3·(1-1)+2] = vector[2]

… … …

DATA_n[7][2] Array[3·(7-1)+2] = vector[20]

DATA_n[7][3] Array[3·(7-1)+3] = vector[21]

Description of the ADwin Driver Functions ADwin

8 ADwin driver Scilab, Manual Mar. 2018

5 Description of the ADwin Driver Functions

The description of the functions is divided into the following sections:

– System control, page 8

– Process control, page 12

– Transfer of Global Variables, page 16

– Transfer of Data Arrays, page 20

– Error handling, page 30

In appendix A.3, you find an overview of all functions.

Please pay attention to chapter 4, where general aspects for the use of ADwin
functions are described.

Commands for accessing analog and digital inputs / outputs are not part of the
ADwin driver for Scilab. These actions are programmed in ADbasic.

5.1 System control

Set_DeviceNo Set_DeviceNo sets the device number.

Set_DeviceNo (DeviceNo)

Parameters

Notes

The PC distinguishes and accesses the ADwin systems by the device
number. Systems with link adapter are already configured in factory (de-
fault setting: 336 = 150 hex).

Further information can be found in the online help of the program AD-
config or in the manual "ADwin Installation".

Example
// Set the device number 3
Set_DeviceNo(3);

Get_DeviceNo Windows only: Get_DeviceNo returns the current device number.

ret_val = Get_DeviceNo ()

Notes

The PC distinguishes and accesses the ADwin systems by the device
number. Systems with link adapter are already configured in factory (de-
fault setting: 336 = 150 hex).

Further information can be found in the online help of the program AD-
config or in the manual "ADwin Installation".

Example
// Query the current device number
num = Get_DeviceNo();

DeviceNo board address or DeviceNo in decimal notation.

The default setting is 1.

ADwin driver Scilab, Manual Mar. 2018 9

Description of the ADwin Driver FunctionsADwin
BootBoot initializes the ADwin system and loads the file of the operating system.

ErrorCode = Boot (Filename)

Parameters

Notes

The initialization deletes all processes on the system and sets all global
variables to 0.

The operating system file to be loaded depends on the processor type
of the system you want to communicate with. The following table shows
the file names for the different processors.

The files are located in the directory <C:\ADwin\> (Windows) or
/opt/adwin/share/btl/ (Linux).

1

The computer will only be able to communicate with the ADwin system
after the operating system has been loaded. Load the operating system
again after each power up of the ADwin system.

Loading the operating system with Boot takes about one second. As an
alternative you can also load the operating system via ADbasic devel-
opment environment. (icon).

Example
// Load the operating system for the T10 processor
ErrCode = Boot('C:\ADwin\ADwin10.btl'); // Windows path

Test_VersionTest_Version checks, if the correct operating system for the processor has
been loaded and if the processor can be accessed.

ret_val = Test_Version ()

Parameters

Example
// Test, if the processor system is loaded
ret_val = Test_Version();

Filename Path and filename of the operating system file (see below).

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Processor Operating System File

T9
ADwin9.btl

ADwin9s.btl1

T10 ADwin10.btl

T11 ADwin11.btl

T12 ADwin12.btl

T12.1 ADwin121.btl

1. Optimized operating system with smaller memory needs.

ret_val 0: correct operating system
≠0: wrong operating system or no access to processor.

Description of the ADwin Driver Functions ADwin

10 ADwin driver Scilab, Manual Mar. 2018

Processor_Type Processor_Type returns the processor type of the system.

[ret_val, ErrorCode] = Processor_Type ()

Parameters

Example
// Query the processor type
[ret_val,ErrCode] = Processor_Type();

Workload Workload returns the average processor workload since the last call of
Workload.

[ret_val, ErrorCode] = Workload (Priority)

Parameters

Notes

The processor workload is evaluated for the period between the last and
the current call of Workload. If you need the current processor work-
load, you must call the function twice and in a short time interval (approx.
1ms).

Example
// Query the current processor workload
[ret_val,ErrCode] = Workload(0);

ret_val Parameter for the processor type of the system.
0: Error
9: T9
1010: T10
1011: T11
1012: T12
10121: T12.1

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Priority 0: Current total workload of the processor.
≠0: not supported at the moment.

ret_val Processor workload (in percent).

ADwin driver Scilab, Manual Mar. 2018 11

Description of the ADwin Driver FunctionsADwin
Free_MemFree_Mem returns the free memory of the system for the different memory

types.

[ret_val, ErrorCode] = Free_Mem (MemSpec)

Parameters

Example
// Query the free memory in the external DRAM
[ret_val,ErrCode] = Free_Mem(4);

Mem_Spec Memory type:
0 : all memory types; T2, T4, T5, T8 only
1 : internal program memory (PM_LOCAL); T9…T11
2: internal data memory (EM_LOCAL); T11 only
3 : internal data memory (DM_LOCAL); T9…T11
4 : external DRAM memory (DRAM_EXTERN); T9…T11
5 : Memory, which can provide data to the cache;

T12/T12.1 only.
6 : Memory, which cannot provide data to the cache;

T12/T12.1 only.

ret_val Usable free memory (in bytes)

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

12 ADwin driver Scilab, Manual Mar. 2018

5.2 Process control

Commands for the control of single processes on the ADwin system.

There are the processes 1…10 and 15:

– 1…10: You write the process in ADbasic yourself.

– 15: Control of the flash LED on ADwin-Gold and ADwin-Pro.

Process 15 is part of the operating system and is started automatically after
booting. For detailed information see manual ADbasic, chapter "Process Man-
agement".

Load_Process Load_Process loads the binary file of a process into the ADwin system.

ErrorCode = Load_Process (Filename)

Parameters

Notes

You generate binary files in ADbasic with "Make > Make Bin file".

If you switch off your ADwin system all processes are deleted: Load the
necessary processes again after power-up.

You can load up to 10 processes to an ADwin system. Running process-
es are not influenced by loading additional processes (with different pro-
cess numbers).

Before loading the process into the ADwin system, you have to ensure
that no process using the same process number is already running. If
there is such a process yet, you first have to stop the running process
using Stop_Process.

If you load processes more than once, memory fragmentation can hap-
pen. Please note the appropriate hints in the ADbasic manual.

Example
// Load binary file Testprog.TB1
// TB1 = Processor type T11, process no. 1
ErrCode = Load_Process('C:\MyADbasic\Testprog.TB1');

Start_Process Start_Process starts a process.

ErrorCode = Start_Process (ProcessNo)

Parameters

Filename Path and filename of the binary file to be loaded

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ProcessNo Number of the process (1...10, 15).

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 13

Description of the ADwin Driver FunctionsADwin
Notes

The function has no effect, if you indicate the number of a process,
which

• is already running or
• has the same number as the calling process or
• has not been loaded to the ADwin system yet.

Example
// Start Process 2
ErrCode = Start_Process(2);

Stop_ProcessStop_Process stops a process.

ErrorCode = Stop_Process (ProcessNo)

Parameters

Notes

The function has no effect, if you indicate the number of a process,
which

• has already been stopped or
• has not been loaded to the ADwin system yet.

Example
// Stop process 2
ErrCode = Stop_Process(2);

Clear_ProcessClear_Process deletes a process from memory.

ErrorCode = Clear_Process (ProcessNo)

Parameters

Notes

Loaded processes need memory space in the system. With
Clear_Process, you can delete processes from the program memory
to get more space for other processes.

If you want to delete a process, proceed as follows:
• Stop the running process with Stop_Process. A running

process cannot be deleted.
• Check with Process_Status, if the process has really stopped.
• Delete the process from the memory with Clear_Process.

Process 15 in Gold and Pro systems is responsible for flashing the LED;
after deleting (or stopping) this process the LED does not flash any
more.

ProcessNo Process number (1...10, 15).

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ProcessNo Process number (1...10, 15).

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

14 ADwin driver Scilab, Manual Mar. 2018

Example
// Delete process 2 from memory.
// Declared DATA and FIFO arrays remain.
ErrCode = Clear_Process(2);

Process_Status Process_Status returns the status of a process.

[ret_val, ErrorCode] = Process_Status (ProcessNo)

Parameters

Example
// Return the status of process 2
[ret_val,ErrCode] = Process_Status(2);

Set_Processdelay Set_Processdelay sets the parameter Processdelay for a process

ErrorCode = Set_Processdelay (ProcessNo,
Processdelay)

Parameters

Notes

The parameter Processdelay controls the time interval between two
events of a time-controlled process (see manual ADbasic or online
help). The parameter Processdelay replaces the former parameter
Globaldelay.

For each process there is a minimum time interval: If you fall below the
minimum time interval you will get an overload of the ADwin processor
and communication will fail.

The time interval is specified in a time unit that depends on processor
type and process priority:

ProcessNo Process number (1...10, 15).

ret_val Status of the process:
1 : Process is running.
0 : Process is not running, that means, it has not been

loaded, not been started or has been stopped.
-1: Process has been stopped, that means, it has received

Stop_Process, but still waits for the last event.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ProcessNo Process number (1...10).

Process-
delay

Value (1…231-1) to be set for the parameter Processde-
lay of the process (see table below).

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Processor type Process priority

high low

T9 25ns 100µs

T10 25ns 50µs

T11 3.3ns 0.003µs = 3.3ns

T12 1ns 1ns

ADwin driver Scilab, Manual Mar. 2018 15

Description of the ADwin Driver FunctionsADwin

Example
// Set Processdelay of process 1 to 50µs (T11, high priority)
ErrCode = Set_Processdelay(1, 50E-6/3.3E-9);

If process 1 is time-controlled, has high priority and runs on a T11 pro-
cessor, process cycles are called every 50 µs.

Get_ProcessdelayGet_Processdelay returns the parameter Processdelay for a process.

[ret_val, ErrorCode] = Get_Processdelay (ProcessNo)

Parameters

Notes

The parameter Processdelay controls the time interval between two
events of a time-controlled process (see Set_Processdelay as well
as the manual or online help of ADbasic).

Example
// Get Processdelay of process 1
[x,ErrCode] = Get_Processdelay(1);

T12.1 1,5ns 1,5ns

Processor type Process priority

high low

ProcessNo Process number (1...10).

ret_val The current value (1…231-1) of the parameter Process-
delay.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

16 ADwin driver Scilab, Manual Mar. 2018

5.3 Transfer of Global Variables

Commands for data transfer between PC and ADwin device with the pre-
defined global variables PAR_1 … PAR_80 and FPAR_1 … FPAR_80.

5.3.1 Global long variables (PAR_1…PAR_80)

The global LONG variables have the following range of values:

Set_Par Set_Par sets a global LONG variable to the specified value.

ErrorCode = Set_Par (Index, Value)

Parameters

Example
// Set LONG variable PAR_1 to 2000
ErrCode = Set_Par(1,2000);

Get_Par Get_Par returns the value of a global LONG variable.

[ret_val, ErrorCode] = Get_Par (Index)

Parameters

Example
// Read the value of the LONG variable PAR_1
[x,ErrCode] = Get_Par(1);

PAR_1 ... PAR_80: -2147483648 … +2147483647

= -231 … +231-1

Index Number (1 … 80) of the global LONG variable PAR_1 …
PAR_80.

Value Value to be set for the LONG variable.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Index Number (1 … 80) of the global LONG variable PAR_1 …
PAR_80.

ret_val Current value of the variable.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 17

Description of the ADwin Driver FunctionsADwin
Get_Par_BlockGet_Par_Block transfers a specified number of global LONG variables into

a row vector.

[ret_val, ErrorCode] = Get_Par_Block (StartIndex,
Count)

Parameters

Example

Read the parameters PAR_10…PAR_39 and write the values to the row
vector v:
[v,ErrCode] = Get_Par_Block(10, 30);

Get_Par_AllGet_Par_All transfers all global long variables (PAR_1…PAR_80) into a row
vector.

[ret_val, ErrorCode] = Get_Par_All ()

Parameters

Example

Read the parameters PAR_1…PAR_80 and write the values to the row
vector v:
[v,ErrCode] = Get_Par_All;

StartIndex Number (1 … 80) of the first global LONG variable PAR_1
… PAR_80 to be transferred.

Count Number (≥1) of the LONG variables to be transferred.

ret_val Row vector with transferred values

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ret_val Row vector with transferred values.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

18 ADwin driver Scilab, Manual Mar. 2018

5.3.2 Global float variables (FPAR_1…FPAR_80)

The global FLOAT variables have the following range of values:

Set_FPar Set_FPar sets a global FLOAT variable to a specified value.

ErrorCode = Set_FPar (Index, Value)

Parameters

Example
// Set Float-Variable FPAR_6 to 34.7
ErrCode = Set_FPar(6, 34.7);

Get_FPar Get_FPar returns the value of a global FLOAT variable.

[ret_val, ErrorCode] = Get_FPar (Index)

Parameters

Example
// Read the value of the FLOAT variable FPAR_56
[ret_val,ErrCode] = Get_FPar(56);

FPAR_1 ... FPAR_80: negative: −3.402823 ⋅10+38 … −1.175494 ⋅10-38

positive: +1.175494 ⋅10-38 … +3.402823 ⋅10+38

Index Number (1 … 80) of the global FLOAT variable FPAR_1 …
FPAR_80.

Value Value to be set for the FLOAT variable.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Index Number (1 … 80) of the global FLOAT variable FPAR_1 …
FPAR_80.

ret_val Current value of the variables.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 19

Description of the ADwin Driver FunctionsADwin
Get_FPar_BlockGet_FPar_Block transfers a number of global FLOAT variables, which is to

be indicated, into a row vector.

[ret_val, ErrorCode] = Get_FPar_Block (StartIndex,
Count)

Parameters

Example

Read the values of the variables FPAR_10 … FPAR_34 and store in a
row vector v:
[v,ErrCode] = Get_FPar_Block(10,25);

Get_FPar_AllGet_FPar_All transfers all global FLOAT variables (FPAR_1…FPAR_80)
into a row vector.

[ret_val, ErrorCode] = Get_FPar_All ()

Parameters

Example

Read the values of the variables FPAR_1 … FPAR_80 and store in a row
vector v:
[v,ErrCode] = Get_FPar_All();

StartIndex Number (1 … 80) of the first global FLOAT variable
FPAR_1… FPAR_80 to be transferred.

Count Number (≥1) of the FLOAT variables to be transferred.

ret_val Row vector with transferred values.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ret_val Row vector with transferred values.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

20 ADwin driver Scilab, Manual Mar. 2018

5.4 Transfer of Data Arrays

Commands for data transfer between PC and ADwin system with global DATA
arrays (DATA_1…DATA_200):

– Data arrays

– FIFO Arrays

– Data Arrays with String Data

You have to declare each array in ADbasic before using it in Scilab (see "ADba-
sic" manual).

5.4.1 Data arrays

Before using it in Scilab, you have to declare each array in ADbasic with
DIM DATA_x AS LONG / FLOAT

The data type must fit to the used function.

The value range of an array element depends on the data type:

Data_Length Data_Length returns the length of an ADbasic array, that is the declared
number of elements.

[ret_val, ErrorCode] = Data_Length (DataNo)

Parameters

Notes

The data type of the array (LONG or FLOAT) does not matter.

To determine the length of a string in a DATA array of the type STRING
you use the instruction String_Length.

Example

In ADbasic, DATA_2 is dimensioned as:
DIM DATA_2[2000] AS LONG

In Scilab, you will have the length of the array DATA_2:
--> Data_Length(2)
ans =

[2000, 0]

– LONG: -2147483648 … +2147483647 = -231 … +231-1

– FLOAT: negative: −3.402823 ⋅ 10+38 … −1.175494 ⋅ 10-38

positive: +1.175494 ⋅ 10-38 … +3.402823 ⋅ 10+38

DataNo Array number (1...200).

ret_val Declared length of the array (= number of elements).

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 21

Description of the ADwin Driver FunctionsADwin
SetData_LongSetData_Long transfers data from a row vector into a DATA array of the ADwin

system.

ErrorCode = SetData_Long (DataNo, Vector,
StartIndex)

Parameters

Notes

The DATA array must be greater than or equal to the number of values
in the Scilab vector plus StartIndex.

If Scilab data from multi-dimensional matrices is to be transferred the
data has to be copied into a row vector first. In a column vector, the first
data element will be transferred only.

Example

Write the complete row vector x into DATA_1, beginning at the array
element DATA_1[100]:
ErrCode = SetData_Long(1,x,100);

SetData_FloatSetData_Float transfers data from a row vector into a DATA array of the ADwin
system.

ErrorCode = SetData_Float (DataNo, Vector,
StartIndex)

Parameters

Notes

The DATA array must be greater than or equal to the number of values
in the Scilab vector plus StartIndex.

If Scilab data from multi-dimensional matrices is to be transferred the
data has to be copied into a row vector first. In a column vector, the first
data element will be transferred only.

Example

Write the complete row vector x into DATA_1, beginning at the array
element DATA_1[100]:
ErrCode = SetData_Float(1,x,100);

DataNo Number (1...200) of destination array DATA_1 …
DATA_200 of type LONG.

Vector Row vector, from which data are transferred.

StartIndex Number (≥1) of the first element in the destination array,
into which data is transferred.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

DataNo Number (1...200) of destination array DATA_1 …
DATA_200 of type FLOAT.

Vector Row vector, from which data are transferred.

StartIndex Number (≥1) of the first element in the destination array,
into which data is transferred.

ErrorCode ADwin error number, which was recognized last on the PC.

Description of the ADwin Driver Functions ADwin

22 ADwin driver Scilab, Manual Mar. 2018

GetData_Long GetData_Long transfers parts of a DATA array from an ADwin system into a
row vector.

[ret_val, ErrorCode] = GetData_Long (DataNo,
StartIndex, Count)

Parameters

Notes

Even though an ADbasic array may be dimensioned 2-dimensional, the
return value is always a row vector. If needed, the vector may be trans-
formed into a matrix in Scilab, e.g. using matrix.

There is more information about 2-dimensional arrays in chapter 4.4 on
page 7.

Example

Transfer 1000 values from DATA_1 starting from index 100 into row vec-
tor x:
[x,ErrCode] = GetData_Long(1, 100, 1000);

GetData_Float GetData_Float transfers parts of a DATA array from an ADwin system into
a row vector.

[ret_val, ErrorCode] = GetData_Float (DataNo,
StartIndex, Count)

Parameters

Notes

Even though an ADbasic array may be dimensioned 2-dimensional, the
return value is always a row vector. If needed, the vector may be trans-
formed into a matrix in Scilab, e.g. using matrix.

There is more information about 2-dimensional arrays in chapter 4.4 on
page 7.

DataNo Number (1...200) of the source array DATA_1 …
DATA_200 of type LONG.

StartIndex Number (≥1) of the first element in the source array to be
transferred.

Count Number (≥1) of the data to be transferred.

ret_val Row vector with transferred values.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

DataNo Number (1...200) of the source array DATA_1 …
DATA_200 of type FLOAT.

StartIndex Number (≥1) of the first element in the source array to be
transferred.

Count Number (≥1) of the data to be transferred.

ret_val Row vector with transferred values.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 23

Description of the ADwin Driver FunctionsADwin
Example

Transfer 1000 values from DATA_1 starting from index 100 into row vec-
tor x:
[x,ErrCode] = GetData_Float(1, 100, 1000);

Data2FileData2File saves data from a DATA array of the ADwin system into a file (on
the hard disk).

ErrorCode = Data2File (Filename, DataNo, StartIndex,
Count, Mode)

Parameters

Notes

The DATA array must not be defined as FIFO.

The data are saved as binary file. If not existing, the file will be created.

Example

Save elements 1…1000 from the ADbasic array DATA_1 into the file
<C:\Test.dat>:
ErrCode = Data2File('C:\Test.dat', 1, 1, 1000, 0);

Filename Path and file name. If no path is indicated, the file is saved
in the project directory.

DataNo Number (1.. .200) of the source array DATA_1 …
DATA_200.

StartIndex Number (≥1) of the first element in the source array to be
transferred.

Count Number (≥1) of the first data to be transferred.

Mode Write mode:
0: File will be overwritten.
1: Data is appended to an existing file.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

24 ADwin driver Scilab, Manual Mar. 2018

5.4.2 FIFO Arrays

Commands for data transfer between PC and ADwin system with global DATA
arrays (DATA_1…DATA_200), which are declared as FIFO.

You must declare each FIFO array before using it in ADbasic (see "ADbasic"
manual): DIM DATA_x[n] AS LONG / FLOAT AS FIFO

The value range of an FIFO array element depends on the data type:

To ensure that the FIFO is not full, the FIFO_EMPTY function should be used
before writing into it. Similarly, the FIFO_FULL function should always be used
to check if there are values, which have not yet been read, before reading from
the FIFO.

Fifo_Empty Fifo_Empty returns the number of empty elements in a FIFO array.

[ret_val, ErrorCode] = Fifo_Empty (FifoNo)

Parameters

Example

In ADbasic, DATA_5 is dimensioned as:
DIM DATA_5[100] AS LONG AS FIFO

In Scilab, you will get the number of empty elements in DATA_5:
--> Fifo_Empty(5)
ans =

[68, 0]

Fifo_Full Fifo_Full returns the number of used elements of a FIFO array.

[ret_val, ErrorCode] = Fifo_Full (FifoNo)

Parameters

Example

In ADbasic, DATA_12 is dimensioned as:
DIM DATA_12[2500] AS FLOAT AS FIFO

In Scilab, you will get the number of used elements in DATA_12:
--> Fifo_Full(12)
ans =

[2105, 0]

– LONG: -2147483648 … +2147483647

– FLOAT: negative: −3.402823 ⋅ 10+38 … −1.175494 ⋅ 10-38

positive: +1.175494 ⋅ 10-38 … +3.402823 ⋅ 10+38

FifoNo Number (1...200) of the FIFO array DATA_1 … DATA_200.

ret_val Number of empty elements in the FIFO array.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

FifoNo Number (1...200) of the FIFO array DATA_1 … DATA_200.

ret_val Number of used elements in the FIFO array.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 25

Description of the ADwin Driver FunctionsADwin
Fifo_ClearFifo_Clear initializes the write and read pointers of a FIFO array. Now the

data in the FIFO array are no longer available.

ErrorCode = Fifo_Clear (FifoNo)

Parameters

Notes

During start-up of an ADbasic program the FIFO pointers of an array are
not initialized automatically. We therefore recommend calling
Fifo_Clear at the beginning of your ADbasic program.

Initializing the FIFO pointers during program run is useful, if you want to
clear all data of the array (because of a measurement error for instance).

Example
// Clear data in the FIFO array DATA_45
ErrCode = Fifo_Clear(45);

SetFifo_LongSetFifo_Long transfers data from a row vector into a FIFO array.

ErrorCode = SetFifo_Long (FifoNo, Vector)

Parameters

Notes

You should first use the function Fifo_Empty to check, if the FIFO ar-
ray has enough empty elements to hold all data of the row vector. If more
data are transferred into the FIFO array than empty elements are given,
the surplus data are overwritten and are definitively lost.

Example

Check FIFO array DATA_12 for empty elements and transfer all ele-
ments of the row vector vector into the FIFO array:
[num_fifo,ErrCode] = Fifo_Empty(12);
if ErrCode then
num_vector = size(vector);
if num_fifo >= num_vector(2) then
ErrCode = SetFifo_Long(12, vector);

end
end

FifoNo Number (1...200) of the FIFO array DATA_1 … DATA_200.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

FifoNo Number (1...200) of the FIFO array DATA_1 … DATA_200
of type LONG.

Data Row vector with values to be transferred.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

26 ADwin driver Scilab, Manual Mar. 2018

SetFifo_Float SetFifo_Float transfers data from a row vector into a FIFO array.

ErrorCode = SetFifo_Float (FifoNo, Vector)

Parameters

Notes

You should first use the function Fifo_Empty to check, if the FIFO ar-
ray has enough empty elements to hold all data of the row vector. If more
data are transferred into the FIFO array than empty elements are given,
the surplus data are overwritten and are definitively lost.

Example

Check FIFO array DATA_12 for empty elements and transfer all ele-
ments of the row vector vector into the FIFO array:
[num_fifo,ErrCode] = Fifo_Empty(12);
if ErrCode then
num_vector = size(vector);
if num_fifo >= num_vector(2) then
SetFifo_Float(12, vector);

end
end

GetFifo_Long GetFifo_Long transfers FIFO data from a FIFO array to a row vector.

[ret_val, ErrorCode] = GetFifo_Long (FifoNo, Count)

Parameters

Notes

You should first use the function Fifo_Empty to check, how much used
elements the FIFO array has. If more data are read from the FIFO array
than used elements are given, the surplus data is erroneous.

Example

Query the number of used elements in the FIFO array DATA_12 and
transfer 200 values into the row vector v:
[num_fifo,ErrCode] = Fifo_Full(12);
if ErrCode then
if num_fifo >= 200 then
v = GetFifo_Long(12, 200);

end
end

FifoNo Number (1...200) of the FIFO array DATA_1 … DATA_200
of type FLOAT.

Data Row vector with values to be transferred.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

FifoNo Number (1...200) of the FIFO array DATA_1 … DATA_200
of type LONG.

Count Number (≥1) of elements to be transferred.

ret_val Row vector with transferred values.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 27

Description of the ADwin Driver FunctionsADwin
GetFifo_FloatGetFifo_Float transfers FIFO data from a FIFO array to a row vector.

[ret_val, ErrorCode] = GetFifo_Float (FifoNo, Count)

Parameters

Notes

You should first use the function Fifo_Empty to check, how much used
elements the FIFO array has. If more data are read from the FIFO array
than used elements are given, the surplus data is erroneous.

Example

Query the number of used elements in the FIFO array DATA_12 and
transfer 200 values into the row vector v:
[num_fifo,ErrCode] = Fifo_Full(12);
if ErrCode then
if num_fifo >= 200 then
v = GetFifo_Float(12, 200);

end
end

FifoNo Number (1...200) of the FIFO array DATA_1 … DATA_200
of type FLOAT.

Count Number (≥1) of elements to be transferred.

ret_val Row vector with transferred values.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

28 ADwin driver Scilab, Manual Mar. 2018

5.4.3 Data Arrays with String Data

Commands for data transfer between PC and ADwin system with global DATA
arrays (DATA_1…DATA_200) that contain string data.

You must declare each DATA array before using it in ADbasic (see manual
"ADbasic"): DIM DATA_x[n] AS STRING.

Each element in the DATA array of type STRING may contain a letter. The ter-
mination char (ASCII character 0) marks the end of a string in a DATA array.

String_Length String_Length returns the length of a data string in a DATA array.

[ret_val, ErrorCode] = String_Length (DataNo)

Parameters

Notes

String_Length counts the characters in a DATA array up to the ter-
mination char (ASCII character 0). The termination char is not counted
as character.

Example

In ADbasic, DATA_2 is dimensioned as:
DIM DATA_2[2000] AS STRING
DATA_2 = "Hello World"

In Scilab, you will get the length of the array DATA_2:
--> String_Length(2)
ans =

[11, 0]

SetData_String SetData_String transfers a string into DATA array.

ErrorCode = SetData_String (DataNo, String)

Parameters

Notes

SetData_String appends the termination char (ASCII character 0) to
each transferred string.

Example
ErrCode = SetData_String(2,'Hello World');

The string "Hello World" is written into the array DATA_2 and the termi-
nation char is added.

DataNo Number (1...200) of the array DATA_1 … DATA_200.

ret_val String length = number of characters.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

DataNo Number (1...200) of the FIFO array DATA_1 … DATA_200.

String String variable or text in quotes, which is to be transferred.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

ADwin driver Scilab, Manual Mar. 2018 29

Description of the ADwin Driver FunctionsADwin
GetData_StringGetData_String transfers a string from a DATA array into a string variable.

[ret_val, ErrorCode] = GetData_String (DataNo,
MaxCount)

Parameters

Notes

If the string in the DATA array contains a termination char, the transfer
stops exactly there, that is the termination char will not be transferred.

If MaxCount is greater than the number of string chars defined in AD-
bas ic , you w i l l r ece ive the e r ro r "Data too small " v ia
Get_Last_Error().

If you set MaxCount to a high value, the function will have an appropri-
ately long execution time, even if the transferred string is short.
For time-critical applications with large strings, it may be faster to pro-
ceed as follows:

• You determine the actual number of chars in the string using
String_Length().

• You read the string with Getdata_String() and pass the actual
number of chars as MaxCount.

Example
// Get a string of max. 100 characters from DATA_2
[string,ErrCode] = GetData_String(2,100);

If the DATA array in the ADwin system has the termination char at posi-
tion 9, then 8 characters are read.

DataNo Number (1...200) of the array DATA_1 … DATA_200.

MaxCount Max. number (≥1) of the transferred characters without ter-
mination char.

ret_val String variable with the transferred chars.

ErrorCode ADwin error number, which was recognized last on the PC.
For more information, see chapter 4.1.

Description of the ADwin Driver Functions ADwin

30 ADwin driver Scilab, Manual Mar. 2018

5.5 Error handling

Show_Errors Show_Errors enables or disables the display of error messages in a mes-
sage box.

Show_Errors (OnOff)

Parameters

Notes

With Linux, this command has no effect, since message boxes are not
available. Get_Last_Error may be used instead to create a message
box "manually".

The function Show_Errors refers to all functions that may display error
messages in a message box. These are:

• Boot
• Test_Version
• Load_Process

If message boxes are disabled with Show_Errors, the program keeps
on running when an error occurs. The user cannot and does not have to
confirm any error messages.

Example
// Show error messages
Show_Errors(1);

Get_Last_Error Get_Last_Error returns the number of the ADwin error that was recognized
last on the PC.

ret_val = Get_Last_Error ()

Parameters

Notes

To each error number you wil l get the text with the function
Get_Last_Error_Text. You will find a list of all error messages in
chapter A.2 of the Appendix.

After the function call the error number is automatically reset to 0.

Even if several errors occur, Get_Last_Error will only return the num-
ber of the error that occurred last.

Example
// Read last error number
Error = Get_Last_Error();

OnOff 0: Do not show any error messages.
1: Show error messages in a message box (default).

ret_val 0: no error
≠0: error number

ADwin driver Scilab, Manual Mar. 2018 31

Description of the ADwin Driver FunctionsADwin
Get_Last_Error_TextGet_Last_Error_Text returns the error text to a given error number.

ret_val = Get_Last_Error_Text (LastError)

Parameters

Notes

Usually, the return value of the function Get_Last_Error is used as
error number Last_Error.

Example
errnum = Get_Last_Error();
if errnum<>0 then
pErrText = Get_Last_Error_Text(errnum);

end

Set_LanguageSet_Language sets the language for error messages.

Set_Language (Language)

Parameters

Notes

With Linux, this command has no effect. Error messages will always be
in english.

The command changes the language setting for the error messages of
the adwin32.dll / adwin64.dll and fo r the func t ion
Get_Last_Error_Text.

If a different language than English or German is set under Windows,
the error messages are displayed in English.

Example
// set english language for error messages
Set_Language(1);

Last_Error Error number

ret_val Error text

language Languages for error messages:
0: Language set in Windows
1: English
2: German

Annex
ADwin

A-1 ADwin driver Scilab, Manual Mar. 2018

Annex

A.1 Program Examples

The following examples are written for a ADwin-Gold system, which is
accessed via the Device No. 1. You find the corresponding source files (and
the appropriate binary files for ADbasic) in the following directories:

– ADbasic: C:\ADwin\ADbasic\Samples_ADwin

– Scilab®: C:\ADwin\Developer\Scilab\Samples

The Scilab program loads the ADbasic process to your ADwin systen.

If you use an other system (than ADwin-Gold), you have to adjust the com-
mand ADC in the ADbasic programs. If you use a different Device No. than 1,
you have to set it in Scilab® with the command Set_DeviceNo.

BAS_DMO1 Online Evaluation of Measurement Data

The ADbasic program described below writes the lowest and highest measure-
ment values of the analog input channel 1 to the parameters Par_1 and
Par_2.

REM The program BAS_DMO1 searches the maximum and
REM minimum values out of 1000 measurements of ADC1
REM and writes the result to Par_1 and Par_2

Dim i1, iw, max, min As Long
Init:
i1 = 1
max = 0
min = 65535

Event:
iw = ADC(1)
If (iw>max) Then max = iw
If (iw<min) Then min = iw
i1 = i1+1
If (i1>1000) Then
i1 = 1
Par_1 = min : REM Write minimum value to Par_1
Par_2 = max : REM Write maximum value to Par_2
max = 0
min = 65535

EndIf

From Scilab® these data can be read out with the function Get_Par(1):

// sci_dmo1.sce
// Queries 5 times PAR_1 and PAR_2
Start_Process(1)
for i = 1:3,
minimum = Get_Par(1) // query Par_1 (minimum value)
maximum = Get_Par(2) // query Par_2 (maximum value)
x_message(['To continue please press OK'],['OK'])

End;
Stop_Process(1)

ADwin driver Scilab, Manual Mar. 2018 A-2

Program Examples
ADwin

BAS_DMO2Digital Proportional Controller

The ADbasic program described below is a digital proportional controller,
which reads the setpoint from Par_1 and the gain factor from Par_2.

REM The program BAS_DMO2 is a digital proportional
REM controller. The setpoint is defined by Par_1,
REM the gain by Par_2.

Dim deviation, actval As Long

Event:
deviation = Par_1 - ADC(1)
actval = deviation * Par_2 + 32768
DAC(1, actval)

From Scilab® the setpoint and the gain factor can be changed with the follow-
ing commands:

Set_Par(1, 17); // Change setpoint to 17
Set_Par(2, 3); // Change gain factor to 3

BAS_DMO3Data Transfer

The ADbasic program described below writes measurement data into a DATA-
array.

REM The program BAS_DMO3 measures the analog input 1
REM and writes the data to a DATA array
REM The data are transferred by using a DATA-array

Dim Data_1[1000] As Long
Dim index As Long

Init:
Par_10 = 0
index = 0 'reset array pointer
Processdelay = 40000 'cycle-time of 1ms (T9)

Event:
index = index + 1 'increment array pointer
If (index > 1000) Then'1000 samples done?
Par_10 = 1 'set End-Flag
End 'terminate process

EndIf
Data_1[index] = ADC(1)'acquire sample and save in array

From Scilab® the saved DATA array can be read:
// sci_dmo3.sce
// reads array Data_1.
Start_Process(1)
x = 0;
while x <> 1 do
x = Get_Par(10);

End
y1 = GetData_Long(1,1,1000); // Read Data_1
plot(y1);

List of error messages
ADwin

A-3 ADwin driver Scilab, Manual Mar. 2018

A.2 List of error messages
1

No. Error message

0 No Error.

1 Timeout error on writing to the ADwin-system.

2 Timeout error on reading from the ADwin-system.

10 The device No. is not allowed.

11 The device No. is not known.

15 Function for this device not allowed.

20 Incompatible versions of ADwin operating system,
driver (ADwin32.DLL) and/or ADbasic binary-file.

100 The Data is too small.

101 The Fifo is too small or not enough values.

102 The Fifo has not enough values.

103 The Data array is not declared.

150 Not enough memory or memory access error.

200 File not found.

201 A temporary file could not be created.

202 The file is not an ADBasic binary-file.

203 The file is not valid.1

204 The file is not a BTL.

2000 Network error (TcpIp).

2001 Network timeout.

2002 Wrong password.

3000 USB-device is unknown.

3001 Device is unknown.

1. Possibly the file <ADwin5.btl> has no memory table, or another file was re-
named to <ADwin5.btl> or the file is damaged.

ADwin driver Scilab, Manual Mar. 2018 A-4

AnnexADwin
A.3 Index of functions
BBoot (Filename). 9
CClear_Process (ProcessNo) . 13
DData_Length (DataNo) . 20
Data2File (Filename, DataNo, StartIndex, Count, Mode) 23
FFifo_Clear (FifoNo) . 25
Fifo_Empty (FifoNo) . 24
Fifo_Full (FifoNo) . 24
Free_Mem (MemSpec) . 11
GGet_DeviceNo () . 8
Get_FPar (Index) . 18
Get_FPar_All () . 19
Get_FPar_Block (StartIndex, Count) . 19
Get_Last_Error () . 30
Get_Last_Error_Text (LastError) . 31
Get_Par (Index). 16
Get_Par_All () . 17
Get_Par_Block (StartIndex, Count). 17
Get_Processdelay (ProcessNo) . 15
GetData_Float (DataNo, StartIndex, Count) . 22
GetData_Long (DataNo, StartIndex, Count) . 22
GetData_String (DataNo, MaxCount) . 29
GetFifo_Float (FifoNo, Count). 27
GetFifo_Long (FifoNo, Count). 26
LLoad_Process (Filename) . 12
PProcess_Status (ProcessNo) . 14
Processor_Type (). 10
SSet_DeviceNo (DeviceNo) . 8
Set_FPar (Index, Value) . 18
Set_Language (Language) . 31
Set_Par (Index, Value) . 16
Set_Processdelay (ProcessNo, Processdelay). 14
SetData_Float (DataNo, Vector, StartIndex). 21
SetData_Long (DataNo, Vector, StartIndex). 21
SetData_String (DataNo, String). 28
SetFifo_Float (FifoNo, Vector) . 26
SetFifo_Long (FifoNo, Vector) . 25
Show_Errors (OnOff) . 30
Start_Process (ProcessNo). 12
Stop_Process (ProcessNo). 13
String_Length (DataNo) . 28
TTest_Version () . 9
WWorkload (Priority) . 10

	Typographical Conventions
	1 Information about this Manual
	2 ADwin Driver for Scilab®
	2.1 Interface to the Development Environment
	2.2 Communication with the ADwin System

	3 Install the ADwin Driver for Scilab®
	3.1 Installing Hardware and Software
	3.1.1 Installation under Linux
	3.1.2 Installation under Windows

	3.2 Accessing the ADwin System
	3.3 Accessing an ADwin System via other PCs

	4 General Information about ADwin Functions
	4.1 Locating Errors
	4.2 The "DeviceNo."
	4.3 Data Types
	4.4 Exchange Data of Two-Dimensional Arrays

	5 Description of the ADwin Driver Functions
	5.1 System control
	5.2 Process control
	5.3 Transfer of Global Variables
	5.3.1 Global long variables (PAR_1…PAR_80)
	5.3.2 Global float variables (FPAR_1…FPAR_80)

	5.4 Transfer of Data Arrays
	5.4.1 Data arrays
	5.4.2 FIFO Arrays
	5.4.3 Data Arrays with String Data

	5.5 Error handling

	Annex
	A.1 Program Examples
	A.2 List of error messages
	A.3 Index of functions

